Publication Date: July 2023

Affected Publication: API Specification 16D, *Control Systems for Drilling Well Control Equipment and Control Systems for Diverter Equipment*, Third Edition, November 2018

Addendum 1

The reference to the Monogram Program shall be removed from Section 1 and elsewhere throughout the document, including the the entire contents of Annex A. The Annex A title will remain as a placeholder, until the next edition, so that Annex B through Annex C citations remain correct.

Section 4.5: The section heading shall be renamed "Auxiliary Equipment Control Systems".

Section 5.7.2 was duplicated within the document. Duplicated section shall be removed.

Section 5.7.3: The section shall be updated to:

5.7.3 Ethylene Glycol Reservoir

The ethylene glycol reservoir, if installed, shall be sized using the maximum anticipated ethylene glycol/water ratio for the minimum anticipated ambient temperature to which the control fluid is to be exposed. The reservoir shall have sufficient capacity to contain enough ethylene glycol to mix at least 1.5 times the power fluid volume of the main accumulator system.

Section 5.10.1: The second sentence shall change as indicated by the highlighting:

5.10.1 Close and seal is the process to close a ram BOP with the operator pressure required to seal the wellbore (MOPFLPS) and lock the rams.

NOTE MOPFLPS is not a single number, as environmental conditions can include elevated wellbore pressures at different temperatures.

Section 5.15.3.2: The section shall be updated to:

5.15.3.2 The main accumulator system shall be designed such that the loss of an individual accumulator or bank does not result in more than 25 % loss of the total accumulator system capacity.

Section 5.15.7.4: The section shall be updated to:

5.15.7.4 Relief valves shall additionally be tested to determine the maximum flow rate through the relief valve without exceeding 115 % of the relief valve's set pressure.

Section 5.16.3.1: The section shall be changed as shown below:

5.16.3.1 Visual position indication shall be installed on remote control stations for all function positions that are operable from the remote control station. Control station lamps (or other means of visual indication) that are used to indicate function status shall track the position of the hydraulic control valves. Red, amber, and green shall be used as standard colors for control station indicator lights (or displays). Green shall indicate that the function is in its normal drilling position.

Red shall indicate that the function is in an abnormal position. Amber shall indicate that the function is in a "block" or "vent" position. On functions that have three or more positions, red or green shall be on

whenever the "block" or "vent" (amber) indication is on and thereby indicate the function's last selected position.

NOTE Other indicator colors may be used for information display on functions such as selection of yellow or blue for subsea control pods.

Section 5.16.3.3: The section shall be updated to:

5.16.3.3 Control station functionality and external control functionality, excluding the regulator controls, shall require a two-handed operation (e.g., the use of an "ENABLE" or "PUSH and HOLD" in addition to the function).

Section 5.16.3.4: The section shall be updated as shown by the highlighting:

5.16.3.4 Physical arrangement of the control station shall be as a graphic representation of the flow path of the BOP stack or diverter, or both. The placement of the function for button and screen arrangements and visual indications shall be laid out such that the function on the right-hand side closes the BOP or choke or kill valve, and the function on the left-hand side shall open the BOP or choke or kill valve.

Section 5.16.5.3: The first sentence shall be updated to:

5.16.5.3 The following summary alarms shall have local visual indication with an audible alarm when the listed event(s) condition is met:

Section 5.16.5.3 (d): The section shall be updated as highlighted in yellow:

d) control manifold pressure LOW (surface, discrete hydraulic, MUX):

- 1) BOP manifold (control of ram BOPs, choke/kill outlet valves);
- 2) wellhead connector manifold;
- 3) LMRP connector manifold;
- 4) dedicated shear manifold.

Section 5.16.5.3 (e): The section shall be updated to:

- e) control manifold pilot pressure LOW (surface, discrete hydraulic, MUX):
 - 1) BOP manifold (control of ram BOPs, choke/kill outlet valves);
 - 2) wellhead connector manifold;
 - 3) LMRP connector manifold;
 - 4) dedicated shear manifold.

Section 5.16.5.3 (j): The section shall be updated as highlighted in yellow:

j) pump system FAULT for electric-driven pump systems (surface, discrete hydraulic, MUX):
 1) pump system electric power LOSS;
 2) pump FAULT.

Section 5.16.6 (k): The section shall be updated as highlighted in yellow:

k) regulator pilot pressures (surface, discrete hydraulic, MUX);

Section 5.16.7.1: The section shall be updated to:

5.16.7.1 A safety cover or other means (e.g., pop-up controls, mechanical restraint) that does not obstruct visibility of function status, shall be installed to avoid unintended operation of critical functions (where installed) including:

- a) connector(s) (LMRP, wellhead, choke & kill) retract / unlock;
- b) shear ram(s) close;
- c) emergency disconnect sequence activate;
- d) deadman/autoshear arm;
- e) deadman/autoshear disarm;
- f) pod stabs retract / unlock;
- g) diverter packer close.

Section 5.16.7.2: The section shall be updated to:

5.16.7.2 To prevent operator complacency, noncritical functions shall not have the safety cover or other means described above.

Section 5.17.1.3: The section shall be updated to:

5.17.1.3 No more than 130V RMS shall be connected to any component mounted on the face of an electrical enclosure that the user directly interfaces with to make routine adjustment.

NOTE This requirement does not apply to components that do not require routine adjustment, such as glanded cable entries or power switches/disconnects.

Section 5.17.3.3.2: The section shall be updated to:

5.17.3.3.2 When a subsystem is integrated, the test procedures shall specify all parameters that can be measured in a partial test to verify conformance to the specifications. The test shall be considered in process, and documentation that specifies the final integrated test requirements shall be supplied to the purchaser.

Section 6.5.1.2.b: The section shall be updated as shown in yellow:

b) Provide the power fluid volume and pressure required to close the following functions in sequence:

- 1) close the annular (largest by operator volume);
- 2) close and seal with a pipe ram.

This is a quick discharge event, and the accumulator sizing calculations shall be performed using Method C, calculated with the beginning pressure at the pump start pressure.

Section 7.2.1.4: The section shall be updated as shown in yellow:

7.2.1.4 There shall be two or more means of surface to subsea power fluid supply (e.g., hydraulic conduits, hydraulic umbilical hoses) as follows:

a) at least two power fluid supplies shall individually satisfy the response time requirements specified in 7.1;

b) at least two (or more) power fluid supplies shall be selectable from each control station.

NOTE LMRP-mounted accumulators (if installed) in conjunction with the required surface to subsea power fluid supplies are an acceptable means to satisfy response time requirements.

Section 7.3.1.8: The section shall be updated to:

7.3.1.8 All dedicated subsea accumulator systems shall have an ROV-readable pressure gauge. MUX control systems shall also have a pressure readback of the dedicated subsea accumulator systems.

Section 7.3.3.2: The section shall be updated to:

For main control systems that do not use a dedicated shear accumulator bank for high-pressure shear ram closure, the ACR (with the same precharge pressure) shall be the greater of the following:

a) The power fluid volume and pressure required to perform the accumulator drawdown test as defined in API 53. The accumulator pressure after the API 53 drawdown test shall equal or exceed the required MOP. The accumulator capacity required for this test correlates with the results obtained using calculation Method B.

b) The power fluid volume and pressure required to operate the following functions, in sequence:

- 1) close the annular (largest by operator volume);
- 2) close and seal with a pipe ram;
- 3) shear and seal.

The accumulator sizing calculations shall be performed using Method C, calculated with the beginning pressure at the pump start pressure.

c) Provide the power fluid volume required to perform an EDS (if installed). If the control system has more than one EDS mode, the EDS that requires the greatest accumulator capacity shall be used.

This is a quick discharge event, and the accumulator sizing calculations shall be performed using Method C, calculated with the beginning pressure at the pump start pressure.

Section 7.3.3.3: The section shall be updated to:

For main control systems that use a dedicated shear accumulator bank for high-pressure shear ram closure, the ACR (with the same precharge pressure) shall be the greater of the following:

a) The power fluid volume and pressure required to perform the accumulator drawdown test as defined in API 53. The accumulator pressure after the API 53 drawdown test shall equal or exceed the required MOP. The accumulator capacity required for this test correlates with the results obtained using calculation Method B.

b) The power fluid volume and pressure required to operate the following functions, in sequence:

- 1) close the annular (largest by operator volume);
- 2) close and seal with a pipe ram.

The accumulator sizing calculations shall be performed using Method C, calculated with the beginning pressure at the pump start pressure.

c) Provide the power fluid volume required to perform an EDS (if installed). If the control system has more than one EDS mode, the EDS that requires the greatest accumulator capacity shall be used.

This is a quick discharge event and the accumulator sizing calculations shall be performed using Method C, calculated with the beginning pressure at the pump start pressure.

Section 7.4.9: The section shall be changed as highlighted in yellow:

Software controlled discrete hydraulic control systems shall be equipped with automatic data logging as specified in 7.5.2.

Section 7.5.1.3: The section shall be updated to:

7.5.1.3 For a subsea one-atmosphere housing where a failure due to temperature would cause the inability to operate BOP stack functions or regulate function pressures, a sensor shall be required that triggers an alarm when the temperature exceeds the operational range of the housing components. This requirement does not apply to secondary and emergency control systems.

Section 7.5.1.4: The section shall be updated to:

7.5.1.4 For a subsea one-atmosphere housing where a failure due to humidity would cause the inability to operate BOP stack functions or regulate function pressures, a sensor shall be required that triggers an alarm when the humidity exceeds the operational range of the housing components. This requirement does not apply to secondary and emergency control systems.

Section 7.5.1.5: The section shall be updated to:

7.5.1.5 For a subsea one-atmosphere housing where a failure due to fluid ingress would cause the inability to operate BOP stack functions or regulate function pressures, a sensor shall be required that triggers an alarm when there is an ingress of fluid (control fluid, saltwater, dielectric fluid) that is detrimental to system performance per the manufacturer specifications. This requirement does not apply to secondary and emergency control systems.

Section 7.5.2: The section shall be moved (renumbered) to become **Section 7.6** and renamed to "Auxiliary Subsea Devices" and subsequent subsections renumbered. The precise following text shall be used:

7.6 Auxiliary Subsea Devices

7.6.1 Auxiliary devices shall not disable the BOP control system in the event of a failure in the auxiliary devices.

NOTE 1 Auxiliary subsea devices support drilling operations but are not required for well control.

NOTE 2 The transmission of auxiliary device data and power may be through independent conductors in the subsea umbilical (MUX) cable, integrated into the BOP control system or through an independent umbilical cable.

NOTE 3 Auxiliary subsea devices are not required by this standard to comply with the requirements of 7.5.

NOTE 4 Typical auxiliary devices may include but are not limited to the following:

- a) measurement of riser angle;
- b) measurement of riser stresses;
- c) measurement of BOP stack angle;
- d) measurement of sea bottom currents and water temperature;
- e) measurement of wellbore fluid temperature at the wellhead;
- f) measurement of wellbore pressure at the wellhead;
- g) transmission of underwater television images;
- h) control of TV camera functions (pan, tilt, etc);
- i) control and power of underwater TV lights;
- j) valve and BOP position indicators.

Section 7.6.2: The section shall be renumbered (and located appropriately) to be 7.5.2

Section 7.6.3: The section shall be renumbered (and located appropriately) to be 7.5.3

Section 7.6.4: The section shall be renumbered (and located appropriately) to be 7.5.4

Section 7.6.5: The section shall be renumbered (and located appropriately) to be 7.5.5

Section 7.6.6: The section shall be renumbered (and located appropriately) to be 7.5.6

Section 7.6.7: The section shall be renumbered (and located appropriately) to be 7.5.7

Section 7.6.8: The section shall be renumbered (and located appropriately) to be 7.5.8

Section 7.6.9: The section shall be renumbered (and located appropriately) to be 7.5.9

Section 7.6.10: The section shall be renumbered (and located appropriately) to be 7.5.10

Section 10.3.2.14: The section shall be updated to:

10.3.2.14 There shall be a manual override mode in which the diverter can be closed without operating the diverter sequence or performing interlocked functions. The manual override shall be operable from the driller's remote control station.

Section 10.3.4.2: The section shall be updated to:

10.3.4.2 Separate panel controls for a common hydraulic manifold shall have a mode to select between BOP mode and diverter mode on the panel.

Section 10.4.5: The following new section shall be added:

10.4.5 Diverter control function valve handles and button/screen arrangements shall be placed in the orientation per 5.15.6.

Section 10.6.4: The section shall be changed as highlighted in yellow:

10.6.4 For diverters controlled by the BOP control system, the accumulator system shall also meet or exceed the requirements listed in **6.5.1**.

Section 14.3.10: The section shall be changed as highlighted in yellow:

14.3.10 Electrostatic discharge control shall be in accordance with ANSI/ESD S20.20 or an equivalent recognized national or international standard.

Section 14.3.11.1: The section shall be changed as highlighted in yellow:

14.3.11.1 Ground conductors shall be sized in accordance with NFPA 70 or an equivalent recognized national or international standard.

Section 14.4.2: The first line shall be changed as highlighted in yellow:

Control Pod equipment shall conform to the following:

Section 14.8.5: The section shall be updated as shown below:

14.8.5 A certificate of the relief valve setting and operation shall be provided indicating the set point and the pressure at which the relief valve re-seats.

Annex D: The annex title shall be updated to "Summary of Accumulator Sizing Examples"

Section D.1: The heading shall be deleted.

The remaining Addendum updates are related to the Accumulator Sizing Examples (Examples being updated: 2, 3, 5, 6, 7, 8, and 12). Please see the following sheets.

Table D.1: The content shall be updated to reflect the updated volumes for the related examples, and shall be replaced with the following:

Example	System Case	Equipment Case	Design Method	Circuit Pressure ^a	Notes	Minimum Required Accumulator Volume (gal)
1	Land Rig	M ain A ccumulators	B (<u>drawdown</u>) C (well control)	3000 2700	±50 °F temperature range considered	79.5
2		M ain Accumulators	B (<u>drawdown</u>) C (well control)	3000 2700	±30 °F temperature range considered	247.7
3	Offshore Surface Sack	Pilot Accumulators	B (close all BOPS)	3000	±30 °F temperature range considered	0.097
4	accumulator	Dedicated Shear Accumulators (not supplied by main accumulators)	С	4500	±30 °F temperature range considered	90.7
5		<u>Diverter</u> A ccumulators	С	3000	±30 °F temperature range considered	140.1
6	Offshore Surface Stack without dedicated shear accumulator	M ain Accumulators	B (<u>drawdown</u>) C (well control)	3000 2700	±30 °F temperature range considered	546.6
7		M ain A ccumulators	B (<u>drawdown</u>) C (well control)	5000 4500	_	975.5
8	Subsea Stack	Pilot Accumulators	B (open and close all BOPS C (EDS)	3000	_	1.449
9		DMAS/Shear Accumulators	с	5000	_	1576.9
10		A coustic A ccumulators	В	5000	—	530.0
11		Diverter A ccumulators	С	5000	_	90.5
12		Depth Compensated A ccumulators	С	5000	_	687.9
13	Special Purpose	Choke and Kill Valve Closure Assist A ccumulators	С	3000	_	58.4
^a Based or	n pump start and stop pressu	ires or regulated pressures	ŝ.			

Table D.4: The content shall be replaced with the following:

Examples 2, 3, 4, & 5: BOP Stack Configuration and Parameters for Offshore Surface Stack

The following examples size accumulator systems for a surface BOP. The main, pilot, dedicated shear and diverter accumulators will be sized. This example will take a 30° F temperature range into consideration.

	Stac	:k	Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Opening Volume (gal)	Closing/She	aring Ratio
Annular BOP	2, 13"		10,000	1,500	26.50	24.30		
Blind Shear F	Ram, 13"		10,000	1,60D 520	21.50	16.00	18.20 6.20	Shearing Sealing
Upper Pipe F	Ram, 13"		10,000	600	12.30	10.80	7.	85
Middle Pipe	Ram, 13"		10,000	600	12.30	10.80	7.65	
Lower Pipe F	Ram, 13"		10,000	600	12.30	10.80	7.65	
Choke & Kill	Valve		10,000	780	0.65	0.65	-	
Pi	lot - Volu	me to pilot all BOPs	closed			D	iverter Syste	m
Functions	QTY	Size	Total Volume (gal)			Function	Pressure (psig)	Volume (gal)
1X Annular	1	1.5" SPM	0.0060			Sequence	1,500	11
4X Rams	4	1.0" SPM	0.0120			Diverter	1,500	25
		lotal	0.0180				lotal	36
		200%	0.0360					

System Parameters								
System Pressure	3,000	psig						
System Pressure (HP shear circuit)	5,000	psig						
Environmental Conditions								
Surface Temperature at Precharge	90	۴						
Temperature Range (+/- °F)	30	۴						
Minimum Surface Temperature	60	۴						
Maximum Surface Temperature	120	۴						
Atmospheric Pressure	14.7	psia						

Relevant References

Pump System

- Primary pump start at 90% of system RWP
- Primary pump stop between 98%-100% of system RWP

Ex. 2 Main Accumulator System

- Example rig uses dedicated shear accumulators for high pressure shear ram closure

- Drawdown Test
- Close all rams, open valve, close annular
- Use pump stop pressure Method B

Well Control Sequence

- Close annular
- Use pump start pressure
- Method C
 Volume for shear rams provided by dedicated shear accumulators

Ex. 3 Pilot Accumulators

- 200% of volume to close all BOPs
- Method B
- Minimum Pressure Required to pilot control valve: 1,500 psig
- Minimum Pressure Required by hydraulically piloted regulators: 1,500 psig

Ex. 4 Dedicated Shear Accumulators

- Example rig's dedicated shear accumulators are not supplied by the main accumulator system and, therefore, pump start pressure is used - Method C

Ex. 5 Diverter Accumulators

- Example rig's diverter accumulators are supplied by the main accumulator system and are checked in, therefore, pump stop pressure is used - Method C

Table D.5: The content has been updated to remove the pipe ram from the well control sequence, and shall be replaced with the following:

Example 2: Surface Stack - Main Accumulator Sizing

		Ma	in Accumulator			
This worksheet details the sizing calculations for	the Main Accumulator u	tilizing API 16D 3rd. Editi	ion calculations.			
Operator Function(s) - Accumulator Drawdown (Method B)	Rated Working Pressure (psia)	Opening Volume (gal)	Closing Volume (gal)	Closing Ratio*	Pressure to Close Against RWP (psig)
Annular BOP, 13"		10,000	24.30	26.50	-	1,500
Blind Shear Ram, 13"		10,000	16.00	21.50	6.20	1,611
Upper Pipe Ram, 13"		10,000	10.80	12.30	7.65	1,305
Middle Pipe Ram, 13"		10,000	10.80	12.30	7.65	1,305
Lower Pipe Ram, 13"		10,000	10.80	12.30	7.65	1,305
Choke & Kill Valve		10,000	0.65	0.65	-	780
Pressure Required (psia) to Close Blind Shea	ar Ram against Rated W	/orking Pressure = Rate	ed Working Pressure / Closi	ng Ratio = 10000 / 6.2 = 16	10.6	
Total Functional Volume Requirement (FVR ₈)		85.55	gal	1		
Pressure Required		1,611	psig	1		
*Use the sealing ratio for the drawdown test calc	ulations when a shear ra	m has a different closing	ratio for shearing and sealing			
Operator Function(s) - Well Control Sequence (Method C)*		Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Closing Ratio	Adjusted Pressure Required (psig)
Annular BOP, 13"		10,000	1,500	26.50	-	1,500
*Rig has dedicated shear accumulators that will	supply shear and seal fu	nctions.				
Total Functional Volume Requirement (FVR _c)		26.50	gal	1		
Pressure Required		1,500	psig			
			_	-		
Environmental Conditions						
Atmospheric Pressure	14.7	psia				
Surface Temperature at Precharge	90	۴				
Temperature Range (+/-)	30	۴	J			
			-			
Accumulators	A.D.	1	-	Input	Rig specific data	
Precharge Gas	Nitrögen	!-	-	Caladatad	Calculated from table date	
Accumulator RWP Duran Stee Breesure (Method B., 1009()	3,000	psig	4	Calculated	Calculated from table data	
Pump Stop Pressure (Method B - 100%)	3,000	psig	4	NIST	Data from NIST reference progr	am
Pump Start Pressure (Method C - 90%)	2,700	psig	4			

1. Calculate accumulator conditions at charged state

Use NIST fluid property references to determine gas density and entropy based upon gas temperature and absolute pre ne. Charged Accumulator Pressure (psia) = Surface Supply Pressure + Atmospheric Pressure = 3000 + 14.7 = 3014.7

Condition 1 - Charged Accumulator Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ ₁	Entropy S ₁
Charged Condition - High Temp (Method B)	3,000	3,015	120	12.623	
Charged Condition - Normal (Method B)	3,000	3,015	90	13.429	
Charged Condition - Low Temp (Method B)	3,000	3,015	60	14.365	
Charged Condition - High Temp (Method C)	2,700	2,715	120	11.518	1.2614603
Charged Condition - Normal (Method C)	2,700	2,715	90	12.259	1.2453902
Charged Condition - Low Temp (Method C)	2,700	2,715	60	13.122	1.2279664

1.515

2. Calculate minimum operating pressures

Calculate the minimum operating pressure (psia)for each case. Minimum Operating Pressure (psia) = Pressure Required + Atm pheric Pressure = 1610.6 + 14.7 = 1625.3 Minimum Operating Pressure Required Calculate MOPs Pressure (psia) 1,625 (psig) Minimum Operating Pressure - (Method B)

Minimum Operating Pressure - (Method C) 3. Calculate minimum operating densities

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 temperature (for Method B) or Condition 1 entropy (for Method C).

1,50

Condition 2 - MOP Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_2
Minimum Operating Density - High Temp (Method B)	1,611	1,625	120	7.166
Minimum Operating Density - Normal (Method B)	1,611	1,625	90	7.623
Minimum Operating Density - Low Temp (Method B)	1,611	1,625	60	8.155
Minimum Operating Density - High Temp (Method C)	1,500	1,515	29	8.229
Minimum Operating Density - Normal (Method C)	1,500	1,515	4	8.815
Minimum Operating Density - Low Temp (Method C)	1,500	1,515	-22	9.509

4. Calculate optimum precharge density

Optimum precharge density - Method B: ρ₀ = 1.0/(1.4/ρ_{2BL} - 1.4/ρ_{1BL +} 1.0/ρ_{1BH})

- Method C: p _ = 1.0/(1.0/p _ 2CL - 1.0/p _ 1CL + 1.0/p _ 1CH)

- See Annex C for Derivation

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge Density (lbm/ft ³)	Temperature (°F)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)
Optimum Precharge Pressure - (Method B)	6.517	90	1,367	1,382
Optimum Precharge Pressure - (Method C)	8.637	90	1,838	1,853

Calculate the overall optimum precharge that satisfies requirements for both Method B and Method C. See Annex C for explanation.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)
Overall Optimum Precharge Pressure	6.517	90	1,367	1,382

5. Determine precharge density Actual precharge pressure can vary from optimal precharge pressure for reasons such as: - maintaining precharge pressure below the maximum rated working pressure - maintaining precharge pressure above 25% of system working pressure - permitting a range of precharge pressures during operations - following manufacturer's recommendations. Surface precharge pressure should equal Optimum Precharge Pressure unless the v is the volume of the accumulator supports a range of precharges

Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°F)	Density (lbm/ft ³)			
Selected Precharge Pressure at Precharge Temperature		1,367	1,382	90	6.516			
Selected Precharge Pressure at Minimum Temperature		1,276	1,291	60	6.516			
Selected Precharge Pressure at Maximum Temperature		1,457	1,472	120	6.516			
Precharge Verification								
Accumulator Precharge Pressure at Minimum Temperature	Precharge pressure (1291 psia) is greater than 25% of charged accumulator pressure (754 psia).							
Accumulator Precharge Pressure at Maximum Temperature	Precharge pressure (1457 psig) is less than accumulator rated working pressure (3000 psig).							

6. Determine volumetric efficiencies

Condition Summary	Temperature (°F)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Density (lbm/ft ³)	
Condition 0: Precharged Accumulators	90	1,367	1,382	6.516	
Condition 1: Charged accumulators @ 3000 psi	90	3,000	3,015	13.429	
Condition 1: Charged accumulators @ 2700 psi	90	2,700	2,715	12.259	
Condition 2: Minimum Operating Pressure - (Method B)	90	1,611	1,625	7.623	
Condition 2: Minimum Operating Pressure - (Method C)	4	1,500	1,515	8.815	
Method B Volumetric Efficiencies			Method C Volumetric Effic	iencies	
Pressure Limited VE _{PL} = (ρ ₀ /ρ _{28L} - ρ ₀ /ρ _{18L})/1.0	0.345		Pressure Limited VE _{PL} = (p ₀ /	P _{2CL} - P ₀ /P _{1CL})/1.1	0.172
Volume Limited VE _{vH} = (1.0-ρ ₀ /ρ _{18H})/1.4	0.346		Volume Limited VE _{VH} = (1.0-	ρ ₀ /ρ _{10H})/1.1	0.395
Volumetric Efficiency VE ₈ = min(VE _{PL} , VE _{VH})	0.345		Volumetric Efficiency VEc= r	nin(VE _{PL} , VE _{VH})	0.172
Accumulator Volume Required (gal) ACR ₈ = FVR ₈ /VE ₈	247.7		Accumulator Volume Requir	ed (gal) ACR _c = FVR _c /VE _c	154.5
Minimum Accumulator Volume Required (gal) = $max(ACH_B,ACH_C)$	247.7	l			

Figure D.2: The content shall be replaced with the following:

Table D.6: The content has been updated to change text from "200 % of volume to open and close all BOPs (FVR)" to "200 % of volume to close all BOPs (FVR)", and shall be replaced with the following:

Example 3: Surface Stack - Pilot System Accumulator Sizing

Pilot Accumulator								
This worksheet details the sizing calculations for	r the Pilot Accumulator u	utilizing API 16D 3rd. E	dition calculations.					
Operator Function(s)		Valve Size (in.)	Pilot Open Volume (gal)	Pilot Close Volume (gal)	Pilot Pressure Required by Control Valve (psig)			
Annular BOP, 13"		1.5	0.006	0.008	1,500			
Blind Shear Ram, 13"		1.0	0.003	0.003	1,500			
Upper Pipe Ram, 13"		1.0	0.003	0.003	1,500			
Middle Pipe Ram, 13"		1.0	0.003	0.003	1,500			
Lower Pipe Ram, 13"		1.0	0.003	0.003	1,500			
				_				
Volume to close all BOPs		0.0180	gal		Minimum pilot pressure			
200% of volume to close all BOPs (FVR)		0.0360			Required by Hydraulically			
Pressure Required		1,500	psig		Piloted Regulator (psig)			
				_	1,500			
Environmental Conditions								
Atmospheric Pressure	14.7	psia						
Surface Temperature at Precharge	90	۴F						
Temperature Range (+/-)	30	۴F						
			_		_			
Accumulators				Input	Rig specific data			
Precharge Gas	Nitrogen			Transfer	Transferred within worksheet			
Accumulator RWP	3,000	psig]	Calculated	Calculated from table data			
Regulated Supply Pressure	3.000	psig	-	NIST	Data from NIST reference prog			

1. Calculate accumulator conditions at charged state

Use NIST fluid property references to determine gas density based upon gas temperature and absolute pressure.

Charded Accumulator Pressure (bsia) – Redulated Subbiv Pressure + Abnospheric Pressure - 3000 + 14,7 - 3014,7								
Condition 1 - Charged Accumulator Density	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_1				
Charged Condition - High Temp	3,000	3,015	120	12.623				
Charged Condition - Normal	3,000	3,015	90	13.429				
Charged Condition - Low Temp	3,000	3,015	60	14.365				

2. Calculate minimum operating pressure

Calculate the minimum operating pressure (psia)

Minimum Operating Pressure (psia) = Pressure Required + Atmospheric Pressure = 1500 + 14.7 = 1514.7						
Calculate MOP	Pressure Required	Minimum Operating				
Calculate Info	(psig)	Pressure (psia)				
Minimum Operating Pressure	1,500	1,515				

Calculate minimum operating density Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 temperature

Condition 2 - MOP Density	Accumulator Pressure (psig)	Accumulator Pressure (psia)	l emperature (°F)	Density (lbm/ft ³) ρ ₂
Minimum Operating Density - High Temp	1,500	1,515	120	6.698
Minimum Operating Density - Normal	1,500	1,515	90	7.123
Minimum Operating Density - Low Temp	1,500	1,515	60	7.618

4. Calculate optimum precharge density

Optimum precharge density - $\rho_0 = 1.0/(1.4/\rho_{2L} - 1.4/\rho_{1L} + 1.0/\rho_{1H})$ - See Annex C for derivation

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (Ibm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)
Optimum Precharge Pressure	6.041	90	1,264	1,278

- 5. Determine precharge density Actual precharge pressure can vary from optimal precharge pressure for reasons such as: maintaining precharge pressure below the maximum rated working pressure maintaining precharge pressure above 25% of system working pressure permitting a range of precharge pressures during operations following manufacturer's recommendations. Surface precharge pressure should equal Optimum Precharge Pressure unless the v

Surface precharge pressure should equal Optimum Precharge Pressure unless the volume of the accumulator supports a range of precharges								
Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°E)	Density (lbm/ft ³)			
Selected Precharge Pressure at Precharge Temperature	r rednarge (psig)	1,264	1,278	90	6.041			
Selected Precharge Pressure at Minimum Temperature		1,181	1,195	60	6.041			
Selected Precharge Pressure at Maximum Temperature		1,346	1,361	120	6.041			

rae Verifi

Accumulator Precharge Pressure at Minimum Temperature Accumulator Precharge Pressure at Maximum Temperature (754 p ure (3000 re (1346 n

Condition Summary	Temperature (°F)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Density (lbm/ft ³)
Condition 0: Precharged Accumulators	90	1,264	1,278	6.041
Condition 1: Charged accumulators	90	3,000	3,015	13.429
Condition 2: Minimum Operating Pressure	90	1,500	1,515	7.123
		_		
Pressure Limited VE _{PL} = (ρ ₀ /ρ _{2L} - ρ ₀ /ρ _{1L})/1.0	0.372			
Volume Limited VE _{VH} = (1.0-p ₀ /p _{1H})/1.4	0.372			
Volumetric Efficiency VE = min(VE _{PL} , VE _{VH})	0.372			
Minimum Accumulator Volume Required (gal) ACR = FVR/VE	0.097			

Figure D.3: The content shall be replaced with the following:

Table D.8: The content has been updated to correct over-writing text, and shall be replaced with the following:

Example 5: Surface Stack - Diverter Accumulator Sizing

Diverter Accumulator									
This worksheet details the sizing calculations for	This worksheet details the sizing calculations for the Diverter Accumulator utilizing API 16D 3rd. Edition calculations.								
Operator Function(s)		Rated Working Pressure (psig)	Pressure Required (psig)	Function Volume (gal)					
Divert Mode Functional Sequence		1,500	1,500	11.00					
Diverter		500	1,500	25.00					
Sequence		00.00							
Total Functional Volume Requirement (FVR)		36.00							
Pressure Required		1,500							
Environmental Conditions			1						
Atmospheric Pressure	14.7	nsia							
Surface Temperature at Precharge	90	951a 9F							
Temperature Range (+/-)	30	۰F							
remperature range (17)	30								
Accumulators				Input	Rig specific data				
Precharge Gas	Nitrogen			Transfer	Transferred within worksheet				
Accumulator RWP	3,000	psig		Calculated	Calculated from table data				
Pump Stop Pressure (100%)	3,000	psig		NIST	Data from NIST reference program				

1. Calculate accumulator conditions at charged state

Use NIST fluid property references to determine gas density and entropy based upon gas temperature and absolute pressure. Charged Accumulator Pressure (nsia)= Surface Supply Pressure + Atmospheric Pressure = 3000 + 14.7 = 3014.7

charged Accumulator Tressure (psia) - surface supply Tressure - Autospherio Tressure - solo - 14.7 - sol4.1							
Condition 1 - Charged Accumulator Density	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ⁸) ρ_1	Entropy S ₁		
Charged Condition - High Temp	3,000	3,015	120	12.623	1.2523076		
Charged Condition - Normal	3,000	3,015	90	13.429	1.2360478		
Charged Condition - Low Temp	3,000	3,015	60	14.365	1.2184071		

2. Calculate minimum operating pressure(s)

Calculate the minimum operating pressures for each step within the sequence and adjust for hydrostatic effects.

Minimum Operating Pressure (psia) = Pressure Required + Atmospheric Pressure = 1500 + 14.7 = 1514.7						
Calculate MOP(s)	Pressure Required (psig)	Minimum Operating Pressure (psia)				
Minimum Operating Pressure	1,500	1,515				

3. Calculate minimum operating density(s)

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 entropy.

Condition 2 - MOP Density(s)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Entropy S ₂	Density (lbm/ft ⁸) ρ_2	Temperature (°F)
Minimum Operating Density - High Temp	1,500	1,515	1.2523076	8.557	14
Minimum Operating Density - Normal	1,500	1,515	1.2360478	9.179	-10
Minimum Operating Density - Low Temp	1,500	1,515	1.2184071	9.919	-34

4. Calculate optimum precharge density

Optimum precharge density

- p0 = 1.0/(1.0/p 2L - 1.0/p 1L + 1.0/p 1H)

See Annex C for derivation

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)
Optimum Precharge Pressure - Sequence 1	9.056	90	1,934	1,948

5. Determine precharge density

Actual precharge pressure can vary from optimal precharge pressure for reasons such as: - maintaining precharge pressure below the maximum rated working pressure

maintaining precharge pressure above 25% of system working pressure
 permitting a range of precharge pressures during operations
 following manufacturer's recommendations.

Surface precharge pressure should equal Optimum Precharge Pressure unless the volume of the accumulator supports a range of precharge

Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) Po
Selected Precharge Pressure at Precharge Temperature		1,934	1,948	90	9.056
Selected Precharge Pressure at Minimum Temperature		1,798	1,813	60	9.056
Selected Precharge Pressure at Maximum Temperature		2.068	2.083	120	9.056

Precharge Verification

Greater than 25% of Accumulator Charged Pressure	Precharge pressure (1948 psia) is greater than 25% of charged accumulator pressure (754 psia).					
Accumulator Precharge Pressure at Maximum Temperature	Precharge pressure (2068 psig) is less than accumulator rated working pressure (3000 psig).					
6. Determine volumetric efficiencies					_	
Condition Summary	Temperature (°F)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Density (lbm/ft ³)		
Condition 0: Precharged Accumulators	90	1,934	1,948	9.056		
Condition 1: Charged accumulators	90	3,000	3,015	13.429		

Condition 2: Minimum Operating Pressure	-10
Pressure Limited VE _{PL} = (ρ ₀ /ρ _{2L} - ρ ₀ /ρ _{1L})/1.1	0.257
Volume Limited VE _{VH} = (1.0-p ₀ /p _{1H})/1.1	0.257
Volumetric Efficiency VE = min(VE _P , VE _v)	0.257

Minimum Accumulator Volume Required (gal) ACR = FVR/VE 140.1

Figure D.5: The content shall be replaced with the following:

Table D.9: The content has been updated to remove the pipe ram from the well control sequence, and shall be replaced with the following:

Example 6: BOP Stack Configuration and Parameters for Offshore Surface Stack

The following example sizes accumulators for a surface BOP. The main accumulators will be sized. This example will take a 30°F temperature range into consideration. Rig does not have dedicated shear accumulators.

Stack		Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Opening Volume (gal)	Closing F	g/Shearing Ratio
Annular BOP, 13"		10,000	1,500	26.50	24.30		-
Blind Shear Ram, 13"		10,000	1,600 520	21.50	16.00	18.20 6.20	Shearing Sealing
Upper Pipe Ram, 13"		10,000	750	12.30	10.80		7.65
Middle Pipe Ram, 13"		10,000	750	12.30	10.80		7.65
Lower Pipe Ram, 13"		10,000	750	12.30	10.80		7.65
Choke & Kill Valve		10,000	780	0.65	0.65		-
System Parame	eters						
System Pressure	3,000	psig					
Environmental Co	nditions						
Surface Temperature at Precharge	90	۴F					
Temperature Range (+/- °F)	30	۴F					
Minimum Surface Temperature	60	۴F					
Maximum Surface Temperature	120	۰E					

Atmospheric Pressure Relevant References

Pump System

- Primary pump start at 90% of system RWP - Primary pump stop between 98%-100% of system RWP

14.7

Ex. 6 Main Accumulator System

- Example rig does not use dedicated shear accumulators for high pressure shear ram closure

psia

Drawdown Test

- Close all rams, open valve, close annular
 - Use pump stop pressure
 - Method B

Well Control Sequence

- Close annular and blind shear ram
 - Use pump start pressure
 - Method C

Example 6: Surface Stack - Main Accumulator Sizing

Main Accumulator								
his worksheet details the sizing calculations for the Main Accumulator utilizing API 16D 3rd. Edition calculations.								
Operator Function(s) - Accumulator Drawdown (Method B)	Rated Working Pressure (psia)	Opening Volume (gal)	Closing Volume (gal)	Closing Ratio*	Pressure to Close Against RWP (psig)			
Annular BOP, 13"	10,000	24.30	26.50		1,500			
Blind Shear Ram, 13"	10,000	16.00	21.50	6.20	1,611			
Upper Pipe Ram, 13"	10,000	10.80	12.30	7.65	1,305			
Middle Pipe Ram, 13"	10,000	10.80	12.30	7.65	1,305			
Lower Pipe Ram, 13"	10,000	10.80	12.30	7.65	1,305			
Choke & Kill Valve	10,000	0.65	0.65		780			
Pressure Required (psig) to Close against Rated Working Pressure	= Rated Working Pres	ure / Closing Ratio = 10000	1/62=16106					

Total Functional Volume Requirement (FVR _B)	85.55	gal				
Pressure Required	1,611	psig				
¹ Use the sealing ratio for the drawdown test calculations when a shear ram has a different closing ratio for shearing and sealing						

ose are scaling late for the orthogonal rest calebrations when a shear and and shearing and scaling.								
Operator Function(s) - Well Control Sequence (Method C)	Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)		Pressure Required / MOPFLPS (psig)		Closing Volume (gal)	Closing or Shearing Ratio	Adjusted Pressure Required (psig)
Annular BOP, 13"	10,000	1,500		26.50		1,500		
Blind Shear Ram, 13"	10,000	1,600	Shear	21.60	18.20	2,149		
		520	MOPFLPS	21.50	6.20	2,131		

Pressure Required (psig) to Shear with Blind Shear Ram = Shear Pressure + Rated Working Pressure/Shearing Ratio = 1600 + 10000 / 18.2 = 2148.7 Minimum Pressure Required (osia) to Seal with Blind Shear Ram = MOPFLPS + Rated Working Pressure / Closing Ratio = 520 + 10000 / 6.2 = 2130.6

Total Functional Volume Requirement (FVR _c)		48.00	gal
Pressure Required		2,149	psig
Environmental Conditions			
Atmospheric Pressure	14.7	psia	
Surface Temperature at Precharge	90	٩F	
Temperature Range (+/-)	30	۴F	
Accumulators			
Precharge Gas	Nitrogen		
Accumulator RWP	3,000	psig	
Pump Stop Pressure (Method B - 100%)	3,000	psig	
Pump Start Pressure (Method C - 90%)	2,700	psig	

Input	Rig specific data
Transfer	Transferred within worksheet
Calculated	Calculated from table data
NIST	Data from NIST reference program

Calculate accumulator conditions at charged state Use NIST fluid property references to determine gas density and entropy based upon gas temperature and absolute pressure. Charged Accumulator Pressure (psia) = Surface Supply Pressure + Atmospheric Pressure = 3000 + 14.7 = 3014.7

Condition 1 - Charged Accumulator Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_1	Entropy S1			
Charged Condition - High Temp (Method B)	3,000	3,015	120	12.623				
Charged Condition - Normal (Method B)	3,000	3,015	90	13.429				
Charged Condition - Low Temp (Method B)	3,000	3,015	60	14.365				
Charged Condition - High Temp (Method C)	2,700	2,715	120	11.518	1.2614603			
Charged Condition - Normal (Method C)	2,700	2,715	90	12.259	1.2453902			
Charged Condition - Low Temp (Method C)	2,700	2,715	60	13.122	1.2279664			

2. Calculate minimum operating pressures

Calculate the minimum operating pressure (psia) for each case.

Minimum Operating Pressure (psia) = Pressure Required + Atmospheric Pressure = 1610.6 + 14.7 = 1626					
Calculate MOPs	Pressure Required (psig)	Minimum Operating Pressure (psia)			
Minimum Operating Pressure - (Method B)	1,611	1,625			
Minimum Operating Pressure - (Method C)	2 140	2 163			

3. Calculate minimum operating densities

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 temperature (for Method B) or Condition 1 entropy (for Method C).

Condition 2 - MOP Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_2
Minimum Operating Density - High Temp (Method B)	1,611	1,625	120	7.166
Minimum Operating Density - Normal (Method B)	1,611	1,625	90	7.623
Minimum Operating Density - Low Temp (Method B)	1,611	1,625	60	8.155
Minimum Operating Density - High Temp (Method C)	2,149	2,163	83	10.144
Minimum Operating Density - Normal (Method C)	2,149	2,163	55	10.826
Minimum Operating Density - Low Temp (Method C)	2,149	2,163	27	11.627

4. Calculate optimum precharge density

 $\begin{array}{l} \text{Optimum precharge density} \\ - \text{Method B: } \rho_0 = 1.0 (1.4/\rho_{2BL} - 1.4/\rho_{1BL} + 1.0/\rho_{1BH}) \\ - \text{Method C: } \rho_0 = 1.0 (1.0/\rho_{2CL} - 1.0/\rho_{1CL} + 1.0/\rho_{1CH}) \end{array}$

- See Annex C for Derivation

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
Condition b	Density (lbm/ft ³) (°F)		Pressure (psig)	Pressure (psia)
Optimum Precharge Pressure - Method B	6.517	90	1,367	1,382
Optimum Precharge Pressure - Method C	10.350	90	2,235	2,249

Calculate the overall optimum precharge that satisfies requirements for both Method B and Method C. See Annex C for explanation

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)
Overall Optimum Precharge Pressure	9.857	90	2,119	2,134

5. Determine precharge density

Actual precharge pressure can vary from optimal precharge pressure for reasons such as: - maintaining precharge pressure below the maximum rated working pressure

- maintaining precharge pressure above 25% of system working pressure

permitting a range of precharge pressures during operations
 following manufacturer's recommendations.

Surface precharge pressure should equal Optimum Precharge Pressure unless the volume of the accumulator supports a range of precharges

Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) Po
Selected Precharge Pressure at Precharge Temperature		2,119	2,134	90	9.857
Selected Precharge Pressure at Minimum Temperature		1,968	1,983	60	9.857
Selected Precharge Pressure at Maximum Temperature		2,269	2,284	120	9.857

Precharge Verification

Accumulator Precharge Pressure at Minimum Temperature Accumulator Precharge Pressure at Maximum Temperature sure (1 3 psia) is gre ure (3000 ps ed w

6.	Determine	volumetric	efficiencies

Condition Summary	Temperature (°F)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Density (lbm/ft ³)
Condition 0: Precharged Accumulators	90	2,119	2,134	9.857
Condition 1: Charged accumulators @ 3000 psi	90	3,000	3,015	13.429
Condition 1: Charged accumulators @ 2700 psi	90	2,700	2,715	12.259
Condition 2: Minimum Operating Pressure - (Method B)	90	1,611	1,625	7.623
Condition 2: Minimum Operating Pressure - (Method C)	55	2,149	2,163	10.826
Method B Volumetric Efficiencies			Met	hod C Volumetric Efficiencies

Volume Limited VE _{VH} = (1.0-p ₀ /p _{1BH})/1.4 Volumetric Efficiency VE ₋ = min(VE ₋ VE ₋)	0.157
Volumetric Efficiency VE_ = min(VE_ VE_)	
volumence Enciency veg = min(vept, veva)	0.157
Accumulator Volume Required (gal) ACR _B = FVR _B /VE _B	546.6

Method C Volumetric Efficiencies				
Pressure Limited VE _{PL} = (p ₀ /p _{2CL} - p ₀ /p _{1CL})/1.1	0.088			
Volume Limited VE _{VH} = (1.0-p ₀ /p _{1CH})/1.1	0.131			
Volumetric Efficiency VE _C = min(VE _{PL} , VE _{VH})	0.088			
Accumulator Volume Required (gal) ACR _C = FVR _C /VE _C	546.6			

Minimum Accumulator Volume Required (gal) = max(ACR_B,ACR_C) 546.6

Figure D.6: The content shall be replaced with the following:

Table D.10: The content shall be replaced with the following:

Example 7, 8, 9, 10 & 11: BOP Stack Configuration for Subsea BOP Stack

The following examples size accumulators for a subsea MUX BOP. The main surface, pod pilot, deadman/autoshear, acoustic and diverter accumulators will be sized.

Sta	ack	Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Opening Volume (gal)	Closing/SI	nearing Ratio
Upper Annular BO	P, 18-3/4"	10,000	1,500	85.30	64.80		-
Lower Annular BO	P, 18-3/4"	10,000	1,500	85.30	64.80		-
Upper Blind Shear	Ram, 18-3/4"	15,000	1,710	40.30	35.00	15.24 6.40	Shearing Sealing
Casing Shear Ram	n, 18-3/4"	15,000	2,035	40.30	35.00	1	5.24
Lower Blind Shear	Ram, 18-3/4"	15,000	1,710	40.30	35.00	15.24	Shearing
Upper Pipe Ram 1	18-3/4"	15.000	750	20.75	17 30	0.40	7 20
Middle Pipe Ram	18-3/4"	15,000	750	20.75	17.30		7.20
Lower Pipe Ram 1	18-3/4"	15,000	750	20.75	17.30		7.20
zonor i portani,		10,000	100	20.10	Pod Pilot	Sustem Volu	ime te nilet ell
Pod Pilot Syste	em - Volume to pil	ot EDS with Largest	Volume Demand		BC	OPs closed an	d open
OTY	c c	Size	Total Volume	1	OTV	Sizo	Total Volume
Q11		5126	(gal)		QIT	Size	(gal)
1	1.5	'SPM	0.0059		1	1.5" SPM	0.0119
1	1.0	'SPM	0.0026		1	1.0" SPM	0.0052
1	0.5	'SPM	0.0016		1	0.5" SPM	0.0000
Total		0.0102			Total	0.0171	
		200%	0.0204			200%	0.0342
Acoustic Functions			Volume (gal)]			
Upper Blind Shear Ram*			40.30				
Casing Shear Ram	า*		40.30		*Volume to open	ate UBSR and	I CSR not
Upper Pipe Ram		20.75		included in sizing	g of acoustic a	ccumulators.	
Middle Pipe Ram			20.75		Volume for shea	r rams will be	shared with the
All Stabs Retract			5.00		deadman/autosh	ear accumula	tors.
Riser Connector P	rimary + Seconda	ryUnlatch	25.00				
		Total	152.10				
		Total*	71.50				
	System	Parameters					
System Pressure		5,000	psig				
Regulated Supply	Pressure	3,000	psig				
Riser Air Gap		75	ft				
Control Fluid Air G	ар	75	ft				
Control Fluid Weig	ht	8.34	ppg		> 5,463	psia	
Sea Water Weight		8.54	ppg		> 5,560	psia	
Water Depth		12,500	ft				
Environmental Conditions			1			Diverter Sys	tem
Surface Temperate	ure at Precharge	90	۴F		Function	pressure (psig)	Volume (gal)
Maximum Surface	Temperature	120	°F	1	Sequence	1,500	11.00
Subsea Operating	Temperature	35	۴F	1	Diverter	2,000	25.00
Atmospheric Press	sure	14.7	psia]		Total	36.00

Relevant References

Pump System

- Primary pump start at 90% of system RWP
- Primary pump stop between 98%-100% of system RWP
- Ex. 7 Main Accumulator System
 - Example rig uses dedicated shear accumulators for high pressure shear ram closure

Drawdown Test

- Close and open largest annular and 4 smallest ram BOPs
- Use pump stop pressure
- Method B
- Well Control Sequence.
- Close annular and pipe ram
- Use pump start pressure
- Method C
- *Volume for shear rams provided by dedicated shear accumulators

Ex. 8 Pod Pilot Accumulators

- 200% of volume to close and open all BOPs (Method B)
- 200% of volume to operate most demanding EDS sequence. (Method C)
- Minimum Pressure Required to pilot control valve: 1,500 psig
- Minimum Pressure Required by hydraulically piloted regulators: 1,500 psig

Ex. 9 DMAS Accumulators

- Example rig's emergency accumulators are supplied by the main accumulator system and are checked in, therefore, pump stop pressure is used

Method C

Ex. 10 Acoustic Accumulators

- Shear and seal function (casing shear ram and blind shear ram) volume shared with DMAS accumulators
- Example rig's acoustic accumulators are supplied by the main accumulator system and are checked in, therefore, pump stop pressure is used
- Acoustic EDS not utilized by example rig.
- Method B

Ex. 11 Diverter Accumulators

- Example rig's diverter accumulators are supplied by the main accumulator system and are checked in, therefore, pump stop pressure is used

- Method C

Table D.11: The content shall be replaced with the following:

Example 7: Subsea Stack - Main Accumulator Sizing

Main Accumulator						
This worksheet details the sizing calculations for the Main Accumulator ut	ilizing API 16D 3rd. Editio	on calculations.				
Operator Function(s) - Accumulator Drawdown (Method B)	Rated Working Pressure (psig)*	Opening Volume (gal)	Closing Volume (gal)	Closing Ratio**	Pressure to Close Against RWP (psig)	
Upper Annular BOP, 18-3/4"	10,000	64.80	85.30		1,500	
Upper Blind Shear Ram, 18-3/4"	15,000	35.00	40.30	6.40	2,344	
Upper Pipe Ram, 18-3/4"	15,000	17.30	20.75	7.20	2,083	
Middle Pipe Ram, 18-3/4"	15,000	17.30	20.75	7.20	2,083	
Lower Pipe Ram, 18-3/4"	15,000	17.30	20.75	7.20	2,083	

Pressure Required (psig) to Close Blind Shear Ram against Rated Working Pressure = Rated Working Pressure / Closing Ratio = 15000 / 6.4 = 2343.8

<u></u>				
Total Functional Volume Requirement (FVR ₈)	339.55	gal		
Pressure Required	2,344	psig		
* Rated working pressure for the main accumulators on a subsea stack is taken as a gauge pressure. See annex section B4.				

**Use the sealing ratio for the drawdown test calculations when a shear ram has a different closing ratio for shearing and sealing.

-		_	-		
Operator Function(s) - Well Control Sequence (Method C)***	Rated Working Pressure (psig)*	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Closing Ratio	Adjusted Pressure Required (psig)
Upper Annular BOP, 18-3/4"	10,000	1,500	85.30		1,500
Middle Pipe Ram, 18-3/4"	15,000	750	20.75	7.20	2,833

Minimum Pressure Required (psig) to Seal with Pipe Ram = MOPFLPS + (Rated Working Pressure - Seawater Static Pressure) / Closing Ratio = 750 + (15000 - 5560) / 7.2 = 2833.4

***Volume for shear rams provided by dedicated emergency accumulators.

Total Functional Volume Requirement (FVR _c)	106.05	gal
Pressure Required	2,833	psig

Environmental Conditions		
Water Depth	12,500	ft
Control Fluid Air Gap	75	ft
Riser Air Gap	75	ft
Control Fluid Weight	8.34	ppg
Seawater Weight	8.54	ppg
Control Fluid Static Pressure	5,463	psia
Seawater Static Pressure	5,560	psia
Atmospheric Pressure	14.7	psia
Surface Temperature at Precharge	90	°F
Subsea Operating Temperature	35	°F
Maximum Surface Temperature	120	°F
Accumulators		
Precharge Gas	Nitrogen	
Accumulator RWP	5,000	psig
Pump Stop Pressure (Method B - 100%)	5,000	psig
Pump Start Pressure (Method C - 90%)	4,500	psig

Input	Rig specific data
Transfer	Transferred within worksheet
Calculated	Calculated from table data
NIST	Data from NIST reference program

1. Calculate accumulator conditions at charged state

Use NIST fluid property references to determine gas density and entropy based upon gas temperature and absolute pressure.

Charged Accumulator Pressure (psia) = Surface Supply Pressure + Atmospheric Pressure = 5000 + 14.7 = 5014.7								
Condition 1 - Charged Accumulator Density	Accumulator Pressure (psig) (psia)		Temperature (°F)	Density (lbm/ft ³) ρ_1	Entropy S ₁			
Charged Condition - (Method B)	5,000	5,015	90	20.001				
Charged Condition - (Method C)	4,500	4,515	90	18.547	1.1999016			

2. Calculate minimum operating pressures

Calculate the minimum operating pressures for each case and adjust for hydrostatic effects.

Minimum Operating Pressure (psia) = Surface Pressure Required + Seawater Hydrostatic Absolute Pressure = 2834 + 5560 = 8393.4

minimum operating (ressure (psig) - minimum operating (ressure (psig) - condor ridid read - 0554 - 5465 - 25564							
Calculate MOPs	Pressure Required (psig)***	Minimum Operating Pressure (psig)****	Minimum Operating Pressure (psia)****				
Minimum Operating Pressure - (Method B)	2,344	2,441	7,904				
Minimum Operating Pressure - (Method C)	2,833	2,930	8,393				
the Whon stock is on outfood							

****When stack is subsea

3. Calculate minimum operating densities

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 temperature (for Method B) or Condition 1 entropy (for Method C).

Condition 2 - MOP Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_2
Minimum Operating Density - (Method B)	2,441	2,455	90	11.209
Minimum Operating Density - (Method C)	2.930	2.945	28	15.249

4. Calculate optimum precharge density

Optimum precharge density - Method B: $\rho_0 = 1.0/(1.4/\rho_2 - 0.4/\rho_1)$

- Method C: $\rho_0 = \rho_2$

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (lbm/ft ²)	(*F)	Pressure (psig)	Pressure (psia)
Optimum Precharge Pressure - (Method B)	9.533	90	2,043	2,058
Optimum Precharge Pressure - (Method C)	15.249	90	3,494	3,509

Calculate the overall optimum precharge that satisfies requirements for both Method B and Method C. See Annex C for explanation.						
Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge		
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)		
Overall Optimum Precharge Pressure	10.255	90	2,212	2,227		

- 5. Determine precharge density Actual precharge pressure can vary from optimal precharge pressure for reasons such as: maintaining precharge pressure below the maximum rated working pressure maintaining precharge pressure above 25% of system working pressure permitting a range of precharge pressures during operations following manufacturer's recommendations. Surface precharge pressure about a caud Optimum Precharge Pressure unless the x

Surface precharge pressure should equal Optimum Precharge Pressure unless the volume of the accumulator supports a range of precharges

Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) Ρο		
Selected Precharge Pressure at Precharge Temperature		2,212	2,227	90	10.255		
Selected Precharge Pressure at Maximum Temperature		2,370	2,385	120	10.255		
Precharge Verification							
Greater than 25% of Accumulator Charged Pressure	Precharge pressure (2227 psia) is greater than 25% of charged accumulator pressure (1254 psia).						
Accumulator Precharge Pressure at Maximum Temperature	F	Precharge pressure (2370 ps	ig) is less than accumulator ra	ated working pressure (5000 psig).			

6. Determine volumetric efficiencies

Condition Summary	Temperature (°F)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Density (lbm/ft ³)	
Condition 0: Precharged Accumulators	90	2,212	2,227	10.255	
Condition 1: Charged accumulators @ 5000 psi	90	5,000	5,015	20.001	
Condition 1: Charged accumulators @ 4500 psi	90	4,500	4,515	18.547	
Condition 2: Minimum Operating Pressure (Method B)	90	2,441	2,455	11.209	
Condition 2: Minimum Operating Pressure (Method C)	28	2,930	2,945	15.249	
Method B Volumetric Efficiencies			Method C Volumetric Effici	encies	
Pressure Limited VE _P = $(\rho_0/\rho_{2B} - \rho_0/\rho_{1B})/1.0$	0.402	1	Pressure Limited VEp = (p0/p	2c - Ρ₀/Ρ₁c)/1.1	
		4			
Volume Limited VE _V = (1.0-ρ ₀ /ρ _{1B})/1.4	0.348		Volume Limited VE _V = (1.0-p	₀ /ρ _{1C})/1.1	
Volume Limited VE _V = (1.0-p ₀ /p _{1B})/1.4 Volumetric Efficiency VE _B = min(VE _P , VE _V)	0.348		Volume Limited VE _V = (1.0-p Volumetric Efficiency VE _C = r	₀ /p _{1C})/1.1 min(VE _P , VE _V)	

Figure D.7: The content shall be replaced with the following:

Table D.12: The content has been updated to incorporate regulator setting for MOPFLPS at RWP and shall be replaced with the following:

Example 8: Subsea Stack - Pilot System Accumulator Sizing

This worksheet details the sizing calculations for t Operator Function(s) - Open & Close all BOPs (M	he Pilot Accumulator utilizi	Pile ng API 16D 3rd. Edition o	ot Accumulator			
This worksheet details the sizing calculations for Operator Function(s) - Open & Close all BOPs (M	he Pilot Accumulator utilizi	ng API 16D 3rd. Edition of	alculations			
Operator Function(s) - Open & Close all BOPs (M	athead D)	2	alculations.			
	eulou B)	Valve Size (in.)	Pilot Open Volume (gal)	Pilot Close Volume (gal)	Pilot Pressure Required by Control Valve (psig)	
Upper Annular BOP, 18-3/4"		1.5	0.006	0.006	1.500	
Lower Annular BOP, 18-3/4"		15	0.006	0.006	1.500	
Upper Blind Shear Ram, 18-3/4"		1.0	0.003	0.003	1.500	
Casing Shear Ram, 18-3/4"		1.0	0.003	0.003	1 500	
Lower Blind Shear Ram, 18-3/4"		1.0	0.003	0.003	1 500	
Upper Pipe Ram, 18-3/4"		1.0	0.003	0.003	1.500	
Middle Pipe Ram, 18-3/4"		1.0	0.003	0.003	1 500	
Lower Pipe Ram, 18-3/4"		1.0	0.003	0.003	1,500	
Volume to open and close all BOPs		0.060	gal	I		
200% of volume to open and close all BOPs (FVF	в)	0.120	gal			
Pressure Required		1,500	psig	1		
				ŧ.		
Operator Function(s) - Emergency Disconnect Se	quence (Method C)	Valve Size (in.)	Pilot Volume Required (gal)	Pilot Pressure Required by Control Valve (psig)		Minimum pilot pressure Required by Hydraulically Piloted Regulator (psig)
DMAS system Arm		0.5	0.002	1,500	J	1,500
Casing Shear Ram Close		1.0	0.003	1,500]	
Choke & Kill Stabs Retract		0.5	0.002	1,500		
Wetmate Connector Retract		0.5	0.002	1,500		
Acoustic Stabs Retract		0.5	0.002	1,500		
Blind Shear Rams Close		1.0	0.003	1,500		
Riser Connector Unlock - Primary		1.0	0.003	1,500		
Riser Connector Unlock - Secondary		1.0	0.003	1,500	ļ	
Volume to pilot largest demand EDS		0.020	gal	I		
200% of volume to pilot largest demand EDS (FV	₹ _c)	0.040	gal			
Pressure Required		1,500	psig	l		
Environmental Conditions			l			
Water Depth	12.500	ft				
Control Eluid Air Gan	75	ft ft				
Riser Air Gan	75	e				
Control Eluid Weight	8.34	000				
Segwater Weight	9.54	ppg				
Control Fluid Static Pressure	5.483	PP9 psia				
Segurator Static Processor	5,405	psia				
Atmospheria Prossure	14.7	psia				
Surface Temperature at Presharra	14.7	psia ∘⊏				
Subses Operating Temperature	25	•=				
Maximum Surface Temperature	120	۴				
Accumulators				Input	Rig specific data	
Precharge Gas	Nitrogen			Transfer	Transferred within worksheet	
Accumulator RWP	7 500	nsia		Calculated	Calculated from table data	-
Subsea Regulated?	Ves	haið.		NIST	Data from NIST reference on	ogram
Regulated Supply Pressure	2 000	ncia		NIST	beite non more reference pr	ogram
1. Calculate accumulator conditions at charg Use NIST fluid property references to determine Charged Accumulator Pressure (psia) = Regu Charged Accumulator Pressure (psig) = Char	ed state jas density and entropy ba ated Supply Pressure + 1 jed Accumulator Pressur	sed upon gas temperatu Seawater Head = 3000 + 'e (psia) - Seawater Hea	re and absolute pressure. - <u>5560 = 8560</u> d = 8560 - <u>5560 = 3000</u>			
Condition 1 - Charged Accumulator Density		Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_1	Entropy S1

Charged Condition - (Method B) Charged Condition - (Method C)

2. Calculate minimum operating pressures Calculate the minimum operating pressures for each case and adjust for hydrostatic effects.

Minimum Operating Pressure (psia) = Pressure Required + Seawater Hy	drostatic Absolute Pre	ssure = 1500 + 5560 = 7060
Calculate MOPs	Pressure Required (psig)	Minimum Operating Pressure (psia)
Minimum Operating Pressure - (Method B)	1,500	7,060
Minimum Operating Pressure - (Method C)	1,500	7,060

3. Calculate minimum operating densities

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 temperature (for Method B) or Condition 1 entropy (for Method C).

Condition 2 - MOP Densities	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft ³) ρ_2	Entropy S ₂
Minimum Operating Density - (Method B)	1,500	7,060	35	27.372	
Minimum Operating Density - (Method C)	1,500	7,060	12	28.541	1.1094044

4. Calculate optimum precharge density

Optimum precharge density - Method B: $\rho_0 = 1.0/(1.4/\rho_2 - 0.4/\rho_1)$ - Method C: $\rho_0 = \rho_2$

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge Density (lbm/ft ³)	Temperature (°F)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)
Optimum Precharge Pressure - (Method B)	26.399	90	7,804	7,819
Optimum Precharge Pressure - (Method C)	28.541	90	9,044	9,059

Calculate the overall optimum precharge that satisfies requirements for both Method B and Method C. See Annex C for explanation.							
Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge			
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)			
Overall Optimum Precharge Pressure	26.399	90	7,804	7,819			

5. Determine precharge density

Determine precharge density
 Actual precharge pressure can vary from optimal precharge pressure for reasons such as:

 maintaining precharge pressure below the maximum rated working pressure
 maintaining precharge pressure above 25% of system working pressure
 permitting a range of precharge pressure during operations
 following manufacturer's recommendations.

Surface precharge pressure should equal Optin um Precharge Pressure unless the volume of the accumulator supports a range of precharges

Precharge Gas Properties	User-Selected	Accumulator Pre-Charge	Accumulator Pre-Charge	Temperature	Density (lbm/ft ³)	
	Precharge (psig)	Pressure (psig)	Pressure (psia)	(°F)	Po	
Selected Precharge Pressure at Precharge Temperature	6900	6,900	6,915	90	24.609	
Selected Precharge Pressure at Operating Temperature		284	5,844	35	24.609	
Selected Precharge Pressure at Maximum Temperature		7,478	7,493	120	24.609	
NOTE: The optimum precharge exceeds the accumulator RWP at maximum	temperature. Therefore	a lower precharge has been	selected.			

Precharge Verification

Accumulator Precharge Pressure at Minimum Temperature	Precharge pressure (5844 psia) is greater than 25% of charged accumulator pressure (2140 psia).
Accumulator Precharge Pressure at Maximum Temperature	Precharge pressure (7478 psig) is less than accumulator rated working pressure (7500 psig).

6. Determine volumetric efficiencies

Use the NIST fluid property references to dete mine accumulator absolute pressure using the Condition 0 density and Condition 1 entropy or temperature

ondition 3	Density (lbm/ft ³)	Entropy	Accumulator Pressure	Accumulator Pressure	Temperature
Condition 5	ρ3	S3	(psig)	(psia)	(°F)
Total Discharge - (Method B)	24.609		284	5,844	35
Total Discharge - (Method C)	24.609	1.1094044	-1,219	4,341	-41
Use the NIST fluid property references to determine gas density using Cond	lition 1 entropy or temper	ature and the Seawater Head	l for accumulator pressure		
Condition 2	Density (lbm/ft ³)	Entropy	Accumulator Pressure	Accumulator Pressure Accumulator Pressure	
Condition 3	P3	S3	(psig)	(psia)	(°F)
Seawater Hydrostatic Limit - (Method B)	23.878		0	5,560	35
Seawater Hydrostatic Limit - (Method C)	26.590	1.1094044	0	5,560	-15
Candilian Summany	Temperature	Accumulator Pressure	Accumulator Pressure	Den 11 - (11 - 11 - 11 - 11 - 11 - 11 - 11	
condition ourmary	(°F)	(psig)	(psia)	Density (Ibm/ft)	
Condition 0: Precharged Accumulators	90	6,900	6,915	24.609	
Condition 1: Charged accumulators - (Method B)	35	3,000	8,560	30.148	
Condition 1: Charged accumulators - (Method C)	35	3,000	8,560	30.148	
Condition 2: Minimum Operating Pressure (Method B)	35	1,500	7,060	27.372	
Condition 2: Minimum Operating Pressure (Method C)	12	1,500	7,060	28.541	
Condition 3: Total Discharge - (Method B)	35	284	5,844	24.609	
Condition 3: Seawater Hydrostatic Limit - (Method C)	-15	0	5,560	26.590	
Method B Volumetric Efficiencies			Method C Volumetric Effic	encies	
Pressure Limited VE _P = $(\rho_0/\rho_{2B} - \rho_0/\rho_{1B})/1.0$	0.083	Pressure Limi	ited VE _P = (ρ ₀ /ρ _{2C} - ρ ₀ /ρ _{1C})/1.	1	0.042
Volume Limited VE _V = (1.0-p ₀ /p _{1B})/1.4	0.131	Volume Limite	ed VE _V = (1.0-p ₀ /p _{1C})/1.1		NR
Cond. 3 - Hydrostatic Limited VE _V = (p ₀ /p ₃₈ - p ₀₈ /p ₁₈)/1.4	NR	Cond. 3 - Hyd	frostatic Limited VE _V = (ρ ₀₀ /ρ	_{3C} - ρ ₀₀ /ρ _{1C})/1.1	0.099
Volumetric Efficiency VE _B = min(VE _P , VE _V)	0.083	Volumetric Ef	ficiency VE _C = min(VE _P , VE _V)	0.042
Minimum Accumulator Volume Required (gal) ACR _B = FVR _B /VE _B	1.449	Minimum Acc	umulator Volume Required (gal) ACR _c = FVR _o /VE _c	0.957
	_				
Overall Min. Accumulator Volume Required (gal) = max (ACR B, ACRC)	1.449				

Figure D.8: The content shall be replaced with the following:

Table D.16: The content shall be replaced with the following:

Example 12 & 13: BOP Stack Configuration for Special Purpose Accumulators

The following examples size accumulators for special purpose functions. The deadman/autoshear (with Depth Compensated Bottles) and choke & kill valve closure assist accumulators will be sized.

Stack	Rated Working Pressure (psia)	Pressure Required / MOPFLPS (psig)	Closing Volume (gal)	Opening Volume (gal)	Closing R	/Shearing atio
Upper Annular BOP, 18-3/4"	10,000	1,500	85.30	64.80		-
Lower Annular BOP, 18-3/4"	10,000	1,500	85.30	64.80		-
Upper Blind Shear Ram, 18-3/4"	15,000	1,710 520	40.30	35.00	15.24 6.40	Shearing Sealing
Casing Shear Ram, 18-3/4"	15,000	2,035	40.30	35.00	1	5.24
Lower Blind Shear Ram, 18-3/4"	15,000	1,710 520	40.30	35.00	15.24 6.40	Shearing Sealing
Upper Pipe Ram, 18-3/4"	15,000	750	20.75	17.30	7	.20
Middle Pipe Ram, 18-3/4"	15,000	750	20.75	17.30	7	.20
Lower Pipe Ram, 18-3/4"	15,000	750	20.75	17.30	7	.20
Choke & Kill Valve	15,000	780	0.65	0.65		-
System	Parameters		1			
System Pressure*	5,000	psig	1	*For Example 12		
Regulated Pressure**	3,000	psig		**For Example 13		
Riser Air Gap	75	ft				
Control Fluid Air Gap	75	ft				_
Control Fluid Weight	8.34	ppg		→ 5,463	psia]
Sea Water Weight	8.54	ppg		→ 5,561	psia	
Water Depth	12,500	ft				•
Environmental Conditions		1				
Surface Temperature at Precharge	90	°F]			
Maximum Surface Temperature	120	°F	1			
Subsea Operating Temperature	35	°F	1			

Relevant References

Atmospheric Pressure

Pump System

- Primary pump start at 90% of system RWP
- Primary pump stop between 98%-100% of system RWP

14.7

Ex. 12 DMAS Accumulators

- Example rig's emergency accumulators are supplied by the main accumulator system and are checked in, therefore,

psia

- pump stop pressure is used
- Method C

Ex. 13 Choke & Kill Closure Assist Accumulators

- Hydraulic charge pressure (regulated 3 KSI)
- Method C
- accumulator system to close all inner choke & kill valves (qty 6)

Table D.17: The content shall be updated to remove the term "Bladder" from "Depth Compensated Bladder Accumulator", and shall be replaced with the following:

Example 12: Special Purpose - Subsea Depth Compensated Accumulator Sizing

Depth Compensated Accumulator							
This worksheet details the sizing calculations for the	e Depth Compensated	Accumulator utilizing AP	I 16D 3rd. Edit	ion calculations	S.		
Operator Function(s) Sequence Rated Working Pressure (psia) Pressure Required (psig) Function Volume (gal) Closing or Shearing Ratio (psig) (psig)							
Casing Shear Ram, 18-3/4"	1	15,000	2,035	Shear	40.30	15.24	2,654
Timing Circuit	2	3,000 psig 1,500 1.00 - 1,500					
Upper Blind Shear Ram, 18-3/4"	2	15,000	1,710 520	Shear MOPFLPS	40.30	15.24 6.20	2,329 2,042
Pressure Required (nsig) to Shear with Casing 9	Shear Dam = Shear D	ressure + (Pated Worki	na Pressure	Seawater Sta	tic Pressure) / closing rati	$a = 2035 \pm (15000 - 5561) / 1$	5.24 = 2654.4

Pressure Required (psig) to Shear with Blind Shear Ram = Shear Pressure + (Rated Working Pressure - Seawater Static Pressure) / closing ratio = 1710 + (15000 - 5561) / 15.24 = 2329.4 Minimum Pressure Required (psig) to Seal with Blind Shear Ram = MOPFLPS + (Rated Working Pressure - Seawater Static Pressure) / closing ratio = 520 + (15000 - 5561) / 6.2 = 2042.5

Sequence	1	2	
Total Functional Volume Requirement (FVR)	40.30	41.30	gal
Pressure Required	2,654	2,329	psig

Environmental Conditions		
Water Depth	12,500	ft
Control Fluid Air Gap	75	ft
Riser Air Gap	75	ft
Control Fluid Weight	8.34	ppg
Seawater Weight	8.54	ppg
Control Fluid Static Pressure	5,463	psia
Seawater Static Pressure	5,561	psia
Atmospheric Pressure	14.7	psia
Surface Temperature at Precharge	90	۴F
Subsea Operating Temperature	35	۴F
Maximum Surface Temperature	120	°F

Accumulators					
Precharge Gas	Nitrogen				
Accumulator RWP	10,000	psig			
Area Ratio (AR)	1.1738				
Gas Volume (per accumulator)	158.3330	gal			
Hydraulic Volume (per accumulator)	20.6600	gal			
Quantity of accumulators	5				
Subsea Regulated	no				
Pump Start Pressure (100%)	5,000	psig			

Input	Rig specific data
Transfer	Transferred within worksheet
Calculated	Calculated from table data
NIST	Data from NIST reference program

1. Calculate accumulator conditions at charged state

Use NIST fluid property references to determine gas density and entropy based upon gas temperature and absolute pressure

Charged Hydraulic Accumulator Pressure (psia) = Surface Supply Pressure + Control Fluid Hydrostatic Absolute Pressure = 5000 + 5463 = 10463 Charged Hydraulic Accumulator Pressure (psig) = Charged Hydraulic Accumulator Pressure (psia) - Seawater Hydrostatic Absolute Pressure = 10463 - 5561 = 4902

(noie) = (Che d Hydr die Ae tor Head) / Area Datio - (40.462 EEGA) / 4 4720 ator Dro ator Dr 6.00 - 4476

charged das Accamatator (ressure (psia) - (charged riveradiie Accamatator (psia) - Scawater rived (ratio - (10405 - 5501) - 11150 - 41162						
Condition 1 - Charged Accumulator Density	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Temperature (°F)	Density (lbm/ft³) ρ ₁	Entropy S ₁	
Charged Condition - Gas	NR	4,176	35	19.717	1.1722480	
Charged Condition - Hydraulic	4 902	10.463	NR	NR	NR	

2. Calculate minimum operating pressure(s)

Calculate minimum operating pressures)
 Calculate the minimum operating pressures for each step within the sequence and adjust for hydrostatic effects.
 <u>Winimum Operating Pressure Insial = Pressure Required + Seawater Hydrostatic Absolute Pressure = 2655 + 5561 = 8215.4
 </u>

Minimum Operating Pressure (psia) = Pressure Required + Seawater	Hydrostatic Absolute F	ressure = 2055 + 5501 = 8215	
Coloulate MOD(a)	Pressure Required	Minimum Operating	
	(psig)	Pressure (psia)	
Minimum Operating Pressure - Sequence 1	2,654	8,215	
Minimum Operating Pressure - Sequence 2	2.329	7.890	

3. Calculate minimum operating density(s)

Use NIST fluid property references to determine gas density at MOP based upon absolute pressure and Condition 1 entropy.

Condition 2 - MOP Density(s)	Accumulator Pressure (psig)	Accumulator Pressure (psia)	Entropy S ₂	Density (lbm/ft ³) ρ_2	Temperature (°F)
Minimum Operating Density - Sequence 1 Gas	NR	2,261	1.1722480	15.007	-42
Minimum Operating Density - Sequence 1 Hydraulic	2,654	8,215	NR	NR	NR
Minimum Operating Density - Sequence 2 Gas	NR	1,984	1.1722480	14.076	-57
Minimum Operating Density - Sequence 2 Hydraulic	2.329	7,890	NR	NR	NR

4. Calculate optimum precharge density

Optimum precharge density $\rho_0 = \rho_2$

Use NIST fluid property references to determine gas absolute pressure based upon gas temperature and density.

Condition 0	Optimum Precharge Density (lbm/ft ³)	Temperature (°F)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	
Optimum Precharge Pressure - Sequence 1	15.007	90	3,426	3,441	
Optimum Precharge Pressure - Sequence 2	14.076	90	3,172	3,186	

te the optimum precharge that sat se use the optimum precharge for the single function. See Annex C for explanation of two function optimum precharge.

Condition 0	Optimum Precharge	Temperature	Accumulator Pre-Charge	Accumulator Pre-Charge
	Density (lbm/ft ³)	(°F)	Pressure (psig)	Pressure (psia)
Optimum Precharge Pressure	14.076	90	3,172	3,186

5. Determine precharge density Actual precharge pressure can vary from optimal precharge pressure for reasons such as:

- maintaining precharge pressure below the maximum rated working pressure
- preventing accumulator piston from stroking out.
 maintaining total discharge pressure above seawater hydrostatic pressure
- permitting a range of precharge pressures during operations - following manufacturer's recommendations.

NOTE: Depth Compensated accumulators are intended for use in deeper depths. If a system designed for deeper depth is used at shallower depths, calculations should be performed to verify they are sufficient for the application.

Surface precharge pressure should equal Optimum Precharge Pressure unless the volume of the accumulator supports a range of precharges

Precharge Gas Properties	User-Selected Precharge (psig)	Accumulator Pre-Charge Pressure (psig)	Accumulator Pre-Charge Pressure (psia)	Temperature (°F)	Density (lbm/ft⁵) Pn
Selected Precharge Pressure at Precharge Temperature		3,916	3,931	90	16.697
Selected Precharge Pressure at Maximum Temperature		4,226	4,241	120	16.697
Selected Precharge Pressure at Operating Temperature		3,346	3,360	35	16.697
Precharge Pressure at full stroke of piston*		3,916	3,931	90	16.697

* A check is done to ensure that piston does not reach the mechanical stop in the charged state. If it does, the pre-charge is adjusted to prevent this from occurring.

Precharge venilication	
Accumulator Precharge Pressure at Maximum Temperature	Precharge pressure (4226 psig) is less than accumulator rated working pressure (10000 psig).
Hydraulic Stroke Verification Check	Precharge pressure does not cause piston to reach full stroke.

Minimum Quantity of accumulators required

6. Determine volumetric efficiencies Use the NIST fluid property references to determine accumulator absolute pressure using the Condition 0 density and Condition 1 entropy

Condition 3	Density (lbm/ft°)	Entropy	Accumulator Pressure	Accumulator Pressure	Temperature
	ρ ₃	S3	(psig)	(psia)	(°F)
Total Discharge - Gas	16.697	1.1722480	NR	2,841	-15
Total Discharge - Hydraulic	NR	NR	3,335	8,896	NR
Condition Summary	Temperature	Accumulator Pressure	Accumulator Pressure	Density (Item (B)	1
	(°F)	(psig)	(psia)	Density (lbm/ft [*])	
Condition 0: Precharged Accumulators - Gas	90	NR	3,931	16.697	
Condition 0: Precharged Accumulators - Gas (Subsea)	35	NR	3,360	16.697	
Condition 1: Charged accumulators - Gas	35	NR	4,176	19.717	
Condition 1: Charged accumulators - Hydraulic	NR	4,902	10,463	NR	
Condition 2: Minimum Operating Pressure - Sequence 1 Gas	-42	NR	2,261	15.007	
Condition 2: Minimum Operating Pressure - Sequence 1 Hyd	NR	2,654	8,215	NR	
Condition 2: Minimum Operating Pressure - Sequence 2 Gas	-57	NR	1,984	14.076	
Condition 2: Minimum Operating Pressure - Sequence 2 Hyd	NR	2,329	7,890	NR	
Condition 3: Total Discharge - Gas	-15	NR	2,841	16.697	
Condition 3: Total Discharge - Hydraulic	NR	3,335	8,896	NR	
Sequence 1			5	Sequence 2	•
Pressure Limited VE _P = $(\rho_0/\rho_2 - \rho_0/\rho_1)/(1.1*AR) **$	0.206	Pressure Limi	Pressure Limited VEP = (p0/p2 - p0/p1)/(1.1*AR) **		
Volume Limited VE _V = (1.0-p ₀ /p ₁)/(1.1*AR) **	0.119	Volume Limited VEV= (1.0-ρ0/ρ1)/(1.1*AR) **			0.119
Volumetric Efficiency VE ₁ = min(VE _P , VE _V)	0.119	Volumetric Efficiency VE ₂ = min(VE _P , VE _V)			0.119
Gas Volume Required (gal) ACR ₁ = FVR ₁ /VE ₁	339.7	Gas Volume Required (gal) ACR ₂ = FVR ₂ /VE ₂			687.9
** The area ratio of the accumulator must be included in the efficiency of	alculation as shown.	•			•
Min. Assumption One Maker Description (and) assum (AOD AOD)		•			
Min. Accumulator Gas volume Required (dal) = max (ACR ₄ , ACR ₅)	687.9				

Figure D.12: The content shall be replaced with the following:

