Recommended Practice for Drill Stem Design and Operating Limits

Addendum 1 to Recommended Practice for Drill Stem Design and Operating Limits

Page 3, 4.5:

Change "A. 8 " to "A. 9 "
Page 5, Table 2, Footnote :
Change "A. 15 " to "A. 16 "
Page 12, Table 8 and Page 14, Table 9, Note 4:
Change " $5 / 8$ inch" to " $3 / 4$ inch" in Note 4
For Pages 15 -17, most corrections for Table 10 are in Column 7. Additional corrections in Table 10:

Page 15:

$2^{3} / 8 \mathrm{in}, 4.85 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{3} / 8$ OHLW connections the makeup torque for premium class (Column 10) should be " 1,723 " $2^{3} / 8$ in, $4.85 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{3} / 8$ OHLW connections the makeup torque for Class 2 (Column 13) should be " 1,481 " $2^{3} / 8 \mathrm{in}, 6.65 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{3} / 8$ OHSW connections the makeup torque for premium class (Column 10) should be " 2,216 "
$2^{3} / 8$ in, $6.65 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{3} / 8$ OHSW connections the makeup torque for Class 2 (Column 13) should be " 1,967 "
$2^{7} / 8 \mathrm{in}, 6.85 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ OHLW connections the makeup torque for premium class (Column 10) should be " 3,290 " $2^{7} / 8$ in, $6.85 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ OHLW connections the makeup torque for Class 2 (Column 13) should be " 2,804 "
$2^{7} / 8$ in, $10.40 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ OHSW connections the makeup torque for premium class (Column 10) should be " 4,411 " $2^{7} / 8 \mathrm{in}, 10.40 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ OHSW connections the makeup torque for Class 2 (Column 13) should be " 4,079 " $2^{7} / 8 \mathrm{in}, 10.40 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ PAC connections the makeup torque for premium class (Column 10) should be " 3,424 " $2^{7} / 8$ in, $10.40 \mathrm{lb} / \mathrm{ft}$, E75 drill pipe with $2^{7} / 8$ PAC connections the makeup torque for Class 2 (Column 13) should be " 3,424 "

Page 16:
$4^{1} / 2$ IEU-X 95 , NC 46 , Column 6, change " $31 / 4$ " to " 3 "

Page 17:

Last line, Column 11, minimum OD for $6^{5} / 8$ in, $27.70 \mathrm{lb} / \mathrm{ft}$ S135 drill pipe, Class 2, change " $77^{27} / 64$ " to " $7{ }^{27} / 32$ "

Table 10—Recommended Minimum OD* and Make-up Torque of Weld-on Type Tool Joints Based on Torsional Strength of Box and Drill Pipe

Table 10—Recommended Minimum OD* and Make-up Torque of Weld-on Type Tool Joints
Based on Torsional Strength of Box and Drill Pipe (Continued)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Drill Pipe							Premium Class			Class 2		
			New Tool Joint Data				Min. OD Tool Joint in.	Min. Box Make-up Shoulder Torque for with Eccen- Min. OD tric Wear Tool Joint in. ft-lb		Min. OD Tool Joint in.	Min. Box Shoulder with Eccen tric Wear in.	Make-up Torque for Min. OD Tool Joint ft-lb
Nominal Size in.	Nom Weight lb/ft	Type Upset and Grade	Conn.	New OD in.	$\begin{gathered} \text { New } \\ \text { ID } \\ \text { in. } \end{gathered}$	Make-up Torque ${ }^{6}$ ft-lb						
4	11.85	EU-E75	$4 \text { OHLW }$	$5^{1 / 4}$	$3^{15} / 32$	13,186 P	$\begin{aligned} & 5 \\ & 4^{7 / 8} \end{aligned}$	$\begin{aligned} & 9 / 64 \\ & 7 / 64 \end{aligned}$	$\begin{aligned} & \hline 7,866 \\ & 7,630 \end{aligned}$	$\begin{aligned} & 4^{15} / 16 \\ & 4^{27} / 32 \end{aligned}$	$\begin{aligned} & 7 / 64 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & \hline 6,593 \\ & 6,962 \end{aligned}$
	11.85	IU-E75	4 H 90	$51 / 2$	$2^{13} / 16$	21,185 P						
	14.00	IU-E75	NC40	$51 / 4$	$2^{13} / 16$	13,968 P	$4^{13} / 1$	${ }^{3 / 16}$	9,017	$4^{3 / 4}$	5/32	7,877
	14.00	EU-E75	NC46	6	$31 / 4$	19,937 P	$59 / 32$	${ }^{9 / 64}$	9,233	$5^{7} / 32$	$7 / 64$	7,843
	14.00	IU-E75	$4 \mathrm{SH}^{2}$	$4^{5} / 8$	$2^{9} 1_{16}$	9,016 P	$4^{7} / 16$	${ }^{15} / 64$	8,782	$4^{3 / 8}$	13/64	7,817
	14.00	EU-E75	4 OHSW	$51 / 2$	$31 / 4$	16,236 P	51/16	${ }^{11} / 64$	9,131	5	$9 / 64$	7,839
	14.00	IU-E75	4 H 90	$51 / 2$	$2^{13} / 16$	21,185 P	$4{ }_{16}$	9/64	8,986	$4^{7} / 8$	${ }^{7} / 64$	7,630
4	14.00	IU-X95	NC40	$51 / 4$	$2^{11} / 16$	15,319 P	$4^{15} / 16$	1/4	11,363	$4^{27} / 32$	${ }^{13} / 64$	9,595
	14.00	EU-X95	NC46	6	$31 / 4$	19,937 P	$5^{3 / 8}$	$3 / 16$	11,363	$5^{5} / 16$	5/32	9,937
	14.00	IU-X95	$4 \mathrm{H90}$	$51 / 2$	$2^{13} / 16$	21,185 P	$5^{1 / 32}$	$3 / 16$	11,065	$4^{311} / 32$	5/32	9,673
4	14.00	IU-G105	NC40	$51 / 2$	$2^{7} / 16$	17,858 P	5	9/32	12,569	$4^{29} / 32$	15/64	10,768
	14.00	EU-G105	NC46	6	$31 / 4$	19,937 P	$5^{7} / 16$	$7 / 32$	12,813	$5^{11} / 32$	${ }^{11} / 64$	10,647
	14.00	IU-G105	4 H 90	$51 / 2$	$2^{13} / 16$	21,185 P	$5^{3} / 32$	7/32	12,481	$51 / 32$	$3 / 16$	11,065
4	14.00	EU-S135	NC46	6	3	23,399 P	$5{ }_{16}$	$9 / 32$	15,787	$5^{1 / 2}$	14	14,288
4	15.70	$\begin{gathered} \text { IU-E75 } \\ \text { EU-E75 } \\ \text { IU-E75 } \end{gathered}$	$\begin{aligned} & \text { NC40 } \\ & \text { NC46 } \\ & 4 \text { H90 } \end{aligned}$	$51 / 4$	$2^{11} / 16$	15,319 P	$\begin{aligned} & 4^{7} / 8 \\ & 5^{5} / 16 \\ & 4^{31} / 32 \end{aligned}$	$\begin{aligned} & 7 / 32 \\ & 5 / 32 \\ & 5 / 32 \end{aligned}$	$\begin{array}{r} 10,179 \\ 9,937 \\ 9,673 \end{array}$	$\begin{aligned} & 4^{25} / 32 \\ & 5^{1} / 4 \\ & 4^{29} / 32 \end{aligned}$	11/64	8,444
	15.70			6	$31 / 4$	19,937 P					$1 / 8$	8,535
	15.70			$51 / 2$	$2^{13} / 16$	21,185 P					$1 / 8$	8,305
4	15.70	IU-X95 EU-X95 IU-X95	$\begin{aligned} & \text { NC40 } \\ & \text { NC46 } \\ & 4 \text { H90 } \end{aligned}$	$51 / 2$	$2^{7} / 16$	17,858 P	5	$9 / 32$$7 / 32$	12,569	$\begin{aligned} & 4^{29} / 32 \\ & 5^{11} / 32 \end{aligned}$	$\begin{aligned} & 15 / 64 \\ & 11 / 64 \\ & 11 \end{aligned}$	10,768
	15.70			6	3	23,399 P	57/16		12,813			10,647
	15.70			$51 / 2$	$2^{13} / 16$	21,185 P	$5^{3} / 32$	7/32	12,481	$5{ }^{1} / 32$	$3 / 16$	11,065
4	15.70	EU-G105	$\begin{aligned} & \text { NC46 } \\ & 4 \mathrm{H} 90 \end{aligned}$	$51 / 2$	$2^{13} / 16$	$\begin{aligned} & 23,399 \mathrm{P} \\ & 21,185 \mathrm{P} \end{aligned}$	$\begin{aligned} & 5^{15} / 32 \\ & 5^{5} / 32 \end{aligned}$	$\begin{aligned} & 15 / 64 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 13,547 \\ & 13,922 \end{aligned}$	$\begin{aligned} & 5^{13} / 32 \\ & 5^{1} / 16 \end{aligned}$	$\begin{aligned} & 13 / 64 \\ & 13 / 64 \end{aligned}$	$\begin{aligned} & 12,085 \\ & 11,770 \end{aligned}$
	15.70	IU-G105										
4	15.70	$\begin{aligned} & \text { IU-S135 } \\ & \text { EU-S135 } \end{aligned}$	$\begin{aligned} & \text { NC46 } \\ & \text { NC46 } \end{aligned}$	6	$2{ }^{5} / 8$	26,982 B	$\begin{aligned} & 5^{21} / 32 \\ & 5^{21} / 32 \end{aligned}$	$\begin{aligned} & 21 / 64 \\ & 21 / 64 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 18,083 \\ & 18,083 \end{aligned}$	$\begin{aligned} & 5^{17} / 32 \\ & 5^{17} / 32 \end{aligned}$	$\begin{aligned} & 17 / 64 \\ & 17 / 64 \end{aligned}$	$\begin{aligned} & 15,035 \\ & 15,035 \end{aligned}$
	15.70			6	$2^{7} / 8$	25,038 P						
$4^{1 / 2}$	16.60	IEU-E75 IEU-E75 IEU-E75 EU-E75 IEU-E75	$\begin{gathered} 4^{1 / 2} \text { FH } \\ \text { NC46 } \\ 4^{1} / 2 \text { OHSW } \\ \text { NC50 } \\ 4^{1} / 2 \mathrm{H}-90 \end{gathered}$	6	3	20,620 P	$5^{3 / 8}$	13/64	12,125	$\begin{aligned} & 5^{9} / 32 \\ & 5^{11} / 32 \end{aligned}$	$5 / 32$$111 / 64$	10,072
	16.60			$61 / 4$	$3{ }^{1 / 4}$	19,937 P	$5^{13} / 32$	$13 / 64$	12,085			10,647
	16.60			$5{ }^{7}$	$3{ }^{3 / 4}$	16,162 P	$5^{7} / 16$	$13 / 64$	11,862	$5^{3} / 8$	${ }^{11} / 64$	10,375
	16.60			$6{ }^{5} / 8$	$3{ }^{3 / 4}$	22,361 P	$5^{23} / 32$	5/32	11,590	$5^{11 / 16}$	$9 / 64$	10,773
	16.60			6	$31 / 4$	23,126 P	$5^{11 / 32}$	3/16	12,215	$5{ }_{32}$	5/32	10,642
$4^{1 / 2}$	16.60	IEU-X95	$\begin{gathered} 4^{1} \frac{1}{2} \mathrm{FH} \\ \text { NC46 } \end{gathered}$	$61 / 4$$6{ }^{5} / 8$	$2{ }^{3} / 4$	23,695 P	$\begin{aligned} & 5^{1 / 2} \\ & 5^{17} / 32 \end{aligned}$	$\begin{aligned} & 17 / 64 \\ & 17 / 64 \\ & { }^{17} / \end{aligned}$	14,945	$\begin{aligned} & 5^{13 / 32} \\ & 5^{7} / 16 \end{aligned}$	$7 / 32$	12,821
	16.60	IEU-X95			$3^{3 / 4}$	19,937 P			15,035			12,813
	16.60	$\begin{gathered} \text { EU-X95 } \\ \text { IEU-X95 } \end{gathered}$	$\begin{aligned} & \text { NC46 } \\ & \text { NC50 } \end{aligned}$			22,361 P	$5^{27} / 32$	7/32	14,926	$5{ }^{25} / 32$	3/16	13,245
	16.60		$4^{1 / 2} 2 \mathrm{H}-90$	6	3	26,969 P	$5^{15} / 32$	1/4	15,441	$5{ }^{3} / 8$	$13 / 64$	13,013
$4^{1 / 2}$	16.60	IEU-G105	$\begin{gathered} 4^{1} / 2 \text { FH } \\ \text { NC46 } \\ \text { NC50 } \\ 4^{1 / 2 / 2} \mathrm{H}-90 \end{gathered}$	$\begin{aligned} & 6 \\ & 6^{1 / 4} \\ & 6^{5} / 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 2^{3 / 4} \\ & 3 \\ & 3^{3 / 4} \\ & 3 \end{aligned}$		$5{ }^{9} / 16$	$19 / 64$	16,391	$5^{15} / 32$	$1 / 4$	14,231
	16.60	IEU-G105				$23,399 \mathrm{P}$	$5^{19} / 3$	${ }^{19} / 64$	16,546	$5^{1 / 2}$	$1 / 4$	14,288
	16.60	EU-G105				$22,361 \mathrm{P}$	$5^{29} / 32$	$1 / 4$	16,633	$5^{13 / 16}$	${ }^{13 / 64}$	14,082
	16.60	IEU-G105				$26,969 \text { P }$	$5^{1 / 2}$	${ }^{17} / 64$	16,264	$5^{7} / 16$	$15 / 64$	14,625
$4^{1 / 2}$	16.60	IEU-S135	NC46	$61 / 4$	$2^{3} / 4$	26,615 P	$5^{25} / 32$	${ }^{25} / 64$	21,230	$5^{21 / 32}$	${ }^{21} / 64$	18,083
	16.60	EU-S135	NC50	$65 / 8$	$31 / 2$	26,674 P	$6^{1 / 16}$	${ }^{21} / 64$	21,017	$5^{31 / 32}$	$9 / 32$	18,367
$4^{1 / 2}$	20.00	IEU-E75	$4{ }^{1} / 2 \mathrm{FH}$	6	3	20,620 P	$5^{15} / 32$	$1 / 4$	14,231	$5{ }^{3} / 8$	$13 / 64$	12,125
	20.00	IEU-E75	NC46	$61 / 4$	3	23,399 P	$51 / 2$	$1 / 4$	14,288	$5^{13} / 32$	${ }^{13} / 64$	12,085
	20.00	EU-E75	NC50	$6{ }^{5} / 8$	$3{ }^{5} / 8$	24,549 P	$5^{13} / 16$	${ }^{13 / 64}$	14,082	$5^{3 / 4}$	12/64	12,415
	20.00	IEU-E75	$4{ }^{1} / 2 \mathrm{H}-90$	6	3	26,969 P	$5^{13} / 32$	$7 / 32$	13,815	$5^{11} / 32$	3/16	12,215
$4^{1 / 2}$	20.00	IEU-X95	$4{ }_{1} / 2 \mathrm{FH}$	6	$2^{1 / 2}$	26,528 P	$5{ }^{5} / 8$	${ }^{21} / 64$	17,861	$5^{17} / 32$	$9 / 32$	15,665
	20.00	IEU-X95	NC46	$61 / 4$	23_{4}	26,615 P	$5^{21} / 32$	${ }^{21} / 64$	18,083	$59 / 16$	9/32	15,787
	20.00	EU-X95	NC50	$6{ }^{5} / 8$	$31 / 2$	26,674 P	$5^{15} / 16$	${ }^{17} / 64$	17,497	$5{ }^{7} /{ }_{8}$	$15 / 64$	15,776
	20.00	IEU-X95	$41 / 2 \mathrm{H}-90$	6	3	26,969 P	$5{ }_{16}$	${ }^{19} / 64$	17,929	$5^{15} / 32$	$1 / 4$	15,441

Table 10—Recommended Minimum OD* and Make-up Torque of Weld-on Type Tool Joints
Based on Torsional Strength of Box and Drill Pipe (Continued)

${ }^{1}$ The use of outside diameters (OD) smaller than those listed in the table may be acceptable due to special service requirements.
${ }^{2}$ Tool joint with dimensions shown has lower torsional yield ratio than the 0.80 which is generally used.
${ }^{3}$ Recommended make-up torque is based on 72,000 psi stress.
${ }^{4}$ In calculation of torsional strengths of tool joints, both new and worn, the bevels of the tool joint shoulders are disregarded. This thickness measurement should be made in the plane of the face from the I.D. of the counter bore to the outside diameter of the box, disregarding the bevels.
${ }^{5}$ Any tool joint with an outside diameter less than API bevel diameter should be provided with a minimum $1 / 32$ inch depth $\times 45$ degree bevel on the outside and inside diameter of the box shoulder and outside diameter of the pin shoulder.
00
${ }^{6} \mathrm{P}=$ Pin limit; $\mathrm{B}=$ Box limit.
*Tool joint diameters specified are required to retain torsional strength in the tool joint comparable to the torsional strength of the attached drill pipe. These should be adequate for all service. Tool joints with torsional strengths considerably below that of the drill pipe may be adequate for much drilling service.

Page 38, Table 14, Footnote 1:

Change "A. 8 " to "A.9"
Page 112, replace 13.1 with the following:

13.1 DRILL STRING MARKING AND IDENTIFICATION

Sections of drill string manufactured in accordance with API Specification 7 are identified with markings on the base of the pin connection. An additional pin base marking, representing the drill pipe weight code, is recommended as shown in Figure 82. The recommended weight codes are shown in Figure 83. It is recommended that drill string members not covered by API Specification 7 also be stenciled at the base of the pin as shown in Figure 82. It is also recommended that drill string members be marked using the mill slot and groove method as shown in Figure 83.
Page 113 and 114, replace Figures 82 and 83 with the following:

Sample markings at base of pin ${ }^{1,2}$

1	2	3	4	5	6
$Z Z$	3	02	N	S	2

1 Tool Joint Manufacturer's Symbol: ZZ Company (fictional for example only)

2 Month Welded: 3 - March

3 Year Welded 02-2002

4 Pipe Manufacturer's Symbol: N - United States Steel Company

5 Drill Pipe Grade
S - Grade S135 drill pipe

6 Drill Pipe Weight Code ${ }^{2}$

Notes:

1. Tool Joint manufacturer's symbol, month welded, year welded, pipe manufacturer and drill pipe grade symbol shall be stenciled at the base of the pin as shown above. Pipe manufacturer symbol and drill pipe grade symbol applied shall be as represented by manufacturer. Supplier, owner, or user shall be indicated on documents such as mill certification papers or purchase orders.
2. Stamping the drill pipe weight code on the pin base and milled slot is recommended, in addition to the marking requirements of API Specification 7. TOOL JOINT MANUFACTURER'S SYMBOL

Refer to the current edition of the IADC Drilling Manual* for a list of Tool Joint Manufacturer's symbols.
*Available from: International Association of Drilling Contractors (IADC) P.O. Box 4287, Houston, TX 77210.

Month and Year Welded	
Month	Year
1 through 12	Last two digits of year
Drill Pipe Grade	
Grade	Symbol
E75.	E
X95	. . X
G105	G
S135	.

The "manufacturer" may be either a pipe mill or processor. See API Specification 5D, Specification for Drill Pipe.
These symbols are provided for pipe manufacturer identification and have been assigned at pipe manufacturer's requests. Manufacturers included in this list may not be current API Specification 5D licensed pipe manufacturers. A list of current licensed pipe manufacturers is available in the Composite List of Manufacturers. (Licensed for Use of the API Monogram).
Pipe mills may upset and heat treat their own drill pipe, or they may have this done according to their own specifications. In either case, the mill's assigned symbol should be used on each drill string assembly since they are the pipe manufacturer.
Pipe processors may buy "green" tubes and upset and heat treat these according to their own specifications. In this case, the processor's assigned symbol should be used on each drill string assembly since they are the pipe manufacturer.

Pipe Manufacturers (Pipe Mills or Processors)

Active		Inactive	
Mill	Symbol	Mill	Symbol
Algoma	X	Armco	A
British Steel		American Seamless	AI
Seamless Tubes LTD	B	B\&W	W
Dalmine	D	CF\&I	C
Kawasaki	H	J\&L	J
Nippon	I	Lone Star	L
NKK	K	Ohio	0
Mannesmann	M	Republic	R
Reynolds Aluminum	RA	TI	Z
Sumitomo	S	Tubemuse	TU
Siderca	SD	Voest	VA
Tamsa	T	Wheeling Pittsburgh	P
US Steel	N	Youngstown	Y
Vallourec	V		
Used	U		
Processor	Symbol		
Grant TFW	TFW		
Omsco	OMS		
Prideco	PI		
Texas Steel Conversion	TSC		

Figure 82—Marking on Tool Joints for Identification of Drill String Components

* Groove and milled slot to be $1 / 4^{\prime \prime}$ deep on $5^{1 / 4 "}$ O.D. and larger tool joints, $3 / 16^{\prime \prime}$ deep on 5" O.D. and smaller tool joints.

Stencil milled slot with $1 / 4^{\prime \prime}$ high characters so marking may be read with drill pipe hanging in elevators.

Stamping the drill pipe weight code on the pin base and milled slot is recommended, in addition to the marking requirements of API Specification 7.

** When pin hardfacing is required, increase these dimensions by the length of the hardfacing allowance. See example above.

Drill Pipe Weight Code

(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
Size OD inches	Nominal Weight Wall Thickness lb per ft inches		Weight Code Number	Size OD inches	Nominal Weight lb per ft	Wall Thickness inches	Weight Code Number
$2^{3} / 8$	4.85	. 190	1	$4^{1 / 2}$	20.00	. 430	3
	6.65*	. 280	2		22.82	. 500	4
					24.66	. 550	5
$2^{7} / 8$	6.85	. 217	1		25.50	. 575	6
	10.40*	. 362	2				
$3^{1 / 2}$				5	16.25	. 296	1
	9.50	. 254	1		19.50*	. 362	2
	13.30*	. 368	2		25.60	. 500	3
	15.50	. 449	3				
				$5^{1 / 2}$	19.20	. 304	1
4	11.85	. 262	1		21.90*	. 361	2
	14.00*	. 330	2		24.70	. 415	3
	15.70	. 380	3				
				$65 / 8$	25.20*	. 330	2
$4^{1 / 2}$	13.75	. 271	1		27.70	. 362	3
	16.60*	. 337	2				

*Designates standard weight for drill pipe size.
Figure 83—Recommended Practice for Mill Slot and Groove Method of Drill String Identification

Page 127, replace Section 14 with the following:

14 Special Processes

14.1 DRILL STEM SPECIAL PROCESSES

14.1.1 Usually the materials used in the manufacture of down hole drilling equipment (tool joints, drill collars, stabilizers and subs) are AISI-4135, 4137, 4140, or 4145 steels.
14.1.2 These are alloy steels and are normally in the heat treated state, these materials are not weldable unless proper procedures are used to prevent cracking and to recondition the sections where welding has been performed.
14.1.3 It should be emphasized that areas welded can only be reconditioned and cannot be restored to their original state free of metallurgical change unless a complete heat treatment is performed after welding, which cannot be done in the field.

14.2 CONNECTION BREAK-IN

Based on field experience, it has been observed that used rotary shouldered connections are less likely to gall than new connections. It is believed that this is due to work hardening the connection surfaces. The process of Connection Break-In is a make-up and break-out of the connection under controlled conditions in order to provide surface work hardening prior to use. Connection Break-In may be done on the rig, as an optional manufacturing step, or at a service facility.

Since many factors effect connection galling, Connection Break-In does not eliminate the possibility of galling.

14.2. Preparation for Connection Break-In

Remove any storage or rust preventative coatings. Make sure that the connections are free of dirt or other debris. Thoroughly coat the threads and shoulders of both pin and box connections with a thread compound suitable for rotary shouldered connections. Determine the recommended make-up torque of the connection. Make note of the friction factor of the thread compound and any adjustment required to the applied make up torque. See API Specification 7, Appendix G and API Recommended Practice 7A1 for further information on thread compounds and friction factor.

14.2.2 Connection Break-In at the Rig

Taking care to align the connection, stab and make-up the connection slowly. Spinning in with a chain or high speed power spinner may cause galling. Using a calibrated torque gage or line pull indicator, slowly make-up to the recommended make-up torque. With manual tongs, use both sets of tongs and keep lines at 90 degrees for the final torque. Slowly break-out the connection. During both make-up and break-out, watch for excessive resistance or other signs that could indicate the possibility of galling. Wipe clean the pin and box connections and visually inspect for evidence of galling in the threads or sealing shoulders. If galling occurs, rework the connection prior to use.

14.2.3 Connection Break-In During Manufacturing

When performing break-in at the factory or service facility, the connection should be finished machined, inspected, cold rolled (if specified) and preferably coated with an anti-gall material such as a phosphate or copper.
Note: Break-in will change thread gage standoff.
Slowly make-up three times to the recommended torque. Between each make-up, break-out only far enough to apply additional thread compound to the shoulders and last engaged threads. Break out the connection after final make-up. Wipe clean the pin and box and visually inspect for galling on the threads or shoulder. If galling occurs, the connection is rejected.

Page 130, Table 33, add the following sizes:

	Maximum	Bit Sub	Minimum Make-up Torque ft-lb
Connection	in.	OD	in.

Page 130, Table 33, Note:
Change "A.8" to "A.9"
Replace Appendix A with the following:

APPENDIX A—STRENGTH AND DESIGN FORMULAS

A. 1 Torsional Strength of Eccentrically Worn Drill Pipe

Assume 1: Eccentric hollow circular section (see Figure A-1). Reference: Formulas for Stress \& Strain, Roark, 3rd Edition.

Figure A-1—Eccentric Hollow Section of Drill Pipe

$$
\begin{equation*}
T=\frac{\pi S_{s}\left(D^{4}-d^{4}\right)}{12 \times 16 \times D \times F}, \tag{A.1}
\end{equation*}
$$

where

$$
\begin{aligned}
F= & 1+\frac{4 N^{2} \phi}{\left(1-N^{2}\right)}+\frac{32 N^{2} \phi^{2}}{\left(1-N^{2}\right)\left(1-N^{4}\right)} \\
& +\frac{48 N^{2}\left(1+2 N^{2}+3 N^{4}+2 N^{6}\right) \phi^{3}}{\left(1-N^{2}\right)\left(1-N^{4}\right)\left(1-N^{6}\right)}, \\
N= & d / D, \\
\phi= & \frac{e}{D}, \\
T= & \text { torque, ft-lbs., } \\
S_{s}= & \text { minimum shear strength, psi, } \\
D= & \text { outside diameter, in. } \\
d= & \text { inside diameter, in. }
\end{aligned}
$$

Assume 2: The internal diameter, d, remains constant and at the nominal ID of the pipe throughout its life.

Assume 3: The external diameter D is $d+t$ nominal $+t$ minimum; i.e., all wear occurs on one side. This diameter is not the same as diameter for uniform wear.

Note: Torsional yield strengths for Premium Class, Table 4, and Class 2, Table 6 were calculated from Equation A.1, using the assumption that wear is uniform on the external surface.

A. 2 Safety Factors

Values for various performance properties of drill pipe are given in Tables 2 through 7. The values shown are minimum values and do not include factors of safety. In the design of drill pipe strings, factors of safety should be used as are considered necessary for the particular application.

A. 3 Collapse Pressure for Drill Pipe

Note: See API Bulletin 5C3 for derivation of equations in A.3.
The minimum collapse pressures given in Tables 3, 5, and 7 are calculated values determined from equations in API Bulletin 5C3. Equations A. 2 through A. 5 are simplified equations that yield similar results. The D / t ratio determines the applicable formula, since each formula is based on a specific D / t ratio range.
For minimum collapse failure in the plastic range with minimum yield stress limitations: the external pressure that generates minimum yield stress on the inside wall of a tube.

$$
\begin{equation*}
P_{c}=2 Y_{m}\left[\frac{(D / t)-1}{(D / t)^{2}}\right] \tag{A.2}
\end{equation*}
$$

Applicable D / t ratios for application of Equation A. 2 are as follows:

Grade	D/t Ratio
E75	13.60 and less
X95.	12.85 and less
G105.	12.57 and less
S135.	. 11.92 and less

For minimum collapse failure in the plastic range:

$$
\begin{equation*}
P_{c}=Y_{m}\left[\left(\frac{A^{\prime}}{D / t}\right)-B^{\prime}\right]-C \tag{A.3}
\end{equation*}
$$

Factors and applicable D / t ratios for application of Equation A. 3 are as follows:

Grade	Formula Factors			D/t Ratio
	A^{\prime}	B'	C	
E75	3.054	0.0642	1806	13.60 to 22.91
X95	3.124	0.0743	2404	12.85 to 21.33
G105	3.162	0.0794	2702	12.57 to 20.70
S135	3.278	0.0946	3601	11.92 to 19.18

For minimum collapse failure in conversion or transition zone between elastic and plastic range:

$$
\begin{equation*}
P_{c}=Y_{m}\left[\left(\frac{A}{D / t}\right)-B\right] \tag{A.4}
\end{equation*}
$$

Factors and applicable D / t ratios for application of Equation A. 4 are as follows:

	Formula Factors		
Grade	A	B	
E75	$1 . t$ Ratio		
X95	1.990	0.0418	22.91 to 32.05
G105	2.029	0.0482	21.33 to 28.36
S135	2.053	0.0515	20.70 to 26.89
	2.133	0.0615	19.18 to 23.44

For minimum collapse failure in the elastic range:

$$
\begin{equation*}
P_{c}=\frac{46.95 \times 10^{6}}{(D / t)[(D / t)-1]^{2}} \tag{A.5}
\end{equation*}
$$

Applicable D / t ratios for application of Equation A. 5 are as follows:

Grade	D/t Ratio
E75	32.05 and greater
X95	. 28.36 and greater
G105	.26.89 and greater
S135.	. 23.44 and greater

where
$P_{c}=$ minimum collapse pressure, psi,

* $D=$ nominal outside diameter, in.,
* $t=$ nominal wall thickness, in.,
$Y_{m}=$ material minimum yield strength, psi.
Notes:
*Collapse pressures for used drill pipe are determined by adjusting the nominal outside diameter, D, and wall thickness, t, as if the wear is uniform on the outside of the pipe body and the inside diameter remains constant. Values of D and t for each class of used drill pipe follow. These values are to be used in applicable Equation A.2, A.3, A.4, or A.5, depending on the D / t ratio, to determine collapse pressure.

Premium Class: $t=(0.80)$ (nominal wall), $D=$ nominal OD $-(0.40)$ (nominal wall)

Class 2: $t=(0.70)($ nominal wall $), D=$ nominal $O D-(0.60)($ nominal wall $)$

A. 4 Free Length of Stuck Pipe

The relation between differential stretch and free length of a stuck string of steel pipe due to a differential pull is:

$$
\begin{equation*}
L_{1}=\frac{E \times e \times W_{d p}}{40.8 P} \tag{A.6}
\end{equation*}
$$

where
$L_{1}=$ length of free drill pipe, ft.,
$E=$ modulus of elasticity, lb/in., ${ }^{2}$ $e=$ differential stretch, in.,
$W_{d P}=$ weight per foot of pipe, lbs/ft.,
$P=$ differential pull, lbs.
Where $E=30 \times 10^{6}$, this formula becomes:

$$
\begin{equation*}
L_{1}=\frac{735,294 \times e \times W_{d P}}{P} \tag{A.7}
\end{equation*}
$$

A. 5 Internal Pressure

A.5.1 DRILL PIPE

$$
\begin{equation*}
P_{i}=\frac{2 Y_{m} t}{D} \tag{tabular}
\end{equation*}
$$

where
$P_{i}=$ internal pressure, psi,
$Y_{m}=$ material minimum yield strength, psi,
$t=$ remaining wall thickness of tube, in.,
$D=$ nominal outside diameter of tube, in.

Notes:

1. Internal pressures for new drill pipe in Table 3 were determined by using the nominal wall thickness for t in the above equation and multiplying by the factor 0.875 due to permissible wall thickness tolerance of minus $12^{1} / 2$ percent.
2. Internal pressures for used drill pipe were determined by adjusting the nominal wall thickness according to footnotes below Table 5 and 7 and using the nominal outside diameter, in the above Equation A.8.

A.5.2 KELLYS

$$
\begin{equation*}
P_{i}=\frac{Y_{m}\left[D_{F L}^{2}-\left(D_{F L}-2 t\right)^{2}\right]}{\sqrt{3\left(D_{F L}\right)^{4}+\left(D_{F L}-2 t\right)^{4}}}, \tag{A.9}
\end{equation*}
$$

where
$P_{i}=$ internal pressure, psi,
$Y_{m}=$ material minimum yield strength, psi,
$D_{F L}=$ distance across drive section flats, in.,
$t=$ minimum wall, in.
Note: The dimension t is the minimum wall thickness of the drive section and must be determined in each case through the use of an ultrasonic thickness gauge or similar device.

A. 6 Stretch of Suspended Drill Pipe

When pipe is freely suspended in a fluid, the stretch due to its own weight is:

$$
\begin{equation*}
e=\frac{L_{1}{ }^{2}}{24 E}\left[W_{a}-2 W_{f}(1-\mu)\right] \tag{A.10}
\end{equation*}
$$

where

$$
\begin{aligned}
e & =\text { stretch, in. } \\
L_{1} & =\text { length of free drill pipe, } \mathrm{ft.}
\end{aligned}
$$

$E=$ modulus of elasticity, psi,
$W_{a}=$ weight of pipe material, $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$,
$W_{f}=$ weight of fluid, $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$.,
00|

$$
\mu=\text { Poisson's ratio. }
$$

For steel pipe where $W_{s}=489.5 \mathrm{lb} / \mathrm{cu} \mathrm{ft}, E=30 \times 10^{6} \mathrm{psi}$ and $\mu=0.28$, this formula will be:

$$
\begin{equation*}
e=\frac{L_{1}{ }^{2}}{72 \times 10^{7}}\left[489.5-1.44 W_{f}\right] \tag{A.11}
\end{equation*}
$$

or

$$
\begin{equation*}
e=\frac{L_{1}{ }^{2}}{9.625 \times 10^{7}}\left[65.44-1.44 W_{g}\right] \tag{A.12}
\end{equation*}
$$

where

$$
W_{f}=\text { weight of fluid, } \mathrm{lb} / \mathrm{cu} \mathrm{ft.}
$$

$W_{g}=$ weight of fluid, $\mathrm{lb} / \mathrm{gal}$.
03|

A. 7 Tensile Strength of Drill Pipe Body

$$
\begin{equation*}
P=Y_{m} A \tag{A.13}
\end{equation*}
$$

where
$P=$ minimum tensile strength, lbs.,
$Y_{m}=$ material minimum yield strength, psi,
$A=$ cross-section area, sq. in. (Table 1, Column 6, for drill pipe).

A. 8 Torsional Yield Strength of Drill Pipe Body

A.8.1 PURE TORSION

$$
\begin{equation*}
Q=\frac{0.096167 J Y_{m}}{D} \tag{A.14}
\end{equation*}
$$

where
$Q=$ minimum torsional yield strength, $\mathrm{ft}-\mathrm{lb}$.,
$Y_{m}=$ material minimum yield strength, psi,
$J=$ polar moment of inertia
$=\frac{\pi}{32}\left(D^{4}-d^{4}\right)$ for tubes
$=0.098175\left(D^{4}-d^{4}\right)$,
$D=$ outside diameter, in.,
$d=$ inside diameter, in.

Figure A-2—Rotary Shouldered Connection

A.8.2 TORSION AND TENSION

$$
\begin{equation*}
Q_{T}=\frac{0.096167 J}{D} \sqrt{Y_{m}^{2}-\frac{P^{2}}{A^{2}}} \tag{A.15}
\end{equation*}
$$

where
$Q_{T}=$ minimum torsional yield strength under tension, $\mathrm{ft}-\mathrm{lb}$.,
$\mathrm{J}=$ polar moment of inertia
$=\frac{\pi}{32}\left(D^{4}-d^{4}\right)$ for tubes
$=0.098175\left(D^{4}-d^{4}\right)$,
$D=$ outside diameter, in.,
$d=$ inside diameter, in.,
$Y_{m}=$ material minimum yield strength, psi,
$P=$ total load in tension, lbs.,
$A=$ cross section area, sq. in.

A. 9 Torque Calculations for Rotary Shouldered Connections (see Table A-1 and Figure A-2)

A.9.1 TORQUE TO YIELD A ROTARY SHOULDERED CONNECTION

$$
\begin{equation*}
T_{y}=\frac{Y_{m} A}{12}\left(\frac{p}{2 \pi}+\frac{R_{f} f}{\cos \theta}+R_{s} f\right) \tag{A.16}
\end{equation*}
$$

where
$T_{y}=$ turning moment or torque required to yield, ft-lbs.,
$Y_{m}=$ material minimum yield strength, psi,
$p=$ lead of thread, in.,
$f=$ coefficient of friction on mating surfaces, threads and shoulders, assumed 0.08 for thread compounds containing 40 to 60 percent by weight of finely powdered metallic zinc. (Reference the caution regarding the use of hazardous materials in Appendix G of Specification 7.), Specification 7), degrees,
$R_{t}=\frac{C+\left[C-\left(L_{p c}-.625\right) \times t p r \times 1 / 12\right]}{4}$,
$L_{p c}=$ length of pin (Specification 7, Table 25, Column 9), in.,
$R_{s}=1 / 4\left(\mathrm{OD}+Q_{c}\right)$, in.
The maximum value of R_{s} is limited to the value obtained from the calculated OD where $A_{p}=A_{b}$,
$A=$ cross-section area A_{b} or A_{p} whichever is smaller, sq. in.
where

$$
A_{p}=\frac{\pi}{4}\left[(C-B)^{2}-I D^{2}\right]=\text { without relief grooves },
$$

or

$$
A_{p}=\frac{\pi}{4}\left[\left(D_{R G}{ }^{2}-I D^{2}\right]=\text { with relief grooves },\right.
$$

where
$D_{R G}=$ diameter of relief groove (Specification 7, Table 16, Column 5), in.,
$C=$ pitch diameter of thread at gauge point (Specification 7, Table 25, Column 5), in.,
$I D=$ inside diameter, in.,
$B=2\left(\frac{H}{2}-S_{r s}\right)+t p r \times 1 / 8 \times 1 / 12$,
$H=$ thread height not truncated (Specification 7, Table 26, Column 3), in.,
$S_{r s}=$ root truncation (Specification 7, Table 26, Column 5), in.,
$t p r=\operatorname{taper}($ Specification 7, Table 25, Column 4), in./ft.,

$$
A_{b}=\frac{\pi}{4}\left[O D^{2}-\left(Q_{c}-E\right)^{2}\right],
$$

where

$$
\begin{aligned}
O D & =\text { outside diameter, in., } \\
Q_{c} & =\text { box counterbore (Specification 7, Table 25, } \\
& \text { Column 11), in., } \\
E= & =\operatorname{tpr} \times \frac{3 / 8}{} \times 1 / 12
\end{aligned}
$$

A.9.2 MAKE-UP TORQUE FOR ROTARY SHOULDERED CONNECTIONS

$$
\begin{equation*}
T=\frac{S A}{12}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right) \tag{A.17}
\end{equation*}
$$

where
$A=A_{b}$ or A_{P} whichever is smaller; A_{P} shall be based on pin connections without relief grooves, sq. in.,
$S=$ recommended make-up stress level, psi.
Note: For values of S, see 4.8.1 for Tool Joints and 5.2 for Drill Collars.

A. 10 Combined Torsion and Tension to Yield Rotary Shouldered Connection and Drill Pipe Body

A.10.1 INTRODUCTION

Field-operating practice should always maintain operating torque below the make-up torque. Since there is no margin of safety applied in these curves, the actual dimensions of the tool joint and tube (inspection classification) must be used in the construction of the curve. Always be aware of the operating limits of the pipe in combination with the tool joint.

A.10.2 DRILL PIPE SELECTION AND NORMAL OPERATIONS (SEE FIGURE A.3a)

At torque levels up to the make-up torque of the tool joint, the Make-up Torque THEN Tension curves are used to determine the capacity. These curves are used when the maximum torque a connection will experience is the torque applied before tension is applied. The torque value used in this set of curves is the make-up torque or the applied torque, whichever is greater.

A.10.3 SPECIAL OPERATIONS (SEE FIGURE A.3b)

For operations where the applied downhole torque to the drill string might exceed the tool joint make-up torque (fishing, back-reaming, etc.), use the Tension THEN Torque
curves. In these cases, the horizontal axis will represent the torque applied after tension is applied.

CAUTION: The dynamic loads considered in this simplified approach are different than static loads. API recommends staying in safe zone of operations. Going outside this zone or getting close to the boundaries can result in a catastrophic failure.

A.10.4 EQUATION DEFINITIONS

The variables used in the equations below are defined in A.9.1.

$$
\begin{equation*}
P 1=Y_{m} A_{p} \tag{A.18}
\end{equation*}
$$

Figure A-3a-Make-up Torque Then Tension

Figure A-3b-Tension Then Torque

$$
\begin{gather*}
P_{o}=\frac{12\left(A_{b}+A_{p}\right) T_{a}}{A_{b}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)} \tag{A.19}\\
P_{T 4 T 2}=\left(A_{b}+A_{p}\right)\left(Y_{m}-\frac{T_{a} 12}{A_{p}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)}\right) \tag{A.20}\\
P_{T 3 T 2}=\frac{Y_{m} A_{p}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)-12 T_{D H}}{R_{s} f} \tag{A.21}\\
T 1=\left(\frac{Y_{m}}{12}\right)\left[A_{b}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)\right] \tag{A.22}\\
T 2=\left(\frac{Y_{m}}{12}\right)\left[A_{p}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)\right] \tag{A.23}\\
T 3=\left(\frac{Y_{m}}{12}\right)\left[A_{p}\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}\right)\right] \tag{A.24}\\
\left.P_{Q}=A \sqrt[Y_{m}^{2}-\left(\frac{Q_{t} D}{0.096167 \cdot J}\right)]{12}\right) \tag{A.25}\\
\left(\frac{Y_{m}}{12}\right)\left[\left(\frac{A_{p} A_{b}}{A_{p}+A_{b}}\right)\left(\frac{p}{2 \pi}+\frac{R_{t} f}{\cos \theta}+R_{s} f\right)\right] \tag{A.26}
\end{gather*}
$$

A description of the values calculated above and those used to plot the curves are:
$T_{a}=$ torque that is applied to the tool joint before tension is applied, make-up torque, $\mathrm{ft}-\mathrm{lbs}$
$T_{D H}=$ applied downhole torque, $\mathrm{ft}-\mathrm{lbs}$
$P 1=$ yield strength of the tool joint pin at $5 / 8$ " from the make-up shoulder, lbs
$P_{o}=$ tension required to separate the tool joint shoulders after T_{a} is applied, lbs. P_{o} is represented by the line from the origin to the point $T 4$. Do not use this formula if T_{a} is greater than $T 4$ since P_{o} will be greater than $P 1$
$P_{T 4 T 2}=$ tension required to yield pin after T_{a} is applied, lbs. $P_{T 4 T 2}$ is represented by the line from $T 4$ to $T 2$
$P_{T 3 T 2}=$ tension required to yield pin after $T_{D H}$ is applied, lbs. $P_{T 3 T 2}$ is represented by the line from $T 3$ to $T 2$
$T 1=$ torsional strength of the box of the tool joint and is represented by a vertical line at that value on the x axis, $\mathrm{ft}-\mathrm{lbs}$
$T 2=$ torsional strength of the pin of the tool joint, ft-lbs
$T 3$ = torsional load required to produce additional makeup of the connection when the shoulders are separated by an external tensile load on the pipe that produces yield stress in the tool joint pin, ft-lbs
$T 4=$ make-up torque at which pin yield and shoulder separation occur simultaneously with an externally applied tensile load, ft-lbs
$P_{Q}=$ yield of the drill pipe tube in the presence of torsion represented by the elliptical curve, lbs. Equation was produced by rearranging Equation A. 15

A.10.5 FAILURE MODES

The failure modes under combined torsion/tension loads are:

1. Pin yield.
2. Box yield.
3. Shoulder separation (seal failure).
4. Tube yield.

A.10.6 USING THE CURVES

Calculate the above values using the actual dimensions of the tool joints and tube. Use these values to plot a working curve.

Example 1: Drilling an Extended Reach Well (See Figure A.3c)

Assume:
Anticipated Maximum Drilling Torque $=25,000 \mathrm{ft}$-lbs
Drill Pipe string is $5^{\prime \prime}$, 19.50 ppf , Grade S, Premium Class with NC50 tool joints $\left(6^{5} / 16^{\prime \prime} \mathrm{OD} \times 2^{3} / 4^{\prime \prime}\right.$ ID)

Calculated values:

$$
\begin{aligned}
& P=560,764 \mathrm{lbs} \\
& Q=58,113 \mathrm{ft}-\mathrm{lbs} \\
& T_{a}(\text { make-up torque })=28,381 \mathrm{ft}-\mathrm{lbs} \\
& P 1=1,532,498 \mathrm{lbs} \\
& T 1=47,302 \mathrm{ft}-\mathrm{lbs} \\
& T 2=62,608 \mathrm{ft}-\mathrm{lbs} \\
& T 4=26,945 \mathrm{ft}-\mathrm{lbs}
\end{aligned}
$$

Questions
Is the drill pipe string adequate for the anticipated torque? \{ \{Yes \} \}

What is the allowable hook load at anticipated maximum drilling torque? $\{\{P=504,772 \mathrm{lbs}$ at $25,000 \mathrm{ft}-\mathrm{lbs}\}\}$

Example 2: Fishing Drill Pipe String in Example 1
 (See Figure A.3c)

Question:
What is the maximum pull without exceeding yield strength in the absence of torque? \{ \{ With a straight pull and no torque, the maximum pull is the tensile capacity of the tube which is $\mathrm{P}=560,764 \mathrm{lbs}$.$\} \}$

Figure A-3c-Make-up Torque Then Tension

Figure A-3d-Tension Then Torque

Example 3: Back-reaming Hole with Drill Pipe Stinger (See Figure A.3d)

Assume:
Back-reaming Pull $=300,000 \mathrm{lbs}$
Drill pipe stinger is $3^{1} / 2^{\prime \prime}, 15.50 \mathrm{ppf}$, Grade S , Premium Class with NC38 tool joints ($4^{3} / 4^{\prime \prime}$ OD $\times 2^{9} / 16^{\prime \prime}$ ID)

Calculated values:
$P=451,115 \mathrm{lbs}$
$Q=29,063 \mathrm{ft}-\mathrm{lbs}$
Make-up Torque $=11,504 \mathrm{ft}-\mathrm{lbs}$
$P 1=634,795 \mathrm{lbs}$
$T 1=19,174 \mathrm{ft}-\mathrm{lbs}$
$T 2=20,062 \mathrm{ft}-\mathrm{lbs}$

$$
T 3=10,722 \mathrm{ft}-\mathrm{lbs}
$$

Question:
What is yield torque if back-reaming pull is $300,000 \mathrm{lbs}$? $\left\{T_{D H}=15,648 \mathrm{ft}-\mathrm{lbs}\right\}$

CAUTION: If a back-reaming pull of $300,000 \mathrm{lbs}$ has a torque exceeding make-up torque ($11,054 \mathrm{ft}-\mathrm{lbs}$), the chance of pin failure increases as you approach $P_{T 3 T 2}$. Always use a safety factor.
A.10.7 CAUTION: The loads considered in this simplified approach are torsion and tension. These curves are approximations that do not consider the effects of internal pressure or bending. For this reason, the answers from these curves should be derated. A safety factor of one was used.

A. 11 Drill Collar Bending Strength Ratio

The bending strength ratios in Figures 26 through 32 were determined by application of Equation A.27. The effect of stress-relief features was disregarded.

$$
\begin{align*}
B S R & =\frac{Z_{B}}{Z_{P}} \\
& =\frac{0.098 \frac{\left(O D^{4}-b^{4}\right)}{O D}}{0.098 \frac{\left(R^{4}-I D^{4}\right)}{R}} \tag{A.27}\\
& =\frac{\frac{O D^{4}-b^{4}}{O D}}{\frac{R^{4}-I D^{4}}{R}},
\end{align*}
$$

where
$B S R=$ bending strength ratio,
$Z_{B}=$ box section modulus, cu. in.,
$Z_{P}=$ pin section modulus, cu. in.,
$O D=$ outside diameter of pin and box (Figure A-4), in.,
$I D=$ inside diameter or bore (Figure A-4), in.,
$b=$ thread root diameter of box threads at end of pin
(Figure A-4), in.,
$R=$ thread root diameter of pin threads $\frac{3}{4}$ inch from
shoulder of pin (Figure A-4), in.
To use Equation A.27, first calculate:
Dedendum, b, and R

$$
\begin{equation*}
\text { Dedendum }=\frac{H}{2}-f_{r n}, \tag{A.28}
\end{equation*}
$$

where
$H=$ thread height not truncated, in., $f_{r n}=$ root truncation, in.

$$
\begin{equation*}
b=C-\frac{\operatorname{tpr}\left(L_{p c}-0.625\right)}{12}+(2 \times \text { dedendum }) \tag{A.29}
\end{equation*}
$$

where
$C=$ pitch diameter at gauge point, in.,
$t p r=$ taper, in. $/ \mathrm{ft}$.

$$
\begin{equation*}
R=C-(2 \times \text { dedendum })-(\operatorname{tpr} \times 1 / 8 \times 1 / 12) \tag{A.30}
\end{equation*}
$$

An example of the use of Equation A. 27 in determining the bending strength of a typical drill collar connection is as follows:

Determine the bending strength ratio of drill collar NC46$62\left(6^{1} / 4 \mathrm{OD} \times 2^{13} / 16\right)$ ID connection.

$$
\begin{aligned}
D= & 6.25(\text { Specification 7, Table 13, Column } 2), \\
d= & 2^{13} / 16=2.8125(\text { Specification } 7, \text { Table 13, Col- } \\
& \text { umn } 3), \\
C= & 4.626(\text { Specification 7, Table 25, Column 5) }, \\
\text { Taper }= & 2(\text { Specification 7, Table 25, Column } 4), \\
L_{p c}= & 4.5(\text { Specification 7, Table 25, Column } 9), \\
H= & 0.216005(\text { Specification 7, Table 26, Column 3) }, \\
f_{r n}= & 0.038000(\text { Specification 7, Table 26, Column 5) } .
\end{aligned}
$$

First calculate dedendum, b, and R

$$
\begin{aligned}
\text { Dedendum } & =\frac{H}{2}-f_{r n}=\frac{.216005}{2}-.038000=.0700025 \\
b & =C-\frac{t p r\left(L_{p c}-0.625\right)}{12}+(2 \times \text { dedendum }) \quad \\
b & =4.626-\frac{2(4.5-.625)}{12}+(2 \times .0700025) \\
b & =4.120 \\
R & =C-(2 \times \text { dedendum })-\left(t p r \times 1 / 8 \times \frac{1}{12}\right) \\
R & =4.626-(2 \times .0700025)-\left(2 \times 1 / 8 \times \frac{1}{12}\right) \\
R & =4.465
\end{aligned}
$$

Substituting these values in Equation A. 27 determines the bending strength ratio as follows:

$$
\begin{aligned}
B S R(\text { NC46-62 }) & =\frac{\frac{O D^{4}-b^{4}}{\frac{O D}{R^{4}-I D^{4}}} \frac{R}{}}{} \\
& =\frac{\frac{(6.25)^{4}-(4.120)^{4}}{6.25}}{\frac{(4.465)^{4}-(2.8125)^{4}}{4.465}} \\
& =2.64: 1
\end{aligned}
$$

Figure A-4—Rotary Shouldered Connection Location of Dimensions for Bending Strength

Ratio Calculations

A. 12 Torsional Yield Strength of Kelly Drive Section

The torsional yield strength of the kelly drive section values listed in Tables 15 and 17 were derived from the following equation:

$$
Y=\frac{0.577 Y_{m}\left[0.200\left(a^{3}-b^{3}\right)\right]}{12}
$$

where
$Y_{m}=$ tensile yield, psi,
$a=$ distance across flats, in.,
$b=$ kelly bore, in.

A. 13 Bending Strength, Kelly Drive Section

The yield in bending values of the kelly drive section listed in Tables 15 and 17 were determined by one of the following equations:
a. Yield in bending through corners of the square drive section, $Y_{B C}$, $\mathrm{ft}-\mathrm{lb}$:

$$
Y_{B C}=\frac{Y_{m}\left(0.118 a^{4}-0.069 b^{4}\right)}{12 a}
$$

b. Yield in bending through the faces of the hexagonal drive section $Y_{B F}, \mathrm{ft}-\mathrm{lb}$:

$$
Y_{B F}=\frac{Y_{m}\left(0.104 a^{4}-0.085 b^{4}\right)}{12 a}
$$

A. 14 Approximate Weight of Tool Joint Plus Drill Pipe

Approximate Weight of Tool Joint Plus Drill Pipe
Assembly, lb/ft =
$\left.\underline{\left(\begin{array}{l}\text { Approximate Adjusted } \\ \text { Weight of Drill Pipe } \times 29.4\end{array}\right.} \begin{array}{c}\text { Approximate Weight } \\ \text { of Tool Joint }\end{array}\right)$

Tool Joint Adjusted Length +29.4
where
Approximate Adjusted Weight of Drill Pipe, $\mathrm{lb} / \mathrm{ft}=$ Plain End Weight $+\frac{\text { Upset Weight }}{29.4}$

Plain end weight and upset weight are found in API Specification 5D.

$$
\begin{align*}
& \text { Approximate Weight of Tool Joint, lbs }= \\
& 0.222 L\left(D^{2}-d^{2}\right)+0.167\left(D^{3}-D_{T E}^{3}\right)-0.501 d^{2}\left(D-D_{T E}\right) \quad \mid 00 \tag{A.33}
\end{align*}
$$

Dimensions for L, D, d, and $D_{T E}$ are in API Specification 7, Figure 6 and Table 7.

Adjusted Length of Tool Joint, $\mathrm{ft}=$

$$
\begin{equation*}
\frac{L+2.253\left(D-D_{T E}\right)}{12} \tag{A.34}
\end{equation*}
$$

A. 15 Critical Buckling Force for Curved Boreholes ${ }^{27,29,30,31,32}$

A.15.1 The following equations define the range of hole curvatures that buckle pipe in a three dimensionally curved borehole. The pipe buckles whenever the hole curvature is between the minimum and maximum curvatures defined by the equations.

$$
\begin{aligned}
& \text { if } F_{b}<\frac{4 \times E \times I}{12 \times h_{c} \times R_{L}} \text { pipe not buckled, } \\
& \text { if } F_{b} \geq \frac{4 \times E \times I}{12 \times h_{c} \times R_{L}}, \\
& W_{e q}=\frac{12 \times h_{c} \times F_{b}^{2}}{4 \times E \times I}, \\
& B_{V \min }=\frac{-5730}{F_{b}}\left[\left(W_{e q}^{2}-\left(\frac{F_{b}}{R_{L}}\right)^{2}\right)^{1 / 2}+W_{m} \times \sin \theta\right] \\
& B_{V \max }=\frac{5730}{F_{b}}\left[\left(W_{e q}^{2}-\left(\frac{F_{b}}{R_{L}}\right)^{2}\right)^{1 / 2}-W_{m} \times \sin \theta\right]
\end{aligned}
$$

where

$$
\begin{aligned}
F_{b}= & \text { critical buckling force }(+ \text { compressive })(\mathrm{lb}), \\
B_{\text {Vmin }}= & \text { minimum vertical curvature rate to cause buck- } \\
& \operatorname{ling}(+ \text { building },- \text { dropping })\left({ }^{\circ} / 100 \mathrm{ft}\right),
\end{aligned}
$$

$$
\begin{aligned}
B_{V \max }= & \text { maximum vertical curvature rate that buckles } \\
& \text { pipe }(+ \text { building, }- \text { dropping })(\% / 100 \mathrm{ft}), \\
W_{e q}= & \text { equivalent pipe weight required to buckle pipe } \\
& \text { at } F_{b} \text { axial load, } \\
E= & 29.6 \times 10^{6} \mathrm{psi}, \\
I= & \frac{0.7854\left(O D^{4}-I D^{4}\right)}{16}, \\
W_{m}= & W_{a}\left(\frac{65.5-M W}{65.5}\right) \text { buoyant weight of pipe (lb/ft), } \\
W_{a}= & \text { actual weight in air (lb/ft), } \\
M W= & \text { mud density (lb/gal), } \\
h_{c}= & \left(\frac{D_{H}-T J O D}{2}\right) \text { radial clearance of tool joint to } \\
& \text { hole (in.), } \\
D_{H}= & \text { diameter of hole (in. }), \\
T J O D= & O D \text { tool joints (in. }) \\
B_{L}= & \left.\sqrt{B_{T}^{2}-B_{V}^{2}} \text { lateral curvature rate (} \% / 100 \mathrm{ft}\right), \\
B_{T}= & \text { total curvature rate }\left({ }^{\circ} / 100 \mathrm{ft}\right), \\
R_{L}= & \frac{5730}{B_{L}} \text { lateral build radius (ft), } \\
\theta= & \text { inclination angle (deg). }
\end{aligned}
$$

A.15.2 If the hole curvature is limited to the vertical plane, the buckling equations simplify to the following:

$$
\begin{aligned}
W_{e q} & =\frac{12 \times h_{c} \times F_{b}^{2}}{4 \times E \times I}, \\
B_{V \min } & =\frac{-5730 \times\left(W_{e q}+W_{m} \times \sin \theta\right)}{F_{b}}, \\
B_{V \max } & =\frac{5730 \times\left(W_{e q}-W_{m} \times \sin \theta\right)}{F_{b}},
\end{aligned}
$$

where

$$
\begin{aligned}
B_{V \min }= & \begin{array}{l}
\text { minimum vertical curvature rate for buckling } \\
\\
\\
(+ \text { building, }- \text { dropping })(\% 100 \mathrm{ft}),
\end{array} \\
B_{V \max }= & \text { maximum vertical curvature rate for buckling } \\
& (+ \text { building, }- \text { dropping })(\% 100 \mathrm{ft}), \\
F_{b}= & \text { buckling force }(\mathrm{lb}), \\
E= & 29.6 \times 10^{6}(\mathrm{psi}), \\
I= & \frac{\pi}{64}\left(O D^{4}-I D^{4}\right), \\
W_{e q}= & \text { buoyant weight equivalent for pipe in curved } \\
& \text { borehole }(\mathrm{lb} / \mathrm{ft}), \\
W_{m}= & W_{a}\left(\frac{65.5-M W}{65.5}\right) \text { buoyant weight of pipe }(\mathrm{lb} / \mathrm{ft}), \\
W_{a}= & \text { actual weight of pipe in air }(\mathrm{lb} / \mathrm{ft}), \\
M W= & \text { mud density }(\mathrm{lb} / \text { gal }),
\end{aligned}
$$

$$
\begin{aligned}
h_{c}= & \left(\frac{D H-T J O D}{2}\right) \text { radial clearance of tool joint to } \\
& \text { hole (in.), } \\
D H= & \text { diameter of hole (in.) }, \\
T J O D= & O D \text { of tool joint (in.), } \\
\theta= & \text { inclination angle (deg) } .
\end{aligned}
$$

A.15.3 Figures A-5 and A-6 show the effect of hole curvature on the buckling force for 5 -inch and $31 / 2$-inch drillpipe. Figure A-7 shows the effect of lateral curvatures on the buckling force of 5 -inch drillpipe. For lateral and upward curvatures, the critical buckling force increases with the total curvature rate.

A. 16 Bending Stresses on Compressively Loaded Drillpipe in Curved Boreholes ${ }^{33,34}$

A.16.1 The type of loading can be determined by comparing the actual hole curvature to calculated values of the critical curvatures that define the transition from no pipe body contact to point contact and from point contact to wrap contact. The two critical curvatures are computed from the following equations.

$$
B_{c}=\frac{57.3 \times 100 \times 12 \times \Delta D}{J \times L\left[\tan \left(\frac{57.3 \times L}{4 \times J}\right)-\frac{L}{4 \times J}\right]},
$$

where
$B_{c}=$ the critical hole curvature that defines the transition from no pipe body contact to point contact ($\% / 100 \mathrm{ft}$),
$\Delta D=(T J O D-O D)$,
$T J O D=$ tool joint $O D$ (in.),
$O D=$ pipe body $O D$ (in.),
$J=\left(\frac{E \times I}{F}\right)^{1 / 2} \quad$ (in.),
$L=$ length of one joint of pipe (in.),
$E=$ Young's modulus 30×10^{6} for steel (psi),
$I=$ moment of inertia of pipe body (in.)
$=\frac{\pi\left(O D^{4}-I D^{4}\right)}{64}$,
$F=$ axial compressive load on pipe (lb),
$I D=$ pipe body $I D$ (in.).

$$
B_{w}=\frac{57.3 \times 100 \times 12 \times \Delta D}{J \times L\left[\frac{4 J}{L}+\frac{L}{4 J \times \tan ^{2}\left(\frac{57.3 L}{4 J}\right)}-\frac{2}{\tan \left(\frac{57.3 L}{4 J}\right)}\right]},
$$

where
$B_{w}=$ the critical curvature that defines the transition from point contact to wrap contact ($\% / 100 \mathrm{ft}$),

Figure A-5—Buckling Force vs Hole Curvature

Figure A-6-Buckling Force vs Hole Curvature

Figure A-7—Buckling Force vs Hole Curvature

$$
\begin{aligned}
\Delta D & =(T J O D-O D), \\
T J O D & =\text { tool joint } O D(\mathrm{in} .), \\
O D & =\text { pipe body } O D \text { (in.), } \\
J & =\left(\frac{E \times I}{F}\right)^{1 / 2} \quad \text { (in.), } \\
L & =\text { length of one joint of pipe (in.), } \\
E & =\text { Young's modulus } 30 \times 10^{6} \text { for steel (psi), } \\
I & \left.=\text { moment of inertia of pipe (in. }{ }^{4}\right) \\
& =\frac{\pi\left(O D^{4}-I D^{4}\right)}{64}, \\
F & =\text { axial compressive load on pipe }(\mathrm{lb}), \\
I D & =\text { pipe body } I D \text { (in.). }
\end{aligned}
$$

A.16.2 If the hole curvature is less than the critical curvature required to begin point contact, the maximum bending stress is given by the following:

$$
S_{b}=\frac{B \times O D \times F \times J \times L}{57.3 \times 100 \times 12 \times 4 \times I \times \sin \left(\frac{57.3 L}{2 J}\right)},
$$

where

$$
\begin{aligned}
S_{b} & =\text { maximum bending stress }(\mathrm{psi}) \\
B & =\text { hole curvature } \\
F & =\text { axial compressive load on pipe (lb) }
\end{aligned}
$$

$$
\begin{aligned}
J & =\left(\frac{E \times I}{F}\right)^{1 / 2} \quad(\mathrm{in} .), \\
E & =\text { Young's modulus } 30 \times 10^{6} \text { for steel (psi), } \\
I & =\text { moment of inertia (in.) } \\
& =\frac{\pi\left(O D^{4}-I D^{4}\right)}{64}, \\
O D & =\text { pipe body } O D \text { (in.), } \\
I D & =\text { pipe body } I D \text { (in.). } \\
L & =\text { length of one joint of pipe (in.), }
\end{aligned}
$$

A.16.3 If the hole curvature is between the two critical curvatures calculated, the pipe will have center body point contact and the maximum bending stress is given by the following equation:

$$
S_{b}=\frac{E \times O D \times U^{2}}{4 R}\left[\frac{A \times \sin \theta+B \times \cos \theta}{U \times \sin U-4 \times \sin ^{2}\left(\frac{U}{2}\right)}\right],
$$

where

$$
\begin{aligned}
E & =\text { Young's modulus, } 29.6 \times 10^{6} \text { for steel }(\mathrm{psi}) \\
O D & =\text { pipe body } O D \text { (in.) } \\
I D & =\text { pipe body } I D(\mathrm{in} .) \\
U & =\frac{L}{2 J}
\end{aligned}
$$

$$
\begin{aligned}
L & =\text { length of one joint of drillpipe for point contact } \\
& \text { of pipe body (in.), } \\
L & =L_{e} \text { for wrap contact (in.), } \\
A & =\left(1+\frac{4 \times R \times \Delta D}{L^{2}}\right) \sin U-\frac{4}{U} \times \sin ^{2}\left(\frac{U}{2}\right), \\
B & =2\left[1-\frac{\sin U}{U}-\left(1+\frac{4 \times R \times \Delta D}{L^{2}}\right) \sin ^{2}\left(\frac{U}{2}\right)\right], \\
\theta & =\operatorname{arc} \tan \left(\frac{A}{B}\right), \\
J & =\left(\frac{E \times I}{F}\right)^{1 / 2} \quad \text { (in.), } \\
I & \left.=\frac{\pi}{64}\left(O D^{4}-I D^{4}\right) \quad \text { (in. }{ }^{4}\right), \\
\Delta D & =\text { diameter difference tool joint minus pipe body } \\
& O D, \\
\Delta D & =(T J O D-O D) \text { (in.), } \\
T J O D & =\text { tool joint } O D \text { (in.), } \\
R & =57.3 \times 100 \times 12 B, \\
B & \left.=\text { hole curvature (}{ }^{\circ} / 100 \mathrm{ft} .\right) .
\end{aligned}
$$

A.16.4 If the hole curvature exceeds the critical curvature that separates point contact from wrap contact, we need to first compute an effective pipe length in order to calculate the maximum bending stress. The effective pipe span length is calculated from the following equation by trial and error until the calculated curvature matches the actual hole curvature:

$$
B=\frac{57.3 \times 100 \times 12 \times \Delta D}{J \times L_{e}\left[\frac{4 J}{L_{e}}+\frac{L_{e}}{4 J \times \tan ^{2}\left(\frac{57.3 L_{e}}{4 J}\right)}-\frac{2}{\tan \left(\frac{57.3 L_{e}}{4 J}\right)}\right]},
$$

where

$$
\begin{aligned}
L_{e} & =\text { effective span length (in.), } \\
B & =\text { hole curvature (\%/100 ft.), } \\
\Delta D & =\text { diameter difference between tool joint and pipe } \\
& \text { body, } \\
\Delta D & =T J O D-O D \text { (in.), } \\
T J O D & =\text { tool joint } O D \text { (in.), } \\
O D & =\text { pipe body } O D \text { (in.), } \\
I D & =\text { pipe body } I D \text { (in.). } \\
J & =\left(\frac{E \times I}{F}\right)^{1 / 2} \quad \text { (in.), } \\
E & =\text { Young's modulus } 29.6 \times 10^{6} \text { for steel (psi), } \\
I & =\frac{\pi}{64}\left(O D^{4}-I D^{4}\right), \\
F & =\text { axial compressive load (lb), } \\
L_{w} & =\text { length of pipe body touching hole (in.), } \\
L_{w} & =L-L_{e}, \\
L & =\text { length of one joint of pipe (in.). }
\end{aligned}
$$

A.16.5 The maximum bending stresses can then be computed using the equation for point contact and a pipe body length equal to the effective span length.
A.16.6 One of our major concerns when drilling with compressively loaded drillpipe is the magnitude of the lateral contact forces between the tool joints and the wall of the hole and the pipe body and the wall of the hole. Various authors have suggested operating limits in the range of two to three thousand pounds or more for tool joint contact faces. There are no generally accepted operating limits for compressively loaded pipe body contact forces. For loading conditions in which there is no pipe body contact, the lateral force on the tool joints is given by:

$$
L F_{T J}=\frac{F \times L \times B}{57.3 \times 100 \times 12},
$$

where
$F_{T J}=$ lateral force on tool joint (lb),
$L=$ length of one joint of pipe (in.),
$B=$ hole curvature ($\% / 100 \mathrm{ft}$.).
A.16.7 For loading conditions with point or wrap contact, the following equations give the contact forces for the tool joint and the pipe body:

$$
L F_{T J}=\frac{2 \times E \times I \times U^{2}}{R \times L_{e}}\left[\frac{\left(1-\frac{4 R \times \Delta D}{L_{e}^{2}}\right) \sin U-\frac{4}{U} \sin ^{2}\left(\frac{U}{2}\right)}{\sin U-\frac{4}{U} \sin ^{2}\left(\frac{U}{2}\right)}\right]
$$

where

$$
\begin{aligned}
L F_{p i p e} & =\frac{F \times L}{R}-L F_{t j} \\
L F_{t j} & =\text { lateral force on tool joint (lb), } \\
L F_{p i p e} & =\text { lateral force on pipe body (bb), } \\
L_{w} & =L-L_{e}, \\
L_{w} & =\text { length of pipe for wrap contact (in.), } \\
L_{e} & =L \text { for point contact (in.), } \\
L_{e} & =\text { effective span length for wrap contact, } \\
R & =\frac{57.3 \times 100 \times 12}{B} \\
B & =\text { hole curvature (\%100 ft.), } \\
U & =\frac{L_{e}}{2 J} \\
J & =\left(\frac{E \times I}{F}\right)^{1 / 2} \quad \text { (in.), } \\
\Delta D & =\text { diameter difference tool joint minus pipe } O D(\text { in. }), \\
\Delta D & =T J O D-O D(\text { in. }), \\
I & =\frac{\pi}{64}\left(O D^{4}-I D^{4}\right) .
\end{aligned}
$$

Table A-1—Rotary Shouldered Connection Thread Element Information

Table A-1—Rotary Shouldered Connection Thread Element Information

Additional copies available through Global Engineering Documents at (800) 854-7179 or (303) 397-7956

Information about API Publications, Programs and Services is available on the World Wide Web at: http://www.api.org

