# Exploring the Implications of Electricity Storage on Natural Gas Consumption Using NEMS-REStorePlus

Prepared for the American Petroleum Institute Prepared By OnLocation, Inc. July 23, 2018



# Objective

Analyze The Impact Of Grid Storage On Natural Gas Markets

(Volumes And Prices)

- Alternative Resource Base\*\*
  - Baseline
  - Low Resource
- Alternative Grid Storage Costs\*\*\*
  - Baseline
  - Low Cost

### Scenarios\*

|                                                      | Resource Levels                                                  |                                                                      |
|------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| Cost Levels                                          | OnLocation Baseline<br>( <i>Adjusted</i> EIA High Resource Case) | Low Resource Levels<br>( <i>Adjusted</i> EIA 2018 Low Resource Case) |
| Baseline Costs<br>(Reference Costs from Lazard 2017) | Base Cost                                                        | Low Resource - Base Cost<br>LR - Base                                |
| Lower Costs<br>(Interpolated from Lazard 2017)       | Low Cost                                                         | Low Resource - Low Cost<br>LR - Low Cost                             |

\* Base Cost, Low Cost, LR-Base and LR-Low Cost are used on the following figures to denote the scenarios.

\* \*OnLocation adjusted the EIA High and Low Resource cases of 2018 to create the resource/gas price scenarios used in this study.

\*\*\* see notes on slide 33 for additional information on sources used



# Approach

- Using NEMS-REStorePlus (modified version of EIA's 2018 NEMS model), analyze a set of scenarios targeting levels of costs for Grid Storage and levels of resource availability impacting natural gas production and prices
  - ReStorePlus model is a add-on to the NEMS model that allows a more detailed hourly dispatch to allow for the arbitrage loading and discharging of the Grid Storage



- Both gas prices and battery costs drive the rate of adoption of storage with 47 gigawatts built by 2050 in the low resource-low cost scenario, 7, 3 and 1 gigawatts in the low resource-baseline cost, high resource-low cost and high resource-baseline costs scenarios respectively, arbitrage limit suggests 150-200 gigawatts potential maximum market
- 2. Most of the storage builds occur in 4 regions: Southeast, MidSouth, Central and Southwest regions
- 3. Electricity prices, residential electricity and total energy expenditures not measurably impacted by storage penetration
- 4. Electricity sales and natural gas volumes are not measurable impacted by storage penetration
- 5. In the face of high natural gas prices
  - Solar PV is the winner
  - CC is the loser
  - CTs are mixed due to their role with storage backing up renewables (e.g., solar PV)
- 6. Solar PV gives up the most capacity, albeit relatively small amounts, *when competing against storage* with some turbine builds being marginally impacted

# Caveats

- Assumes no limitation in Grid Storage build out due to manufacturing constraints
- Grid Storage costs continue to decline materially over the next 5-10 years
- Grid Storage is assumed to not pay the standard regional transmission hookup charge
- There is no policy or regulatory impediment to storage adoption
- Grid Storage is assumed to be able to cycle virtually everyday without degradation of battery life, capacity or efficiency
- Storage owners are assumed to receive capacity value in markets when capacity reserves are needed
- Only arbitrage and capacity reserve values are considered for storage; does not include possible operating reserve, other ancillary values or transmission deferments
- Storage owners are assumed optimize and able to capture full arbitrage value
- After 20 year lifetime, storage capacity reinvestment is assumed implicitly
- Financing costs for storage assumed to be the same as for other generation assets
- Analysis does not consider behind-the-meter storage



#### • Low Resource – High NG Prices

- Model builds 47 gigawatts of storage by 2050 in the Low cost case (LR-Low Cost)
- Model builds in 7.5 gigawatts by 2050 in the Base cost case (LR – Base)
- High Resource Low NG Prices
  - Model builds 3.2 gigawatts of storage by 2050 in the Low cost case (Low Cost)
  - Model builds in 1.1 gigawatts by 2050 in the Base cost case (Base Cost)





6

- Model builds 47 by 2050 in Low Resource - Low Costs Cases (LR-Low Cost)
  - Most of the builds are in the Southeast- 31 Gigawatts
  - The Central, MidSouth and Southwest regions build 4.2, 3.8, 4.6 gigawatts respectively
- Model builds in 7.5 gigawatts by 2050 in the Base cost case (LR – Base)
- The High Resource scenarios had little storage builds







7/23/2018

Focusing on the Low Resource Scenario The differences between the low cost and base cost scenarios are shown

- As pointed out on the previous slide, most of the action is in the Southeast, Central, MidSouth and Southwest regions
- Several regions experience some small movement but this is, in part, attributable to the model noise



Capacity Changes Across Tech and Select EMM Regions LR-Low Cost minus LR - Base



Prepared for API by OnLocation, Inc.

8

Location

#### Focusing on the Low Resource Scenario

- When the cost of storage is reduced, the primary technology it displaces is solar PV, albeit by a small portion of the total solar PV penetration
- The next three slides provide a regional view of this displacement





#### Focusing on the Low Resource Scenario

 In the Southeast, the substitution of storage is a mixed bag switching back and forth across time.



Southwest

7/23/2018

#### Focusing on the Low Resource Scenario

 In the MidSouth, the picture is much more consistent across time with storage displacing both solar and Turbines.



![](_page_10_Figure_4.jpeg)

![](_page_10_Figure_5.jpeg)

#### Focusing on the Low Resource Scenario

- While solar is displaced by the penetration of storage technology, it appears that wind is given a small benefit
- Further, it appears that Turbines benefit a bit as well

Reporting Regions

Southwest

Southeas

![](_page_11_Figure_4.jpeg)

![](_page_11_Figure_5.jpeg)

NEMS-REStorePlus Model OnLocation, Inc. 04 Jul 2018

# National Results

- Natural Gas Volumes and Prices
- Electricity Sales and Prices
- Electric Power Capacity Additions and Utilization
- Consumer Expenditures

![](_page_12_Picture_5.jpeg)

# **Natural Gas Volumes and Prices**

### To Power Sector

- Natural gas prices are not materially impacted by storage penetration
- · Low resource case drives up natural gas prices substantially
- Higher natural gas prices reduce materially gas consumption in the power sector

![](_page_13_Figure_5.jpeg)

# **Electricity Sales and Prices**

- Electricity prices remain constant within Resource Scenarios
- Higher gas prices have a significant impact on electricity prices
- Electricity sales move only slightly in response to changing prices

![](_page_14_Figure_4.jpeg)

![](_page_14_Picture_5.jpeg)

## Electric Power Additions and Utilization

### Additions

![](_page_15_Figure_2.jpeg)

### **Generating Mix**

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

# **Capacity Total and Retirements**

#### **Electricity Capacity** 1,600 Conv Coal Coal CCS Gas CC 1,400-Gas CCS Oil/Gas Steam Comb Turbines 1,200 -Nuclear Hydro Wind Wind 1.000 -Solar Dedicated Bio GW Diurnal Storage 800 Other Renew Scenarios: 600 Base Cost Low Cost LR - Base 400-LR - Low Cost 200

2030

Year/Scenario

2040

Capacity

### **Retirements**

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

2050

0

2020

# **Consumer Prices**

## Electricity and Total Residential Use

Reductions in Energy Use Per Household Offset By Rising Household Formations

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

## Select Regional Statistics Power Technology Result

- Low Resource Cases Differences from Baseline
- Regional Capacity and Generation for 2035 and 2050
- Electric Power Capacity and Utilization
  - Storage and Gas Turbine
  - Renewable Solar PV and Wind
  - Combined Cycle Natural Gas and Coal

![](_page_18_Picture_7.jpeg)

### Impact of Higher Natural Gas Prices on Regional Builds

- Low Resource (High natural gas prices) have a significant impact on the regional builds
  - Solar PV is the winner
  - CC is the loser
  - CTs are mixed due to their role with storage backing up renewables (e.g., the solar)
- Also note that California is not impacted much due to their limited reliance on natural gas

![](_page_19_Figure_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_9.jpeg)

### **Regional Capacity**

### Low Resource – Low Cost

- Regions are sorted (roughly) by total capacity
- Figure highlights the market shares of the different generating technologies
- The variance in the role of storage on each systems capacity is worth noting

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_6.jpeg)

# **Regional Capacity**

### Across Scenarios in 2035 and 2050

![](_page_21_Figure_2.jpeg)

7/23/2018

![](_page_21_Picture_5.jpeg)

# **Regional Generation**

### Low Resource – Low Cost

- In contrast to the generating capacity, the continued role of CC is very striking, particularly given the high natural gas prices
- Note that coal generation persists to the end of the forecast although it is shrinking throughout the forecast period
- Further, note the substantial penetration of solar and wind

![](_page_22_Figure_5.jpeg)

![](_page_22_Picture_6.jpeg)

## Regional Generation Across Scenarios in 2035 and 2050

![](_page_23_Figure_1.jpeg)

7/23/2018

![](_page_23_Picture_4.jpeg)

# **Aggregated Model Regions**

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_3.jpeg)

OnLocation

### Storage and Turbine Capacity

Take care to note the changes in scale across each of the facets!

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

26

## Solar PV and Wind Capacity

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Picture_3.jpeg)

27

## Combined Cycle (CC) and Coal

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

28

## Combined Cycle Generation and Capacity in LR-Low Cost Scenario

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

29

7/23/2018

## **Combined Cycle Generation and Capacity** Contrasted with Baseline NG Prices in 2050

![](_page_29_Figure_1.jpeg)

(0, 43.6]

(43.6,87.1]

(87.1,131]

(131,174]

(174,218]

(218,261]

(261,305]

(305.349)

(349,392)

(392,436]

(7.52.15)

(15, 22.6]

(22.6, 30.1]

(30.1.37.6)

(37.6.45.1)

(45.1,52.6)

(52.6,60.2)

(60.2.67.7)

(67.7.75.2)

30

## Solar Generation and Capacity: Baseline NG Prices Vs Low Resource High NG Prices in 2050

![](_page_30_Figure_1.jpeg)

Prepared for API by OnLocation, Inc.

7/23/2018

Location

# Maximum Potential With Arbitrage

### As The Only Constraint

- Maximum potential of storage given diurnal electricity price differences
- High NG Prices yields potential of 200+ Gigawatts
- Baseline NG Prices yields potential of 150+

![](_page_31_Figure_5.jpeg)

 Arbitrage scenarios assume essentially free storage capital costs, only accounts for arbitrage

![](_page_31_Figure_7.jpeg)

## Battery Storage Costs Used in the Analysis

![](_page_32_Figure_1.jpeg)

| Ş    | /KW    |        |
|------|--------|--------|
| Year | High   | Low    |
| 2015 | 2117.4 | 1677.3 |
| 2016 | 1754.4 | 1310.4 |
| 2017 | 1571.6 | 1134.3 |
| 2018 | 1453.6 | 1023.8 |
| 2019 | 1368.2 | 945.6  |
| 2020 | 1302.2 | 886.2  |
| 2021 | 1248.9 | 838.8  |
| 2022 | 1204.4 | 799.9  |
| 2023 | 1166.6 | 767.0  |
| 2024 | 1133.7 | 738.8  |
| 2025 | 1104.7 | 714.1  |
| 2026 | 1079.0 | 692.3  |
| 2027 | 1055.8 | 672.9  |
| 2028 | 1034.8 | 655.3  |
| 2029 | 1015.6 | 639.4  |
| 2030 | 998.0  | 624.9  |
| 2031 | 981.7  | 611.6  |
| 2032 | 966.6  | 599.2  |
| 2033 | 952.5  | 587.8  |
| 2034 | 939.3  | 577.2  |
| 2035 | 927.0  | 567.2  |
| 2036 | 915.4  | 557.9  |
| 2037 | 904.4  | 549.2  |
| 2038 | 894.0  | 540.9  |
| 2039 | 884.2  | 533.1  |
| 2040 | 874.8  | 525.7  |
| 2041 | 865.9  | 518.7  |
| 2042 | 857.4  | 512.0  |
| 2043 | 849.3  | 505.6  |
| 2044 | 841.5  | 499.6  |
| 2045 | 834.0  | 493.8  |
| 2046 | 826.9  | 488.2  |
| 2047 | 820.0  | 482.9  |
| 2048 | 813.4  | 477.8  |
| 2049 | 807.0  | 472.9  |
| 2050 | 800.9  | 468.2  |

![](_page_32_Picture_5.jpeg)