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U.S. CAFE Requirements
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Fuel Economy (mpg)
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Mid-Term Review In Progress...
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(. By 2011, Fuel economD
increased ~40% since
the beginning of CAFE

* CAFE requires a further
30% uplift by 2016

* The 54.5 mpg target
equates to more than a

\_ 95% increase over 2011/

ONP = One National Program

Compared to 2011, CAFE needs to increase by more than 95% to reac

significant year-over-year improvements are required.
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Fuel Economy / Emissions
Regulation Expansion
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The current global regulations require aggressive year over \

rapid pace of advanced vehicle technologies development.
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Performance @
expectations

Electrical loads

Balancing Competj_ﬁr Requirements <>

Feasible

Solutions Safety requirements

NVH expectations (&

CO,
reduction

Emissions

TR

Balancing CO, reduction requirements and increasing cust
feasible solutions zone, requiring an integrated approach.
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Increasing TechnologyiCo L v ]
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Though costs are additive, technology benefits are notin |
much more rapidly than the fuel economy benéefits.
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Fuel Economy Improvement Leverage
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As Fuel Economy improves, customer fuel savings decrea:
further incremental increases diminishes...while product
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Transportation Sector
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Beyond vehicle-only (Tank-to-Wheels) regulations, stabiI“': t
atmosphere at 450ppm will require large reductions in em
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Materials, Manufacturing,
End-of-Life

Sustainable LDV transportation requires actions on mu
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SIS eSS erEton = Areas of Focus <>
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Materials, Manufacturing,
[ Use Phase ] [ End-of-Life ]

Sustainable LDV transportation requires actions oﬁ-_'” u



Conventional P/l 85.—.h|cle Energy Distribution Z?

Powerpack Energy Available Energy Consumed

Friction :
Chemical Pumping

- Trans &
~—__ Driveline
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Tire Rolling
Resistance

Acceleration
Work

Vehicle technologies continue to be developed to increas
available for propulsion, by improving efficiency and redu
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Body Structure - 25% Glazing - 3%

Powertrain - 25%
Interiors -14%

| Closures - 8%

Chassis & Suspension - 21%

Body structures, Chassis, and Powertrain provide the most signifi
reduction.
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Although most of the weight reduction announcements have f
for the vehicle body and chassis...
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1.0-liter EcoBoost Concept

Goal:
Target key engine component areas to maximize weight
savings and ongoing improvements in EcoBoost power

density.

...incorporating innovative ideas with future materials and tes
structure can also offer substantial weight reduction opportul



AVENIEC RS Enine Technelogies

Combustion

e Improved fuel economy

e Reduced NOx emissions

e Advanced direct injection
systems required

Fuel Injection

Piezoelectric Direct Injection

Multi-Hole Solenoid Direct Injection

at Increased Fuel Pressure

.
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PFI + Solenoid DI

Motion Descriptors: Timing, Duration, Lift, fixed, discrete, variable
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C. Time-to-Torque

D. PeakTorque == \/VA technologies impact many

engine attributes

E. Peak Power

F. Tip Out

G. High Load

Cost & Complexity

Mechanism Phaser CPS 20r 3 Step + + )
htributes TWCT 2ase | praser | CVVLPhaser | cyyp EVA | Hydraulic VA
A Cold Start = ‘ ]
Emissions
B. Mixing

Many types of valve motion possible
and many mechanisms available

Variable Valvetrain

e Improved breathing efficiency
e Improved transient response
e Variable timing, lift and duration

Advanced technologies will extend the viability of internal é.b_
various physical effects (thermal efficiency, pumping, friction,

Cooled EGR

¢ Improved combustion efficiency

e

¢ Decreased Pumping Work

¢ Knock Mitigation
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Boosting Systems

¢ Improved power density (down sizing)
¢ Improved transient response (fun to drive)
* Boost Requirements to drive wide range Cooled EGR

Fixed

Variable

Sequential
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e ;5
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Variable Geometry

Twinscroll

T W
Advanced Geometry .[

Series

Power Cylinder Systems

e Reduction of power cylinder mass and inertia
e Advanced piston skirt coatings
e Low tension ring packs
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Variable Valve Actuation

Aftertreatment

N\ _ SCR Filters
/ \ — - Passive NOXx storage
/Y Internal EGR Fuel System HC storage catalysts

Ammonia injection

Charge Motion

Atkinson / Miller Pressure
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Rate shape

Turbocharging

Fixed Variable ] Sequential J
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- | ©¥ Advanced aero
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"y
¥

Engine Controls

Air path control
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OBD s
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Series
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Advanced Geometry -[

Similarly in Diesel engines, key enablers to CO, and emissions
advances in fuel systems, boosting, variable valve actuation, :
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Transmission & Qel EffilGiEnGEY,

8+-Speed Planetary
Auto Trans
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Vane Pum
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E-pump
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e
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Next Gen
Torque Converter

Transmission efficiency improvements also include clutches, g
with technologies targeting reduced driveline losses.
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O Accelerated Warm-Up

@ Var. Operating Temp.

O Parasitic Loss Red.

O Therm. Recuperation
O Air Side Improvements

Exhaust gas heat
Thermo exchanger
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Degas Shut-

Thermal Management, Warmup, and Energy Recovery techn
role in helping achieve aggressive future targets, without compr

—/ - w\ Waterpump —
L -7 N Coolant Shut- Variable
© Split Cooling Off Valve Oil Pump
-~

Fuel Consumption Reduction
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Opportun ities._g;-h Lyloricamts <>

Near Term
e Gasoline Engine Oil (GF-6)

— Fuel economy, LSPI Resistance & Hardware Durability
e Diesel Engine Qil (CK-4)

— Improved fuel economy through lower viscosity without
degrading durability

Medium and Longer Term

 Gasoline Engine Qil

— Lower Viscosity novel base oil / additive chemistry
(i.e. polyalkylene glycol, others)

e Diesel Engine Qil
— Improved turbocharger performance (coking)

e Transmission & Driveline Lubricants

— Lower viscosity lubricant for improved fuel economy
through new formulations

Continued development of powertrain lubricants offer further fuel ec
but other attributes, such as durability, cannot be compromised.
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2015MY 2021 MY 2025MY

Major Electrification (HEV, PHEV, BEV)

higher levels of electrification in order to achieve
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Electrification TeE

& Dual Inverter
System
Controller

‘Atkinson’ Cycle
Engine

Electrified
A/C and
Heating
Systems

Electric
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High
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Voltage
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On Board
Charging
System

Powersplit Transmission:
Planetary Gearset & 2 E-Machines  Regenerative
f Y Braking
. : System

Focus is on further optimization of critical systems & technolog
increased efficiency and reduced cost.
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Electrification = | '

C-Max PHEV

Electrification technology development applies across a bro. d ral
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Fuel Cell Vehicles

-
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Durability
Cost reduction / commercialization

Automotive Fuel Cell Co-operation (AFCC)
Strategic Agreement with Daimler

Development of Fuel Cell vehicles and the supporting
hydrogen infrastructure must occur in parallel

transfer fuel cell technology from research to production.



Go Further
SLIDE 23

Vehicle Tech nologi_e'” Current Fuels o>

@ Current
@ Vehicle Efficiency Gain (Vehicle only)
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Adapted from: DOE Hydrogen and Fuel Cells Program Record 14006, http://www.hydrogen.energy.gov/pdfs/14006_cradle_to_grave_analysis.pdf

From a Well-to-Wheels standpoint, maximum CO, reducti
improvements will be limited, irrespective of the pathw
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Sustainability = CO—, ldepeaih = Well-to-Whea

Transportation Sector

North America

Pacific
Japan...)

Vehicle opportunity

Latin America

Industry-average new LDV WTW
total (vehicle / fuel) fossil g CO2 / km

Time

Even with the significant gains in vehicle operating efficienc
fall short of future long-term needs.
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v v
Materials, Manufacturing,
[ Use Phase ] [ End-of-Life ]

Sustainable LDV transportation requires actions o



Higher Load /flfoWwer Operation

E Go Further

- Knockillmplication’s o

Brake Thermal Efficiency Knock Sensitivity (CA50)
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» Downsizing + Turbocharging

» Downspeeding (Longer Gearing)
» Cyl. Deactivation
» 7+ speed trans
» HEV powertrains

As advanced technologies shift operation to higher load / lo
...knock risk increases. Improved fuel properties can help a



Higher OctaneSiEfficiencyalmpHoNEmEN: &P
- CompressionfRatio Spark Timing e

= Higher compression ratio (CR) can improve fuel efficiency with higher octane
rated fuel.

= At a fixed compression ratio, higher octane rated fuel enables more optimum

spark timing.
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Higher octane rated fuel reduces knock, enabling both hig| I
optimum spark timing.
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Values are CO, basis

4.8% M/H benefit
4.9% USO06 benefit

2.6% M/H benefit

4.9% US06 penalty
>

10.0:1  Compression Ratio (CR)

Though higher-octane fuel and higher compression ratio lm_i_
efficiency... the best results are achieved by a design-optimize

11.9:1

Turbocharged engine
(SAE 2013-01-1321)
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Ener Carbon . .
gy Processing Fuels Powertrain
. Source Source
| TTIR— Liquid Fuels
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—| w/ HEV
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LPG PHEV

DME (from NG)

Electricity BEV

T

Grid, from NG

Crsd

Steam reform NG

Hydrogen FCV

Fossil fuel pathways supply energy for most of today’s alté
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On a well-to-wheels basis, today’s fuels in HEVs appro'xp'_- 1
provided by BEVs and FCVs.
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Low Carbon|FueliPathways <zp
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A wide variety of alternative fuel pathways have been id
reduced Well-to-Tank CO, emissions. :
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For any powertrain approach, low-carbon fuels are ultimat:

extensive Well-to-Wheel CO, emissions reductions in th
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@ Current

@ Vehicle Efficiency Gain (Vehicle only)
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Adapted from: DOE Hydrogen and Fuel Cells Program Record 14006, http://www.hydrogen.energy.gov/pdfs/14006_cradle_to_grave_analysis.pdf

From a Well-to-Wheels standpoint, the combination o :_
fuel dramatically extends the CO, reduction potential.
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Vehicle & Fuel opportunity

Industry-average new LDV WTW
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Time

Along with vehicle CO, reductions, achieving long-term CC
renewable / low-carbon fuels.
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Materials, Manufacturing,
[ Use Phase ] [ End-of-Life ]

Sustainable LDV transportation requires actions on mu
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Urbanization Growing Air Quality
Middle Class & Climate

Change

Beyond regulatory mandates, changing Societal ‘

and will transform the way we view innovation and mc

Changing
Consumer
Attitudes
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AStratesy,

Ford Smarit Mobilit__\(

CUSTOMER

EMERGING
OPPORTUNITIES

>

FORD SMART MOBILITY,

CORE
BUSINESS
CARS, UTILITIES,

TRUCKS, FINANCING,
PARTS & SERVICE

EXPERIENCE

Vision
Changing how the world moves...again.

lkl;/

CUSTOMER

DATA AND

AUTONOMOUS
EXPERIENCE ANALYTICS

CONNECTIVITY MOBILITY VEHICLES

Mission: Leverage actionable insights across connectivi
solutions to provide innovative experiences loved by cus
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Connectivity Bluephint i <>

Near-Term Mid-Term Long-Term

Build on SYNC,
MyLincoln Mobile and
MyFord Mobile

Connect Vehicles And

Expand Capabilities Fully Integrated Connectivity

Embedded Modem
Connected Vehicles

Global Infrastructure

E
\ &d

Y e

Gaining a better understanding of how customers use their vehic
of products, services and experiences that excite and delight, as w
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Innovation in'Malbil

MOBILITY

(" Facilitate Flexible Ownership & Usership

0@ Y ,
[ )
m 25 ﬁ ™
CAR SHARING FRACTIONAL PAY-AS-YOU-GO

OWNERSHIP SOLUTIONS

Provide Multi-Modal Urban Solutions

Smart Mobility key strategic areas: flexible use & owné'u’.
transportation. 3




e —

Autonomousi= ' Full Contrel » @
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Driver Assist Technologies (DAT) AUTONOMOUS
Active Park Assist Rear Cross-traffic Alert VEHICLES

Lane Departure Warning
with Lane Keeping Aid

Information
Driver Alert

1

16 5°C 002578 k




B e L= €0 Elidenaih — Well-to-Whee £

:_L Bl - SLIDE 41

Transportation Sector

North America

Pacific
Japan...)

Latin America

Industry-average new LDV WTW
total (vehicle / fuel) fossil g CO2 / km

Beyond the Consumer Experiences, understanding howih g
known as “Usage” can impact long-term sustainability is
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Environmental Sustainability
(e.g. Well-to-Wheels CO,)

» Economic Sustainability

~ = Investment in supporting Energy =%
w- ‘K and Transportation Infrastructure
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Summary & :' |

" Fuel economy and CO, regulations continue to drive rapid vehicle technology development.
= Customer savings from improved fuel economy alone will not offset growing technology costs.

= Long-term sustainable LDV transportation requires a Well-to-Wheels perspective and actions
on multiple fronts, including: Vehicle, Fuel and Usage.

= There is extensive work on the full spectrum of vehicle technologies that can substantially
improve fuel economy and CO, in the future.

= Higher octane rated fuel combined with today’s advanced engine technology has even further
efficiency potential by improving knock limit.

* From a Well-to-Wheels standpoint, multiple alternative pathways exist which can support
achieving significant CO, reduction.

= Vehicle efficiency improvements will continue to play an important role, but achieving long-
term CO, glide path targets will require low-carbon fuels.

= Understanding how customers will use vehicles in the future can enable development of
products that address societal trends and enhance long-term sustainability.

= A collaborative approach among all major stakeholders is required to address overall
sustainability goals, both environmental and economic.
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