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Executive Summary

The U.S. Environmental Protection

Agency (EPA, or the Agency) A U?Dvl\lf is defined as an aquifer or a portion of an
aquifer that:
Condu(_:ted a study th.at agsesses the A. 1. Supplies any public water system, or
potential for contamination of 2. Contains sufficient quantity of groundwater to
underground sources of drinking supply a public water system; and
water (USDWs) from the injection i.  currently supplies drinking water for human

consumption, or

of hydraulic fracturing fluids into
Y g ii. contains fewer than 10,000 milligrams per

?Oalbed methane (CBM) wells. To liter (mg/L) total dissolved solids (TDS); and
increase the effectiveness and B. Is not an exempted aquifer.

efficiency of the study, EPA has

taken a phased approach. Apart NOTE: Although aquifers with greater than 500 mg/L

from using real world observations TDS are rarely used for drinking water supplies
. .. without treatment, the Agency believes that protecting
and gathering empirical dgta, EPA waters with less than 10,000 mg/L TDS will ensure an
also evaluated the theoretical adequate supply for present and future generations.
potential for hydraulic fracturing to

affect USDWs. Based on the
information collected and reviewed, EPA has concluded that the injection of hydraulic
fracturing fluids into CBM wells poses little or no threat to USDWs and does not justify
additional study at this time. EPA’s decision is consistent with the process outlined in
the April, 2001 Final Study Design, which is described in Chapter 2 of this report.

The first phase of the study, documented in this report, is a fact-finding effort based
primarily on existing literature to identify and assess the potential threat to USDWs posed
by the injection of hydraulic fracturing fluids into CBM wells. EPA evaluated that
potential based on two possible mechanisms. The first mechanism was the direct
injection of fracturing fluids into a USDW in which the coal is located, or injection of
fracturing fluids into a coal seam that is already in hydraulic communication with a
USDW (e.g., through a natural fracture system). The second mechanism was the creation
of a hydraulic connection between the coalbed formation and an adjacent USDW.

EPA also reviewed incidents of drinking water well contamination believed to be
associated with hydraulic fracturing and found no confirmed cases that are linked to
fracturing fluid injection into CBM wells or subsequent underground movement of
fracturing fluids. Although thousands of CBM wells are fractured annually, EPA did not
find confirmed evidence that drinking water wells have been contaminated by hydraulic
fracturing fluid injection into CBM wells.

EPA has determined that in some cases, constituents of potential concern (section ES-6)
are injected directly into USDWs during the course of normal fracturing operations. The
use of diesel fuel in fracturing fluids introduces benzene, toluene, ethylbenzene, and
xylenes (BTEX) into USDWs. BTEX compounds are regulated under the Safe Drinking
Water Act (SDWA).
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Given the concerns associated with the use of diesel fuel and the introduction of BTEX
constituents into USDWs, EPA recently entered into a Memorandum of Agreement
(MOA) with three major service companies to voluntarily eliminate diesel fuel from
hydraulic fracturing fluids that are injected directly into USDWs for CBM production
(USEPA, 2003). Industry representatives estimate that these three companies perform
approximately 95 percent of the hydraulic fracturing projects in the United States. These
companies signed the MOA on December 15, 2003 and have indicated to EPA that they
no longer use diesel fuel as a hydraulic fracturing fluid additive when injecting into
USDWs.

ES-1 How Does CBM Play a Role in the Nation’s Energy Demands?

CBM production began as a safety measure in underground coalmines to reduce the
explosion hazard posed by methane gas (Elder and Deul, 1974). In 1980, the U.S.
Congress enacted a tax credit for non-conventional fuels production, including CBM
production, as part of the Crude Oil Windfall Profit Act. In 1984, there were very few
CBM wells in the U.S.; by 1990, there were almost 8,000 CBM wells (Pashin and Hinkle,
1997). In 1996, CBM production in 12 states totaled about 1,252 billion cubic feet,
accounting for approximately 7 percent of U.S. gas production (U.S. Department of
Energy, 1999). At the end of 2000, CBM production from 13 states totaled 1.353 trillion
cubic feet, an increase of 156 percent from 1992. During 2000, a total of 13,973 CBM
wells were in production (GTI, 2001; EPA Regional Offices, 2001). According to the
U.S. Department of Energy, natural gas demand is expected to increase at least 45
percent in the next 20 years (U.S. Department of Energy, 1999). The rate of CBM
production is expected to increase in response to the growing demand.

In evaluating CBM production and hydraulic fracturing activities, EPA reviewed the
geology of 11 major coal basins throughout the United States (Figure ES-1). The basins
shown in red have the highest CBM production volumes. They are the Powder River
Basin in Wyoming and Montana, the San Juan Basin in Colorado and New Mexico, and
the Black Warrior Basin in Alabama. Hydraulic fracturing is or has been used to
stimulate CBM wells in all basins, but it has not frequently been used in the Powder
River, Sand Wash, or Pacific Coal Basins. Table ES-1 provides production statistics for
2000 and information on hydraulic fracturing activity for each of the 11 basins in 2000.
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Figure ES-1. Major United States Coal Basins

PACIFIC
COAL REGION

a4
_H..m(f “‘{:F

WESTERN | i

MOATHEAM
AFPALACHIAN

EENTRAL
APPALACHIAN

BLACH
WARMIORN

Table ES-1. Coal Basins Production Statistics and Activity Information in the U.S.
Number of CBM Production of CBM D .
Basin Producing Wells in Billions of Cubic Fra(::?:r:-rll);d(r)acucl:fr?
(Year 2000)* Feet (Year 2000)*

Powder River 4,200 147 Yes (but infrequently)
Black Warrior 3,086 112 Yes

San Juan 3,051 925 Yes

Central Appalachian 1,924 52.9 Yes

Raton Basin 614 30.8 Yes

Uinta 494 75.7 Yes

Western Interior 420 6.5 Yes

Northern Appalachian 134 1.41 Yes

Piceance 50 1.2 Yes

Pacific Coal 0 0 Yes (but infrequently)
Sand Wash 0 0 Yes (but infrequently)

* Data provided by the Gas Technology Institute and EPA Regional Offices. Production figures include CBM
extracted using hydraulic fracturing and other processes.
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ES-2 What Is Hydraulic Fracturing?

CBM gas is not structurally trapped in the natural fractures in coalbeds. Rather, most of
the methane is adsorbed to the coal (Koenig, 1989; Winston, 1990; Close, 1993). To
extract the CBM, a production well is drilled through the rock layers to intersect the coal
seam that contains the CBM. Next, fractures are created or existing fractures are
enlarged in the coal seam through which the CBM can be drawn to the well and pumped
to the surface.

Figure ES-2 illustrates what occurs in the subsurface during a typical hydraulic fracturing
event. This diagram shows the initial fracture creation, fracture propagation, proppant
placement, and the subsequent fracturing fluid recovery/groundwater extraction stage of
the CBM production process. The actual extraction of CBM generally begins after a
period of fluid recovery/groundwater extraction. The hydraulically created fracture acts
as a conduit in the rock or coal formation, allowing the CBM to flow more freely from
the coal seams, through the fracture system, and to the production well where the gas is
pumped to the surface.

To create or enlarge fractures, a thick fluid, typically water-based, is pumped into the
coal seam at a gradually increasing rate and pressure. Eventually the coal seam is unable
to accommodate the fracturing fluid as quickly as it is injected. When this occurs, the
pressure is high enough that the coal fractures along existing weaknesses within the coal
(steps 1 and 2 of Figure ES-1). Along with the fracturing fluids, sand (or some other
propping agent or “proppant”) is pumped into the fracture so that the fracture remains
“propped” open even after the high fracturing pressures have been released. The
resulting proppant-containing fracture serves as a conduit through which fracturing fluids
and groundwater can more easily be pumped from the coal seam (step 3 of Fig. ES-1).

To initiate CBM production, groundwater and some of the injected fracturing fluids are
pumped out (or “produced” in the industry terminology) from the fracture system in the
coal seam (step 4 of Figure ES-1). As pumping continues, the pressure eventually
decreases enough so that methane desorbs from the coal, flows toward, and is extracted
through the production well (step 5 of Figure ES-1). In contrast to conventional gas
production, the amount of water extracted declines proportionally with increasing CBM
production. In some basins, huge volumes of groundwater are extracted from the
production well to facilitate the production of CBM.
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Figure ES-2. A Graphical Representation of the Hydraulic Fracturing Process in
Coalbed Methane Wells
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Figure ES-2. A Graphical Representation of the Hydraulic Fracturing Process in
Coalbed Methane Wells (Continued)
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ES-3 Why Did EPA Evaluate Hydraulic Fracturing?

SDWA requires EPA and EPA-authorized states to have effective programs to prevent
underground injection of fluids from endangering USDWs (42 U.S.C. 300h et seq.).
Underground injection is the subsurface emplacement of fluids through a well bore (42
U.S.C. 300h(d)(1)). Underground injection endangers drinking water sources if it may
result in the presence of any contaminant in underground water which supplies or can
reasonably be expected to supply any public water system, and if the presence of such a
contaminant may result in such system’s noncompliance with any national primary
drinking water regulation (i.e., maximum contaminant levels (MCLs)) or may otherwise
adversely affect the health of persons (42 U.S.C. 300h(d)(2)). SDWA’s regulatory
authority covers underground injection practices, but the Act does not grant authority for
EPA to regulate oil and gas production.

In 1997, the Eleventh Circuit Court ruled, in LEAF v. EPA [LEAF v. EPA, 118F.3d 1467
(11™ Circuit Court of Appeals, 1997)], that because hydraulic fracturing of coalbeds to
produce methane is a form of underground injection, Alabama’s EPA-approved
Underground Injection Control (UIC) Program must effectively regulate this practice. In
the wake of the Eleventh Circuit’s decision, EPA decided to assess the potential for
hydraulic fracturing of CBM wells to contaminate USDWs. EPA’s decision to conduct
this study was also based on concerns voiced by individuals who may be affected by
CBM development, Congressional interest, and the need for additional information
before EPA could make any further regulatory or policy decisions regarding hydraulic
fracturing.

The Phase I study is tightly focused to address hydraulic fracturing of CBM wells and
does not include other hydraulic fracturing practices (e.g., those for petroleum-based oil
and gas production) because: (1) CBM wells tend to be shallower and closer to USDWs
than conventional oil and gas production wells; (2) EPA has not heard concerns from
citizens regarding any other type of hydraulic fracturing; and (3) the Eleventh Circuit
litigation concerned hydraulic fracturing in connection with CBM production. The study
also does not address potential impacts of non-injection related CBM production
activities, such as impacts from groundwater removal or production water discharge.
EPA did identify, as part of the fact-finding process, citizen concerns regarding
groundwater removal and production water.
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ES-4 What Was EPA’s Project Approach?

Based on public input, EPA decided to carry out this study in discrete phases to better
define its scope and to determine if additional study is needed after assessing the results
of the preliminary phase(s). EPA designed the study to have three possible phases,
narrowing the focus from general to more specific as findings warrant. This report
describes the findings from Phase I of the study. The goal of EPA’s hydraulic fracturing
Phase I study was to assess the potential for contamination of USDWs due to the
injection of hydraulic fracturing fluids into CBM wells and to determine based on these
findings, whether further study is warranted.

Phase I is a fact-finding effort based primarily on existing literature. EPA reviewed
water quality incidents potentially associated with CBM hydraulic fracturing, and
evaluated the theoretical potential for CBM hydraulic fracturing to affect USDWs. EPA
researched over 200 peer-reviewed publications, interviewed approximately 50
employees from industry and state or local government agencies, and communicated with
approximately 40 citizens and groups who are concerned that CBM production affected
their drinking water wells.

For the purposes of this study, EPA assessed USDW impacts by the presence or absence
of documented drinking water well contamination cases caused by CBM hydraulic
fracturing, clear and immediate contamination threats to drinking water wells from CBM
hydraulic fracturing, and the potential for CBM hydraulic fracturing to result in USDW
contamination based on two possible mechanisms as follows:

1. The direct injection of fracturing fluids into a USDW in which the coal is
located (Figure ES-3), or injection of fracturing fluids into a coal seam that is
already in hydraulic communication with a USDW (e.g., through a natural
fracture system).

2. The creation of a hydraulic connection between the coalbed formation and an
adjacent USDW (Figure ES-4).
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Figure ES-3. Hypothetical Mechanisms - Direct Fluid Injection into a USDW
(Where Coal Lies Within a USDW or USDWs)
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Figure ES-4. Hypothetical Mechanisms -
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In many CBM-producing regions, the target coalbeds occur within USDWs, and the
fracturing process injects “stimulation” fluids directly into the USDWs. In other
production regions, target coalbeds are adjacent to the USDWs (i.e., either higher or
lower in the geologic section). Because shorter fractures are less likely to extend into a
USDW or connect with natural fracture systems that may transport fluids to a USDW, the
extent to which fractures propagate vertically influences whether hydraulic fracturing

fluids could potentially affect USDWs.
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The extent of the fractures is difficult to predict because it is controlled by the
characteristics of the geologic formation (including the presence of natural fractures), the
fracturing fluid used, the pumping pressure, and the depth at which the fracturing is being
performed. Fracture behavior through coals, shales, and other geologic strata commonly
present in coal zones depends on site-specific factors such as the relative thickness and
in-situ stress differences between the target coal seam(s) and the surrounding geologic
strata, as well as the presence of pre-existing natural fractures. Often, a high stress
contrast between adjacent geologic strata results in a barrier to fracture propagation. An
example of this would be where there is a geologic contact between a coalbed and an
overlying, thick, higher-stress shale.

Another factor controlling fracture height can be the highly cleated nature of some
coalbeds. In some cases, highly cleated coal seams will prevent fractures from growing
vertically. When the fracturing fluid enters the coal seam, it is contained within the coal
seam’s dense system of cleats and the growth of the hydraulic fracture will be limited to
the coal seam (see Appendix A).

Deep vertical fractures can propagate vertically to shallower depths and develop a
horizontal component (Nielsen and Hansen, 1987, as cited in Appendix A: DOE,
Hydraulic Fracturing). In the formation of these "T-fractures," the fracture tip may fill
with coal fines or intercept a zone of stress contrast, causing the fracture to turn and
develop horizontally, sometimes at the contact of the coalbed and an overlying formation.
(Jones et al., 1987; Morales et al., 1990). For cases where hydraulically induced fractures
penetrate into, or sometimes through, formations overlying coalbeds, they are most often
attributed to the existence of pre-existing natural fractures or thinly inter-bedded layering.

ES-6 What Is in Hydraulic Fracturing Fluids?

Fracturing fluids consist primarily of water or inert foam of nitrogen or carbon dioxide.
Other constituents can be added to fluids to improve their performance in optimizing
fracture growth. Components of fracturing fluids are stored and mixed on-site. Figures
ES-5 and ES-6 show fluids stored in tanks at CBM well locations.

During a hydraulic fracturing job, water and any other additives are pumped from the
storage tanks to a manifold system placed on the production wells where they are mixed
and then injected under high pressure into the coal formation (Figure ES-6). The
hydraulic fracturing in CBM wells may require from 50,000 to 350,000 gallons of
fracturing fluids, and from 75,000 to 320,000 pounds of sand as proppant (Holditch et al.,
1988 and 1989; Jeu et al., 1988; Hinkel et al., 1991; Holditch, 1993; Palmer et al., 1991,
1993a, and 1993b). More typical injection volumes, based on average injection volume
data provided by Halliburton for six basins, indicate a maximum average injection
volume of 150,000 gallons of fracturing fluids per well, with a median average injection
volume of 57,500 gallons per well (Halliburton, Inc., 2003).
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Figure ES-5. Water used for the fracturing fluid is stored on-site in large, upright
storage tanks and in truck-mounted tanks.

EPA reviewed
material safety
data sheets to
determine the
types of additives
that may be
present in
fracturing fluids.
Water or nitrogen
foam frequently
constitutes the
solute in
fracturing fluids
used for CBM
stimulation. Other components of fracturing fluids contain benign ingredients, but in
some cases, there are additives with constituents of potential concern. Because much
more gel can be dissolved in diesel fuel as compared to water, the use of diesel fuel
increases the efficiency in transporting proppant in the fracturing fluids. Diesel fuel is
the additive of greatest concern because it introduces BTEX compounds, which are
regulated by SDWA.

A thorough discussion of fracturing fluid components and fluid movement is presented in
Chapter 4.

Figure ES-6. The fracturing fluids, additives, and proppant are pumped from the
storage tanks to a manifold system placed on the wellhead where they are mixed just
prior to injection.
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ES-7 Are Coalbeds Located within USDWs?

EPA reviewed information on 11 major coal basins to determine if coalbeds are co-
located with USDWs and to understand the CBM activity in the area. If coalbeds are
located within USDWs, then any fracturing fluids injected into coalbeds have the
potential to contaminate the USDW. As described previously, a USDW is not
necessarily currently used for drinking water and may contain groundwater unsuitable for
drinking without treatment. EPA found that 10 of the 11 basins may lie, at least in part,
within USDWs. Table ES-2 identifies coalbed basin locations in relation to USDWs and
summarizes evidence used as the basis for the conclusions.

ES-8 Did EPA Find Any Cases of Contaminated Drinking Water Wells Caused by
Hydraulic Fracturing in CBM Wells?

EPA did not find confirmed evidence that drinking water wells have been contaminated
by hydraulic fracturing fluid injection into CBM wells. EPA reviewed studies and
follow-up investigations conducted by state agencies in response to citizen reports that
CBM production resulted in water quality and quantity incidents. In addition, EPA
received reports from concerned citizens in each area with significant CBM development.
These complaints pertained to the following basins:

e San Juan Basin (Colorado and New Mexico);

e Powder River Basin (Wyoming and Montana);

o Black Warrior Basin (Alabama); and

e Central Appalachian Basin (Virginia and West Virginia).

Examples of concerns and claims raised by citizens include:

o Drinking water with strong, unpleasant taste and odor.
o Impacts on fish, and surrounding vegetation and wildlife.

e Loss of water in wells and aquifers, and discharged water creating artificial
ponds and swamps not indigenous to region.

Water quantity complaints were the most predominant cause for complaint by private
well owners. After reviewing data and incident reports provided by states, EPA sees no
conclusive evidence that water quality degradation in USDWs is a direct result of
injection of hydraulic fracturing fluids into CBM wells and subsequent underground
movement of these fluids. Several other factors may contribute to groundwater
problems, such as various aspects of resource development, naturally occurring
conditions, population growth, and historical well-completion or abandonment practices.
Many of the incidents that were reported (such as water loss and impacts on nearby flora
and fauna from discharge of produced water) are beyond the authorities of EPA under
SDWA and the scope of Phase I of this study.
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ES-9 What Are EPA’s Conclusions?

Based on the information collected and reviewed, EPA has determined that the injection
of hydraulic fracturing fluids into CBM wells poses little or no threat to USDWs.
Continued investigation under a Phase II study is not warranted at this time.

As proposed in the Final Study Design (April 2001), Phase I of the study was a limited—
scope assessment in which EPA would:

o Gather existing information to review hydraulic fracturing processes,
practices, and settings;

e Request public comment to identify incidents that have not been reported to
EPA;

e Review reported incidents of groundwater contamination and any follow-up
actions or investigations by other parties (state or local agencies, industry,
academia, etc.); and,

e Make a determination regarding whether further investigation is needed,
based on the analysis of information gathered through the Phase I effort.

EPA’s approach for evaluating the potential threat to USDWs was an extensive
information collection and review of empirical and theoretical data. EPA reviewed
incidents of drinking water well contamination believed to be associated with hydraulic
fracturing and found no confirmed cases that are linked to fracturing fluid injection into
CBM wells or subsequent underground movement of fracturing fluids. Although
thousands of CBM wells are fractured annually, EPA did not find confirmed evidence
that drinking water wells have been contaminated by hydraulic fracturing fluid injection
into CBM wells.

EPA also evaluated the theoretical potential for hydraulic fracturing to affect USDWs
through one of two mechanisms:

1. Direct injection of fracturing fluids into a USDW in which the coal is located,
or injection of fracturing fluids into a coal seam that is already in hydraulic
communication with a USDW (e.g., through a natural fracture system).

2. Creation of a hydraulic connection between the coalbed formation and an
adjacent USDW.

Regarding the question of injection of fracturing fluids directly into USDWs, EPA
considered the nature of fracturing fluids and whether or not coal seams are co-located
with USDWs. Potentially hazardous chemicals may be introduced into USDWs when
fracturing fluids are used in operations targeting coal seams that lie within USDWs. In
particular, diesel fuel contains BTEX compounds, which are regulated under SDWA.
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However, the threat posed to USDWs by the introduction of some fracturing fluid
constituents is reduced significantly by the removal of large quantities of groundwater
(and injected fracturing fluids) soon after a well has been hydraulically fractured. In fact,
CBM production is dependent on the removal of large quantities of groundwater. EPA
believes that this groundwater production, combined with the mitigating effects of
dilution and dispersion, adsorption, and potentially biodegradation, minimize the
possibility that chemicals included in the fracturing fluids would adversely affect
USDWs.

Because of the potential for diesel fuel to be introduced into USDWs, EPA requested,
and the three major service companies agreed to, the elimination of diesel fuel from
hydraulic fracturing fluids that are injected directly into USDWs for CBM production
(USEPA, 2003). Industry representatives estimate that these three companies perform
approximately 95 percent of the hydraulic fracturing projects in the United States.

In evaluating the second mechanism, EPA considered the possibility that hydraulic
fracturing could cause the creation of a hydraulic connection to an adjacent USDW. The
low permeability of relatively unfractured shale may help to protect USDWs from being
affected by hydraulic fracturing fluids in some basins. If sufficiently thick and relatively
unfractured shale is present, it may act as a barrier not only to fracture height growth, but
also to fluid movement. Shale’s ability to act as a barrier to fracture height growth is
primarily due to the stress contrast between the coalbed and the shale. Another factor
controlling fracture height can be the highly cleated nature of some coalbeds. In some
cases, when the fracturing fluid enters the coal seam, it is contained within the coal
seam’s dense system of cleats and the growth of the hydraulic fracture will be limited to
the coal seam (see Appendix A).

Some studies that allow direct observation of fractures (i.e., mined-through studies)
indicate many fractures that penetrate into, or sometimes through, one or more
formations overlying coalbeds can be attributed to the existence of pre-existing natural
fractures. However, given the concentrations and flowback of injected fluids, and the
mitigating effects of dilution and dispersion, adsorption, and potentially biodegradation,
EPA does not believe that possible hydraulic connections under these circumstances
represent a significant potential threat to USDWs.

It is important to note that states with primary enforcement authority (primacy) for their
UIC Programs implement and enforce their regulations, and have the authority under
SDWA to place additional controls on any injection activities that may threaten USDWs.
States may also have additional authorities by which they can regulate hydraulic
fracturing. With the expected increase in CBM production, the Agency is committed to
working with states to monitor this issue.
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