## Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards

## 49 CFR 192

### THIS DOCUMENT CONTAINS ONLY THE SECTIONS

**NEEDED FOR THE API 1169 ICP EXAMS** 

#### **Sections**

## Subpart A—General §192.7 What documents are incorporated by reference partly or wholly in this part? **Subpart E**—Welding of Steel in Pipelines §192.221 Scope. §192.225 Welding procedures. §192.227 Qualification of welders and welding operators. §192.229 Limitations on welders and welding operators. **§192.231** Protection from weather. **§192.233** Miter joints. §192.235 Preparation for welding. §192.241 Inspection and test of welds. §192.243 Nondestructive testing. §192.245 Repair or removal of defects. **Subpart G**—General Construction Requirements for Transmission Lines and Mains §192.301 Scope. **§192.303** Compliance with specifications or standards. §192.305 Inspection: General. §192.307 Inspection of materials. §192.309 Repair of steel pipe. §192.311 Repair of plastic pipe. §192.313 Bends and elbows. §192.315 Wrinkle bends in steel pipe. **§192.317** Protection from hazards. §192.319 Installation of pipe in a ditch.

§192.321 Installation of plastic pipe.

§192.325 Underground clearance.

§192.323 Casing.

§192.327 Cover.

**§192.328** Additional construction requirements for steel pipe using alternative maximum allowable operating pressure.

Subpart J—Test Requirements

**§192.505** Strength test requirements for steel pipeline to operate at a hoop stress of 30 percent or more of SMYS.

Subpart L—Operations

**§192.614** Damage prevention program.

**Subpart M**—Maintenance

§192.707 Line markers for mains and transmission lines.

#### **Subpart A—General**

#### §192.7 What documents are incorporated by reference partly or wholly in this part?

- (a) This part prescribes standards, or portions thereof, incorporated by reference into this part with the approval of the Director of the Federal Register in 5 U.S.C. 552(a) and 1 CFR part 51. The materials listed in this section have the full force of law. To enforce any edition other than that specified in this section, PHMSA must publish a notice of change in the FEDERAL REGISTER.
- (1) Availability of standards incorporated by reference. All of the materials incorporated by reference are available for inspection from several sources, including the following:
- (i) The Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, 1200 New Jersey Avenue SE., Washington, DC 20590. For more information contact 202-366-4046 or go to the PHMSA Web site at: http://www.phmsa.dot.gov/pipeline/regs.
- (ii) The National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030 or go to the NARA Web site at: http://www.archives.gov/federal register/code of federal regulations/ibr locations.html.
- (iii) Copies of standards incorporated by reference in this part can also be purchased or are otherwise made available from the respective standards-developing organization at the addresses provided in the centralized IBR section below.

#### (2) [Reserved]

- (b) American Petroleum Institute (API), 1220 L Street NW., Washington, DC 20005, phone: 202-682-8000, http://api.org/.
- (1) API Recommended Practice 5L1, "Recommended Practice for Railroad Transportation of Line Pipe," 7th edition, September 2009, (API RP 5L1), IBR approved for §192.65(a).
- (2) API Recommended Practice 5LT, "Recommended Practice for Truck Transportation of Line Pipe," First edition, March 2012, (API RP 5LT), IBR approved for §192.65(c).
- (3) API Recommended Practice 5LW, "Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels," 3rd edition, September 2009, (API RP 5LW), IBR approved for §192.65(b).
- (4) API Recommended Practice 80, "Guidelines for the Definition of Onshore Gas Gathering Lines," 1st edition, April 2000, (API RP 80), IBR approved for §192.8(a).
- (5) API Recommended Practice 1162, "Public Awareness Programs for Pipeline Operators," 1st edition, December 2003, (API RP 1162), IBR approved for §192.616(a), (b), and (c).
- (6) API Recommended Practice 1165, "Recommended Practice for Pipeline SCADA Displays," First edition, January 2007, (API RP 1165), IBR approved for §192.631(c).

- (7) API Specification 5L, "Specification for Line Pipe," 45th edition, effective July 1, 2013, (API Spec 5L), IBR approved for §§192.55(e); 192.112(a), (b), (d), (e); 192.113; and Item I, Appendix B to Part 192.
- (8) ANSI/API Specification 6D, "Specification for Pipeline Valves,"23rd edition, effective October 1, 2008, including Errata 1 (June 2008), Errata2 (/November 2008), Errata 3 (February 2009), Errata 4 (April 2010), Errata 5 (November 2010), Errata 6 (August 2011) Addendum 1 (October 2009), Addendum 2 (August 2011), and Addendum 3 (October 2012), (ANSI/API Spec 6D), IBR approved for §192.145(a).
- (9) API Standard 1104, "Welding of Pipelines and Related Facilities," 20th edition, October 2005, including errata/addendum (July 2007) and errata 2 (2008), (API Std 1104), IBR approved for §§192.225(a); 192.227(a); 192.229(c); 192.241(c); and Item II, Appendix B.
- (c) ASME International (ASME), Three Park Avenue, New York, NY 10016, 800-843-2763 (U.S./Canada), http://www.asme.org/.
- (1) ASME/ANSI B16.1-2005, "Gray Iron Pipe Flanges and Flanged Fittings: (Classes 25, 125, and 250)," August 31, 2006, (ASME/ANSI B16.1), IBR approved for §192.147(c).
- (2) ASME/ANSI B16.5-2003, "Pipe Flanges and Flanged Fittings, "October 2004, (ASME/ANSI B16.5), IBR approved for §§192.147(a) and 192.279.
- (3) ASME/ANSI B31G-1991 (Reaffirmed 2004), "Manual for Determining the Remaining Strength of Corroded Pipelines," 2004, (ASME/ANSI B31G), IBR approved for §§192.485(c) and 192.933(a).
- (4) ASME/ANSI B31.8-2007, "Gas Transmission and Distribution Piping Systems," November 30, 2007, (ASME/ANSI B31.8), IBR approved for §§192.112(b) and 192.619(a).
- (5) ASME/ANSI B31.8S-2004, "Supplement to B31.8 on Managing System Integrity of Gas Pipelines," 2004, (ASME/ANSI B31.8S-2004), IBR approved for §§192.903 note to *Potential impact radius*; 192.907 introductory text, (b); 192.911 introductory text, (i), (k), (l), (m); 192.913(a), (b), (c); 192.917 (a), (b), (c), (d), (e); 192.921(a); 192.923(b); 192.925(b); 192.927(b), (c); 192.929(b); 192.933(c), (d); 192.935 (a), (b); 192.937(c); 192.939(a); and 192.945(a).
- (6) ASME Boiler & Pressure Vessel Code, Section I, "Rules for Construction of Power Boilers 2007," 2007 edition, July 1, 2007, (ASME BPVC, Section I), IBR approved for §192.153(b).
- (7) ASME Boiler & Pressure Vessel Code, Section VIII, Division 1 "Rules for Construction of Pressure Vessels," 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 1), IBR approved for §§192.153(a), (b), (d); and 192.165(b).
- (8) ASME Boiler & Pressure Vessel Code, Section VIII, Division 2 "Alternate Rules, Rules for Construction of Pressure Vessels," 2007 edition, July 1, 2007, (ASME BPVC, Section VIII, Division 2), IBR approved for §§192.153(b), (d); and 192.165(b).
- (9) ASME Boiler & Pressure Vessel Code, Section IX: "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators," 2007 edition, July 1, 2007,

ASME BPVC, Section IX, IBR approved for §§192.225(a); 192.227(a); and Item II, Appendix B to Part 192.

- (d) American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428, phone: (610) 832-9585, Web site: http://www.astm.org/.
- (1) ASTM A53/A53M-10, "Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless," approved October 1, 2010, (ASTM A53/A53M), IBR approved for §192.113; and Item II, Appendix B to Part 192.
- (2) ASTM A106/A106M-10, "Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service," approved October 1, 2010, (ASTM A106/A106M), IBR approved for §192.113; and Item I, Appendix B to Part 192.
- (3) ASTM A333/A333M-11, "Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service," approved April 1, 2011, (ASTM A333/A333M), IBR approved for §192.113; and Item I, Appendix B to Part 192.
- (4) ASTM A372/A372M-10, "Standard Specification for Carbon and Alloy Steel Forgings for Thin-Walled Pressure Vessels," approved October 1, 2010, (ASTM A372/A372M), IBR approved for §192.177(b).
- (5) ASTM A381-96 (reapproved 2005), "Standard Specification for Metal-Arc Welded Steel Pipe for Use with High-Pressure Transmission Systems," approved October 1, 2005, (ASTM A381), IBR approved for §192.113; and Item I, Appendix B to Part 192.
- (6) ASTM A578/A578M-96 (reapproved 2001), "Standard Specification for Straight-Beam Ultrasonic Examination of Plain and Clad Steel Plates for Special Applications," (ASTM A578/A578M), IBR approved for §192.112(c).
- (7) ASTM A671/A671M-10, "Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures," approved April 1, 2010, (ASTM A671/A671M), IBR approved for §192.113; and Item I, Appendix B to Part 192.
- (8) ASTM A672/A672M-09, "Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures," approved October 1, 2009, (ASTM A672/672M), IBR approved for §192.113 and Item I, Appendix B to Part 192.
- (9) ASTM A691/A691M-09, "Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures," approved October 1, 2009, (ASTM A691/A691M), IBR approved for §192.113 and Item I, Appendix B to Part 192.
- (10) ASTM D638-03, "Standard Test Method for Tensile Properties of Plastics," 2003, (ASTM D638), IBR approved for §192.283(a) and (b).
- (11) ASTM D2513-87, "Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing, and Fittings," (ASTM D2513-87), IBR approved for §192.63(a).

- (12) ASTM D2513-99, "Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing, and Fittings," (ASTM D 2513-99), IBR approved for §§192.191(b); 192.281(b); 192.283(a) and Item 1, Appendix B to Part 192.
- (13) ASTM D2513-09a, "Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings," approved December 1, 2009, (ASTM D2513-09a), IBR approved for §§192.123(e); 192.191(b); 192.283(a); and Item 1, Appendix B to Part 192.
- (14) ASTM D2517-00, "Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings," (ASTM D 2517), IBR approved for §§192.191(a); 192.281(d); 192.283(a); and Item I, Appendix B to Part 192.
- (15) ASTM F1055-1998, "Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controller Polyethylene Pipe and Tubing," (ASTM F1055), IBR approved for §192.283(a).
- (e) Gas Technology Institute (GTI), formerly the Gas Research Institute (GRI), 1700 S. Mount Prospect Road, Des Plaines, IL 60018, phone: 847-768-0500, Web site: www.gastechnology.org.
- (1) GRI 02/0057 (2002) "Internal Corrosion Direct Assessment of Gas Transmission Pipelines Methodology," (GRI 02/0057), IBR approved for §192.927(c).
  - (2) [Reserved]
- (f) Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS), 127 Park St. NE., Vienna, VA 22180, phone: 703-281-6613, Web site: http://www.mss-hq.org/.
- (1) MSS SP-44-2010, Standard Practice, "Steel Pipeline Flanges," 2010 edition, (including Errata (May 20, 2011)), (MSS SP-44), IBR approved for §192.147(a).
  - (2) [Reserved]
- (g) NACE International (NACE), 1440 South Creek Drive, Houston, TX 77084: phone: 281-228-6223 or 800-797-6223, Web site: http://www.nace.org/Publications/.
- (1) ANSI/NACE SP0502-2010, Standard Practice, "Pipeline External Corrosion Direct Assessment Methodology," revised June 24, 2010, (NACE SP0502), IBR approved for §§192.923(b); 192.925(b); 192.931(d); 192.935(b) and 192.939(a).
  - (2) [Reserved]
- (h) National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, Massachusetts 02169, phone: 1 617 984-7275, Web site: http://www.nfpa.org/.
- (1) NFPA-30 (2012), "Flammable and Combustible Liquids Code," 2012 edition, June 20, 2011, including Errata 30-12-1 (September 27, 2011) and Errata 30-12-2 (November 14, 2011), (NFPA-30), IBR approved for §192.735(b).

- (2) NFPA-58 (2004), "Liquefied Petroleum Gas Code (LP-Gas Code)," (NFPA-58), IBR approved for §192.11(a), (b), and (c).
- (3) NFPA-59 (2004), "Utility LP-Gas Plant Code," (NFPA-59), IBR approved for §192.11(a), (b); and (c).
- (4) NFPA-70 (2011), "National Electrical Code," 2011 edition, issued August 5, 2010, (NFPA-70), IBR approved for §§192.163(e); and 192.189(c).
- (i) Pipeline Research Council International, Inc. (PRCI), c/o Technical Toolboxes, 3801 Kirby Drive, Suite 520, P.O. Box 980550, Houston, TX 77098, phone: 713-630-0505, toll free: 866-866-6766, Web site: http://www.ttoolboxes.com/.(Contract number PR-3-805.)
- (1) AGA, Pipeline Research Committee Project, PR-3-805, "A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe," (December 22, 1989), (PRCI PR-3-805 (R-STRENG)), IBR approved for §§192.485(c); 192.933(a) and (d).
  - (2) [Reserved]
- (j) Plastics Pipe Institute, Inc. (PPI), 105 Decker Court, Suite 825 Irving TX 75062, phone: 469-499-1044, http://www.plasticpipe.org/.
- (1) PPI TR-3/2008 HDB/HDS/PDB/SDB/MRS Policies (2008), "Policies and Procedures for Developing Hydrostatic Design Basis (HDB), Pressure Design Basis (PDB), Strength Design Basis (SDB), and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe," May 2008, IBR approved for §192.121.
  - (2) [Reserved]

[35 FR 13257, Aug. 19, 1970]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §192.7, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

#### **Subpart E—Welding of Steel in Pipelines**

#### §192.221 Scope.

- (a) This subpart prescribes minimum requirements for welding steel materials in pipelines.
- (b) This subpart does not apply to welding that occurs during the manufacture of steel pipe or steel pipeline components.

#### §192.225 Welding procedures.

- (a) Welding must be performed by a qualified welder or welding operator in accordance with welding procedures qualified under section 5, section 12, or Appendix A of API Std 1104 (incorporated by reference, *see* §192.7) or section IX ASME Boiler and Pressure Vessel Code (BPVC) (incorporated by reference, *see* §192.7), to produce welds which meet the requirements of this subpart. The quality of the test welds used to qualify welding procedures must be determined by destructive testing in accordance with the referenced welding standard(s).
- (b) Each welding procedure must be recorded in detail, including the results of the qualifying tests. This record must be retained and followed whenever the procedure is used.

[Amdt. 192-52, 51 FR 20297, June 4, 1986; Amdt. 192-94, 69 FR 32894, June 14, 2004; Amdt. 192-119, 80 FR 181, Jan. 5, 2015; Amdt. 192-120, 80 FR 12778, Mar. 11, 2015; Amdt. 192-123, 82 FR 7997, Jan. 23, 2017]

#### §192.227 Qualification of welders and welding operators.

- (a) Except as provided in paragraph (b) of this section, each welder or welding operator must be qualified in accordance with section 6, section 12, or Appendix A of API Std 1104 (incorporated by reference, *see* §192.7), or section IX of ASME Boiler and Pressure Vessel Code (BPVC) (incorporated by reference, *see* §192.7). However, a welder or welding operator qualified under an earlier edition than the edition listed in §192.7 may weld but may not re-qualify under that earlier edition.
- (b) A welder may qualify to perform welding on pipe to be operated at a pressure that produces a hoop stress of less than 20 percent of SMYS by performing an acceptable test weld, for the process to be used, under the test set forth in section I of Appendix C of this part. Each welder who is to make a welded service line connection to a main must first perform an acceptable test weld under section II of Appendix C of this part as a requirement of the qualifying test.

[Amdt. 192-120, 80 FR 12778, Mar. 11, 2015, as amended by Amdt. 192-123, 82 FR 7997, Jan. 23, 2017]

#### §192.229 Limitations on welders and welding operators.

- (a) No welder or welding operator whose qualification is based on nondestructive testing may weld compressor station pipe and components.
- (b) A welder or welding operator may not weld with a particular welding process unless, within the preceding 6 calendar months, the welder or welding operator was engaged in welding with that process.

- (c) A welder or welding operator qualified under §192.227(a)—
- (1) May not weld on pipe to be operated at a pressure that produces a hoop stress of 20 percent or more of SMYS unless within the preceding 6 calendar months the welder or welding operator has had one weld tested and found acceptable under either section 6, section 9, section 12 or Appendix A of API Std 1104 (incorporated by reference, see§192.7). Alternatively, welders or welding operators may maintain an ongoing qualification status by performing welds tested and found acceptable under the above acceptance criteria at least twice each calendar year, but at intervals not exceeding  $7\frac{1}{2}$  months. A welder or welding operator qualified under an earlier edition of a standard listed in §192.7 of this part may weld, but may not re-qualify under that earlier edition; and,
- (2) May not weld on pipe to be operated at a pressure that produces a hoop stress of less than 20 percent of SMYS unless the welder or welding operator is tested in accordance with paragraph (c)(1) of this section or re-qualifies under paragraph (d)(1) or (d)(2) of this section.
  - (d) A welder or welding operator qualified under §192.227(b) may not weld unless—
- (1) Within the preceding 15 calendar months, but at least once each calendar year, the welder or welding operator has re-qualified under §192.227(b); or
- (2) Within the preceding  $7\frac{1}{2}$  calendar months, but at least twice each calendar year, the welder or welding operator has had—
  - (i) A production weld cut out, tested, and found acceptable in accordance with the qualifying test; or
- (ii) For a welder who works only on service lines 2 inches (51 millimeters) or smaller in diameter, the welder has had two sample welds tested and found acceptable in accordance with the test in section III of Appendix C of this part.

[Amdt. 192-120, 80 FR 12778, Mar. 11, 2015]

#### §192.231 Protection from weather.

The welding operation must be protected from weather conditions that would impair the quality of the completed weld.

#### §192.233 Miter joints.

- (a) A miter joint on steel pipe to be operated at a pressure that produces a hoop stress of 30 percent or more of SMYS may not deflect the pipe more than 3°.
- (b) A miter joint on steel pipe to be operated at a pressure that produces a hoop stress of less than 30 percent, but more than 10 percent, of SMYS may not deflect the pipe more than  $12^{1}/_{2}$ ° and must be a distance equal to one pipe diameter or more away from any other miter joint, as measured from the crotch of each joint.
- (c) A miter joint on steel pipe to be operated at a pressure that produces a hoop stress of 10 percent or less of SMYS may not deflect the pipe more than  $90^{\circ}$ .

#### §192.235 Preparation for welding.

Before beginning any welding, the welding surfaces must be clean and free of any material that may be detrimental to the weld, and the pipe or component must be aligned to provide the most favorable condition for depositing the root bead. This alignment must be preserved while the root bead is being deposited.

#### §192.241 Inspection and test of welds.

- (a) Visual inspection of welding must be conducted by an individual qualified by appropriate training and experience to ensure that:
  - (1) The welding is performed in accordance with the welding procedure; and
  - (2) The weld is acceptable under paragraph (c) of this section.
- (b) The welds on a pipeline to be operated at a pressure that produces a hoop stress of 20 percent or more of SMYS must be nondestructively tested in accordance with §192.243, except that welds that are visually inspected and approved by a qualified welding inspector need not be nondestructively tested if:
  - (1) The pipe has a nominal diameter of less than 6 inches (152 millimeters); or
- (2) The pipeline is to be operated at a pressure that produces a hoop stress of less than 40 percent of SMYS and the welds are so limited in number that nondestructive testing is impractical.
- (c) The acceptability of a weld that is nondestructively tested or visually inspected is determined according to the standards in section 9 or Appendix A of API Std 1104 (incorporated by reference, *see* §192.7). Appendix A of API Std 1104 may not be used to accept cracks.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-37, 46 FR 10160, Feb. 2, 1981; Amdt. 192-78, 61 FR 28784, June 6, 1996; Amdt. 192-85, 63 FR 37503, July 13, 1998; Amdt. 192-94, 69 FR 32894, June 14, 2004; Amdt. 192-119, 80 FR 181, Jan. 5, 2015; Amdt. 192-120, 80 FR 12778, Mar. 11, 2015]

#### §192.243 Nondestructive testing.

- (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld.
  - (b) Nondestructive testing of welds must be performed:
  - (1) In accordance with written procedures; and
- (2) By persons who have been trained and qualified in the established procedures and with the equipment employed in testing.
- (c) Procedures must be established for the proper interpretation of each nondestructive test of a weld to ensure the acceptability of the weld under §192.241(c).

- (d) When nondestructive testing is required under §192.241(b), the following percentages of each day's field butt welds, selected at random by the operator, must be nondestructively tested over their entire circumference:
  - (1) In Class 1 locations, except offshore, at least 10 percent.
  - (2) In Class 2 locations, at least 15 percent.
- (3) In Class 3 and Class 4 locations, at crossings of major or navigable rivers, offshore, and within railroad or public highway rights-of-way, including tunnels, bridges, and overhead road crossings, 100 percent unless impracticable, in which case at least 90 percent. Nondestructive testing must be impracticable for each girth weld not tested.
  - (4) At pipeline tie-ins, including tie-ins of replacement sections, 100 percent.
- (e) Except for a welder or welding operator whose work is isolated from the principal welding activity, a sample of each welder or welding operator's work for each day must be nondestructively tested, when nondestructive testing is required under §192.241(b).
- (f) When nondestructive testing is required under §192.241(b), each operator must retain, for the life of the pipeline, a record showing by milepost, engineering station, or by geographic feature, the number of girth welds made, the number nondestructively tested, the number rejected, and the disposition of the rejects.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-50, 50 FR 37192, Sept. 12, 1985; Amdt. 192-78, 61 FR 28784, June 6, 1996; Amdt. 192-120, 80 FR 12779, Mar. 11, 2015]

#### §192.245 Repair or removal of defects.

- (a) Each weld that is unacceptable under §192.241(c) must be removed or repaired. Except for welds on an offshore pipeline being installed from a pipeline vessel, a weld must be removed if it has a crack that is more than 8 percent of the weld length.
- (b) Each weld that is repaired must have the defect removed down to sound metal and the segment to be repaired must be preheated if conditions exist which would adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired must be inspected to ensure its acceptability.
- (c) Repair of a crack, or of any defect in a previously repaired area must be in accordance with written weld repair procedures that have been qualified under §192.225. Repair procedures must provide that the minimum mechanical properties specified for the welding procedure used to make the original weld are met upon completion of the final weld repair.

[Amdt. 192-46, 48 FR 48674, Oct. 20, 1983]

# Subpart G—General Construction Requirements for Transmission Lines and Mains §192.301 Scope.

This subpart prescribes minimum requirements for constructing transmission lines and mains.

#### §192.303 Compliance with specifications or standards.

Each transmission line or main must be constructed in accordance with comprehensive written specifications or standards that are consistent with this part.

#### §192.305 Inspection: General.

Each transmission line or main must be inspected to ensure that it is constructed in accordance with this part.

#### §192.307 Inspection of materials.

Each length of pipe and each other component must be visually inspected at the site of installation to ensure that it has not sustained any visually determinable damage that could impair its serviceability.

#### §192.309 Repair of steel pipe.

- (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding, the remaining wall thickness must at least be equal to either:
- (1) The minimum thickness required by the tolerances in the specification to which the pipe was manufactured; or
  - (2) The nominal wall thickness required for the design pressure of the pipeline.
- (b) Each of the following dents must be removed from steel pipe to be operated at a pressure that produces a hoop stress of 20 percent, or more, of SMYS, unless the dent is repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe:
  - (1) A dent that contains a stress concentrator such as a scratch, gouge, groove, or arc burn.
  - (2) A dent that affects the longitudinal weld or a circumferential weld.
- (3) In pipe to be operated at a pressure that produces a hoop stress of 40 percent or more of SMYS, a dent that has a depth of:
- (i) More than  $\frac{1}{4}$  inch (6.4 millimeters) in pipe  $12\frac{3}{4}$  inches (324 millimeters) or less in outer diameter; or
- (ii) More than 2 percent of the nominal pipe diameter in pipe over  $12\frac{3}{4}$  inches (324 millimeters) in outer diameter.

For the purpose of this section a "dent" is a depression that produces a gross disturbance in the curvature of the pipe wall without reducing the pipe-wall thickness. The depth of a dent is measured as the gap between the lowest point of the dent and a prolongation of the original contour of the pipe.

- (c) Each arc burn on steel pipe to be operated at a pressure that produces a hoop stress of 40 percent, or more, of SMYS must be repaired or removed. If a repair is made by grinding, the arc burn must be completely removed and the remaining wall thickness must be at least equal to either:
- (1) The minimum wall thickness required by the tolerances in the specification to which the pipe was manufactured; or
  - (2) The nominal wall thickness required for the design pressure of the pipeline.
  - (d) A gouge, groove, arc burn, or dent may not be repaired by insert patching or by pounding out.
- (e) Each gouge, groove, arc burn, or dent that is removed from a length of pipe must be removed by cutting out the damaged portion as a cylinder.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-1, 35 FR 17660, Nov. 17, 1970; Amdt. 192-85, 63 FR 37503, July 13, 1998; Amdt. 192-88, 64 FR 69664, Dec. 14, 1999]

#### §192.311 Repair of plastic pipe.

Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed.

[Amdt. 192-93, 68 FR 53900, Sept. 15, 2003]

#### §192.313 Bends and elbows.

- (a) Each field bend in steel pipe, other than a wrinkle bend made in accordance with §192.315, must comply with the following:
  - (1) A bend must not impair the serviceability of the pipe.
- (2) Each bend must have a smooth contour and be free from buckling, cracks, or any other mechanical damage.
- (3) On pipe containing a longitudinal weld, the longitudinal weld must be as near as practicable to the neutral axis of the bend unless:
  - (i) The bend is made with an internal bending mandrel; or
- (ii) The pipe is 12 inches (305 millimeters) or less in outside diameter or has a diameter to wall thickness ratio less than 70.
- (b) Each circumferential weld of steel pipe which is located where the stress during bending causes a permanent deformation in the pipe must be nondestructively tested either before or after the bending process.

(c) Wrought-steel welding elbows and transverse segments of these elbows may not be used for changes in direction on steel pipe that is 2 inches (51 millimeters) or more in diameter unless the arc length, as measured along the crotch, is at least 1 inch (25 millimeters).

[Amdt. 192-26, 41 FR 26018, June 24, 1976, as amended by Amdt. 192-29, 42 FR 42866, Aug. 25, 1977; Amdt. 192-29, 42 FR 60148, Nov. 25, 1977; Amdt. 192-49, 50 FR 13225, Apr. 3, 1985; Amdt. 192-85, 63 FR 37503, July 13, 1998]

#### §192.315 Wrinkle bends in steel pipe.

- (a) A wrinkle bend may not be made on steel pipe to be operated at a pressure that produces a hoop stress of 30 percent, or more, of SMYS.
  - (b) Each wrinkle bend on steel pipe must comply with the following:
  - (1) The bend must not have any sharp kinks.
- (2) When measured along the crotch of the bend, the wrinkles must be a distance of at least one pipe diameter.
- (3) On pipe 16 inches (406 millimeters) or larger in diameter, the bend may not have a deflection of more than  $1\frac{1}{2}$  of or each wrinkle.
- (4) On pipe containing a longitudinal weld the longitudinal seam must be as near as practicable to the neutral axis of the bend.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-85, 63 FR 37503, July 13, 1998]

#### §192.317 Protection from hazards.

- (a) The operator must take all practicable steps to protect each transmission line or main from washouts, floods, unstable soil, landslides, or other hazards that may cause the pipeline to move or to sustain abnormal loads. In addition, the operator must take all practicable steps to protect offshore pipelines from damage by mud slides, water currents, hurricanes, ship anchors, and fishing operations.
- (b) Each aboveground transmission line or main, not located offshore or in inland navigable water areas, must be protected from accidental damage by vehicular traffic or other similar causes, either by being placed at a safe distance from the traffic or by installing barricades.
- (c) Pipelines, including pipe risers, on each platform located offshore or in inland navigable waters must be protected from accidental damage by vessels.

[Amdt. 192-27, 41 FR 34606, Aug. 16, 1976, as amended by Amdt. 192-78, 61 FR 28784, June 6, 1996]

#### §192.319 Installation of pipe in a ditch.

(a) When installed in a ditch, each transmission line that is to be operated at a pressure producing a hoop stress of 20 percent or more of SMYS must be installed so that the pipe fits the ditch so as to minimize stresses and protect the pipe coating from damage.

- (b) When a ditch for a transmission line or main is backfilled, it must be backfilled in a manner that:
- (1) Provides firm support under the pipe; and
- (2) Prevents damage to the pipe and pipe coating from equipment or from the backfill material.
- (c) All offshore pipe in water at least 12 feet (3.7 meters) deep but not more than 200 feet (61 meters) deep, as measured from the mean low tide, except pipe in the Gulf of Mexico and its inlets under 15 feet (4.6 meters) of water, must be installed so that the top of the pipe is below the natural bottom unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means. Pipe in the Gulf of Mexico and its inlets under 15 feet (4.6 meters) of water must be installed so that the top of the pipe is 36 inches (914 millimeters) below the seabed for normal excavation or 18 inches (457 millimeters) for rock excavation.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-78, 61 FR 28784, June 6, 1996; Amdt. 192-85, 63 FR 37503, July 13, 1998]

#### §192.321 Installation of plastic pipe.

- (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section.
- (b) Plastic pipe that is installed in a vault or any other below grade enclosure must be completely encased in gas-tight metal pipe and fittings that are adequately protected from corrosion.
  - (c) Plastic pipe must be installed so as to minimize shear or tensile stresses.
- (d) Thermoplastic pipe that is not encased must have a minimum wall thickness of 0.090 inch (2.29 millimeters), except that pipe with an outside diameter of 0.875 inch (22.3 millimeters) or less may have a minimum wall thickness of 0.062 inch (1.58 millimeters).
- (e) Plastic pipe that is not encased must have an electrically conducting wire or other means of locating the pipe while it is underground. Tracer wire may not be wrapped around the pipe and contact with the pipe must be minimized but is not prohibited. Tracer wire or other metallic elements installed for pipe locating purposes must be resistant to corrosion damage, either by use of coated copper wire or by other means.
- (f) Plastic pipe that is being encased must be inserted into the casing pipe in a manner that will protect the plastic. The leading end of the plastic must be closed before insertion.
- (g) Uncased plastic pipe may be temporarily installed above ground level under the following conditions:
- (1) The operator must be able to demonstrate that the cumulative aboveground exposure of the pipe does not exceed the manufacturer's recommended maximum period of exposure or 2 years, whichever is less.
- (2) The pipe either is located where damage by external forces is unlikely or is otherwise protected against such damage.

- (3) The pipe adequately resists exposure to ultraviolet light and high and low temperatures.
- (h) Plastic pipe may be installed on bridges provided that it is:
- (1) Installed with protection from mechanical damage, such as installation in a metallic casing;
- (2) Protected from ultraviolet radiation; and
- (3) Not allowed to exceed the pipe temperature limits specified in §192.123.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-78, 61 FR 28784, June 6, 1996; Amdt. 192-85, 63 FR 37503, July 13, 1998; Amdt. 192-93, 68 FR 53900, Sept. 15, 2003; Amdt. 192-94, 69 FR 32895, June 14, 2004]

#### §192.323 Casing.

Each casing used on a transmission line or main under a railroad or highway must comply with the following:

- (a) The casing must be designed to withstand the superimposed loads.
- (b) If there is a possibility of water entering the casing, the ends must be sealed.
- (c) If the ends of an unvented casing are sealed and the sealing is strong enough to retain the maximum allowable operating pressure of the pipe, the casing must be designed to hold this pressure at a stress level of not more than 72 percent of SMYS.
- (d) If vents are installed on a casing, the vents must be protected from the weather to prevent water from entering the casing.

#### §192.325 Underground clearance.

- (a) Each transmission line must be installed with at least 12 inches (305 millimeters) of clearance from any other underground structure not associated with the transmission line. If this clearance cannot be attained, the transmission line must be protected from damage that might result from the proximity of the other structure.
- (b) Each main must be installed with enough clearance from any other underground structure to allow proper maintenance and to protect against damage that might result from proximity to other structures.
- (c) In addition to meeting the requirements of paragraph (a) or (b) of this section, each plastic transmission line or main must be installed with sufficient clearance, or must be insulated, from any source of heat so as to prevent the heat from impairing the serviceability of the pipe.
- (d) Each pipe-type or bottle-type holder must be installed with a minimum clearance from any other holder as prescribed in §192.175(b).

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-85, 63 FR 37503, July 13, 1998]

#### §192.327 Cover.

(a) Except as provided in paragraphs (c), (e), (f), and (g) of this section, each buried transmission line must be installed with a minimum cover as follows:

| Location                                                | Normal soil | Consolidated rock |
|---------------------------------------------------------|-------------|-------------------|
| Inches (Millimeters)                                    |             |                   |
| Class 1 locations                                       | 30 (762)    | 18 (457)          |
| Class 2, 3, and 4 locations                             | 36 (914)    | 24 (610)          |
| Drainage ditches of public roads and railroad crossings | 36 (914)    | 24 (610)          |

- (b) Except as provided in paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches (610 millimeters) of cover.
- (c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads.
- (d) A main may be installed with less than 24 inches (610 millimeters) of cover if the law of the State or municipality:
  - (1) Establishes a minimum cover of less than 24 inches (610 millimeters);
  - (2) Requires that mains be installed in a common trench with other utility lines; and
  - (3) Provides adequately for prevention of damage to the pipe by external forces.
- (e) Except as provided in paragraph (c) of this section, all pipe installed in a navigable river, stream, or harbor must be installed with a minimum cover of 48 inches (1,219 millimeters) in soil or 24 inches (610 millimeters) in consolidated rock between the top of the pipe and the underwater natural bottom (as determined by recognized and generally accepted practices).
- (f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows:
- (1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66 meters) deep, must be installed with a minimum cover of 36 inches (914 millimeters) in soil or 18 inches (457 millimeters) in consolidated rock between the top of the pipe and the natural bottom.
- (2) Pipe under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below the natural bottom, unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means.
- (g) All pipelines installed under water in the Gulf of Mexico and its inlets, as defined in §192.3, must be installed in accordance with §192.612(b)(3).

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-78, 61 FR 28785, June 6, 1996; Amdt. 192-85, 63 FR 37503, July 13, 1998; Amdt. 192-98, 69 FR 48406, Aug. 10, 2004]

# §192.328 Additional construction requirements for steel pipe using alternative maximum allowable operating pressure.

For a new or existing pipeline segment to be eligible for operation at the alternative maximum allowable operating pressure calculated under §192.620, a segment must meet the following additional construction requirements. Records must be maintained, for the useful life of the pipeline, demonstrating compliance with these requirements:

| To address this construction issue: | The pipeline segment must meet this additional construction requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Quality assurance               | (1) The construction of the pipeline segment must be done under a quality assurance plan addressing pipe inspection, hauling and stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field applied coating, lowering of the pipeline into the ditch, padding and backfilling, and hydrostatic testing.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | (2) The quality assurance plan for applying and testing field applied coating to girth welds must be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | (i) Equivalent to that required under §192.112(f)(3) for pipe; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     | (ii) Performed by an individual with the knowledge, skills, and ability to assure effective coating application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (b) Girth welds                     | (1) All girth welds on a new pipeline segment must be non-destructively examined in accordance with §192.243(b) and (c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (c) Depth of cover                  | (1) Notwithstanding any lesser depth of cover otherwise allowed in §192.327, there must be at least 36 inches (914 millimeters) of cover or equivalent means to protect the pipeline from outside force damage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | (2) In areas where deep tilling or other activities could threaten the pipeline, the top of the pipeline must be installed at least one foot below the deepest expected penetration of the soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (d) Initial strength<br>testing     | (1) The pipeline segment must not have experienced failures indicative of systemic material defects during strength testing, including initial hydrostatic testing. A root cause analysis, including metallurgical examination of the failed pipe, must be performed for any failure experienced to verify that it is not indicative of a systemic concern. The results of this root cause analysis must be reported to each PHMSA pipeline safety regional office where the pipe is in service at least 60 days prior to operating at the alternative MAOP. An operator must also notify a State pipeline safety authority when the pipeline is located in a State where PHMSA has an interstate agent agreement, or an intrastate pipeline is regulated by that State. |
| (e) Interference currents           | (1) For a new pipeline segment, the construction must address the impacts of induced alternating current from parallel electric transmission lines and other known sources of potential interference with corrosion control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

[72 FR 62176, Oct. 17, 2008]

#### **Subpart J—Test Requirements**

## §192.505 Strength test requirements for steel pipeline to operate at a hoop stress of 30 percent or more of SMYS.

- (a) Except for service lines, each segment of a steel pipeline that is to operate at a hoop stress of 30 percent or more of SMYS must be strength tested in accordance with this section to substantiate the proposed maximum allowable operating pressure. In addition, in a Class 1 or Class 2 location, if there is a building intended for human occupancy within 300 feet (91 meters) of a pipeline, a hydrostatic test must be conducted to a test pressure of at least 125 percent of maximum operating pressure on that segment of the pipeline within 300 feet (91 meters) of such a building, but in no event may the test section be less than 600 feet (183 meters) unless the length of the newly installed or relocated pipe is less than 600 feet (183 meters). However, if the buildings are evacuated while the hoop stress exceeds 50 percent of SMYS, air or inert gas may be used as the test medium.
- (b) In a Class 1 or Class 2 location, each compressor station regulator station, and measuring station, must be tested to at least Class 3 location test requirements.
- (c) Except as provided in paragraph (e) of this section, the strength test must be conducted by maintaining the pressure at or above the test pressure for at least 8 hours.
- (d) For fabricated units and short sections of pipe, for which a post installation test is impractical, a preinstallation strength test must be conducted by maintaining the pressure at or above the test pressure for at least 4 hours.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-85, 63 FR 37504, July 13, 1998; Amdt. 192-94, 69 FR 32895, June 14, 2004; Amdt. 195-94, 69 FR 54592, Sept. 9, 2004; Amdt. 192-120, 80 FR 12779, Mar. 11, 2015]

#### **Subpart L—Operations**

#### §192.614 Damage prevention program.

- (a) Except as provided in paragraphs (d) and (e) of this section, each operator of a buried pipeline must carry out, in accordance with this section, a written program to prevent damage to that pipeline from excavation activities. For the purposes of this section, the term "excavation activities" includes excavation, blasting, boring, tunneling, backfilling, the removal of aboveground structures by either explosive or mechanical means, and other earthmoving operations.
- (b) An operator may comply with any of the requirements of paragraph (c) of this section through participation in a public service program, such as a one-call system, but such participation does not relieve the operator of responsibility for compliance with this section. However, an operator must perform the duties of paragraph (c)(3) of this section through participation in a one-call system, if that one-call system is a qualified one-call system. In areas that are covered by more than one qualified one-call system, an operator need only join one of the qualified one-call systems if there is a central telephone number for excavators to call for excavation activities, or if the one-call systems in those areas communicate with one another. An operator's pipeline system must be covered by a qualified one-call system where there is one in place. For the purpose of this section, a one-call system is considered a "qualified one-call system" if it meets the requirements of section (b)(1) or (b)(2) of this section.
  - (1) The state has adopted a one-call damage prevention program under §198.37 of this chapter; or
  - (2) The one-call system:
  - (i) Is operated in accordance with §198.39 of this chapter;
- (ii) Provides a pipeline operator an opportunity similar to a voluntary participant to have a part in management responsibilities; and
- (iii) Assesses a participating pipeline operator a fee that is proportionate to the costs of the one-call system's coverage of the operator's pipeline.
  - (c) The damage prevention program required by paragraph (a) of this section must, at a minimum:
- (1) Include the identity, on a current basis, of persons who normally engage in excavation activities in the area in which the pipeline is located.
- (2) Provides for notification of the public in the vicinity of the pipeline and actual notification of the persons identified in paragraph (c)(1) of this section of the following as often as needed to make them aware of the damage prevention program:
  - (i) The program's existence and purpose; and
  - (ii) How to learn the location of underground pipelines before excavation activities are begun.
  - (3) Provide a means of receiving and recording notification of planned excavation activities.

- (4) If the operator has buried pipelines in the area of excavation activity, provide for actual notification of persons who give notice of their intent to excavate of the type of temporary marking to be provided and how to identify the markings.
- (5) Provide for temporary marking of buried pipelines in the area of excavation activity before, as far as practical, the activity begins.
- (6) Provide as follows for inspection of pipelines that an operator has reason to believe could be damaged by excavation activities:
- (i) The inspection must be done as frequently as necessary during and after the activities to verify the integrity of the pipeline; and
  - (ii) In the case of blasting, any inspection must include leakage surveys.
  - (d) A damage prevention program under this section is not required for the following pipelines:
  - (1) Pipelines located offshore.
  - (2) Pipelines, other than those located offshore, in Class 1 or 2 locations until September 20, 1995.
  - (3) Pipelines to which access is physically controlled by the operator.
- (e) Pipelines operated by persons other than municipalities (including operators of master meters) whose primary activity does not include the transportation of gas need not comply with the following:
- (1) The requirement of paragraph (a) of this section that the damage prevention program be written; and
  - (2) The requirements of paragraphs (c)(1) and (c)(2) of this section.

[Amdt. 192-40, 47 FR 13824, Apr. 1, 1982, as amended by Amdt. 192-57, 52 FR 32800, Aug. 31, 1987; Amdt. 192-73, 60 FR 14650, Mar. 20, 1995; Amdt. 192-78, 61 FR 28785, June 6, 1996; Amdt.192-82, 62 FR 61699, Nov. 19, 1997; Amdt. 192-84, 63 FR 38758, July 20, 1998]

#### **Subpart M—Maintenance**

#### §192.707 Line markers for mains and transmission lines.

- (a) *Buried pipelines*. Except as provided in paragraph (b) of this section, a line marker must be placed and maintained as close as practical over each buried main and transmission line:
  - (1) At each crossing of a public road and railroad; and
- (2) Wherever necessary to identify the location of the transmission line or main to reduce the possibility of damage or interference.
  - (b) Exceptions for buried pipelines. Line markers are not required for the following pipelines:
- (1) Mains and transmission lines located offshore, or at crossings of or under waterways and other bodies of water.
- (2) Mains in Class 3 or Class 4 locations where a damage prevention program is in effect under §192.614.
  - (3) Transmission lines in Class 3 or 4 locations until March 20, 1996.
  - (4) Transmission lines in Class 3 or 4 locations where placement of a line marker is impractical.
- (c) *Pipelines aboveground*. Line markers must be placed and maintained along each section of a main and transmission line that is located aboveground in an area accessible to the public.
- (d) *Marker warning*. The following must be written legibly on a background of sharply contrasting color on each line marker:
- (1) The word "Warning," "Caution," or "Danger" followed by the words "Gas (or name of gas transported) Pipeline" all of which, except for markers in heavily developed urban areas, must be in letters at least 1 inch (25 millimeters) high with \(^1\sqrt{4}\)inch (6.4 millimeters) stroke.
- (2) The name of the operator and the telephone number (including area code) where the operator can be reached at all times.

[Amdt. 192-20, 40 FR 13505, Mar. 27, 1975; Amdt. 192-27, 41 FR 39752, Sept. 16, 1976, as amended by Amdt. 192-20A, 41 FR 56808, Dec. 30, 1976; Amdt. 192-44, 48 FR 25208, June 6, 1983; Amdt. 192-73, 60 FR 14650, Mar. 20, 1995; Amdt. 192-85, 63 FR 37504, July 13, 1998]