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� PART I
Issues with the Use of 

Predictive Models

� PART II
Predictive Model for 
Screening Dissolved-Phase 
Petroleum Hydrocarbon 
Sites

�Summary

Overview
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POSITIVES

� models if used properly, can help: 

- guide SIs (identify sensitive parameters), 
avoid unnecessary sampling

- identify relevant transport processes

- quantify unknowns

- predict uncertainties

Issues
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NEGATIVES

� processes governing VI can be highly variable and are not 
easily quantified
- nobody expects models to predict the future exactly 

o what degree of confidence is acceptable?  (stakeholder implications)
o prediction is only as good as the calibration/validation

� general unfamiliarity with more sophisticated models

Issues (Cont’d.)

OK - do we really 
want to do this?

� most widely accepted VI models are either 
too conservative or too simple (i.e., do not 
account for relevant processes, such as 
biodegradation)
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Issues (Cont’d.)

MAJOR CONCERNS

� there is a tendency for misuse 
and abuse of models 

� applications beyond simple spreadsheets not 
generally performed and acceptance generally 
limited
-restricted use for site-specific applications
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�Mixing in Breathing Zone

� Diffusive Transport to
Breathing Zone

� Impacted Soil and/or 
Groundwater
in Equilibrium with Soil Gas

General Conceptual Site Model (CSM)

� Convective Transport into Bldg
airC

gas soilC

gas soil

air
C

C=α

KEY
POINTS:
KEY
POINTS:

• CSM is specific to certain models (e.g., 1-D)

• Important to collect necessary data to determine if model 

is applicable to CSM
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Factors to Consider in CSM Figures courtesy of T. McAlary

� CSM must be valid for model application
� the predictive calculation is only as good as the investigative process itself

water table
in contact w/
foundation

utility corridor

lateral transport

flow-entrained plume



8

M. A. Lahvis, Shell Global Solutions (US) Inc., 13 September 2006

©2006 Shell Global Solutions (US) Inc.   All rights reserved.  Do not reproduce without the express written permission of copyright owner.  

Model Selection
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Measured vs. Conservative Model -- Hydrocarbons
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Experimental Building

Hers, Dawson, & Truesdale (2005) 

� measured AFs for petroleum hydrocarbons can be orders 
of magnitude less than semi-site specific screening levels
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(dimensionless analysis)
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= scales biodegradation and diffusion

H = Henry’s Law constant

L = distance

Screening Model for Dissolved-Phase 
Petroleum-Hydrocarbon Sites

D = effective diffusion coefficient

λ = first-order rate constant
C = aqueous-phase concentration
G = gaseous-phase concentration 
z = distance
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� 1-D, uncoupled transport 
(conservation of mass)

� conservative with respect to 
diffusive transport

- at x = 1, G = 0

� first-order kinetics

� uniform soil properties -
weighted avg. diffusion coeff. 

� equilibrium partitioning

� may not be appropriate for all 
applications (advection >> 
diffusion)

JB = QB * IASL / AB

G = 0

x = 0

x = 1

vadose

zone

G = Gwat = Cwat H

Jwat = -D (dG/dz)

Boundary Conditions and Model Assumptions

biodegradation
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a) calculate mass flux to indoor air (JB): 

b) calculate Dm: typical knowns - depth to groundwater (L); 
soil type (D), Henry’s Law (H);  
typical unknown - biodegradation  rate (λ)

c) apply type curve, determine RBSL/JB

d) predict RBSL

D(benzene) = 0.12 m2/d (sand, EPA spreadsheet) (Default)

For unsaturated soils and BTEX concentrations in pore 
water < 0.2 mg/L, kinetics first order apply:

λ λ λ λ (avg.) = 5.8 d-1 

λλλλ (lower 95%) = 0.5 d-1 

λ λ λ λ (default) = 0.25 d-1

General Site-Specific Application:
Predict Risk-Based Screening Level (RBSL)

D H
L

D m

2λλλλ
====

JB = QB * IASL / AB

Default
Values

* DeVaull et al. (1997) 
assumes moisture content = 0.054 (sand, EPA spreadsheet)
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� calculate JB
(JB = QB * IASL / AB)

� determine Dm

� determine RBSL/JB

� calculate RBSL (ppb) 

(RBSL = RBSL/JB * JB)

Application Cont’d. (example sand) 

λλλλ = 0.25 d-1 (default)
L = 3 m
D = 0.12 m2/d
H = 0.21 (benzene)

QB = 2,200 m3/d
IASL = 0.23 µµµµg/m3

AB = 100 m
2

DH

L
2λ

Dm=( )

Biodegradation Rate  
JB (mg/m2-d) : 0.005
Dm (unitless) :    110 
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λλλλ = variable (Dual Monod)

λλλλ = 0.25 day-1 (1st-order)

D = 0.01 m2/d

L = 10 ft.
C0 = 1,000 µg/L benzene

Dual-Monod Parameters*
max. rate constant 

= 0.9 mg/L-hr
half sat. constant 

= 0.2E-06 mg/L

Validation of 1st-Order Kinetic Model

Is 1st-order kinetics 
assumption (λ = 0.25 d-1) 
reasonable with respect 
to potential O2 limited 
biodegradation?

*from DeVaull et al. (1997)
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Initial Validation of Biodegradation Parameters
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CO/UT Data Eval.
- 5822 soil vapor sampling 

events, 161 sites

- 696 events (O2/CO2
data)

- 447 events w/             
O2 + CO2 > 18%

- 286 events w/ 
corresponding GW data

- 3 events (2 wells) w/    
2% < O2 < 5 % (benzene 
< 10,000 ppb)

- 420/447 events w/ BTEX 
concs. in pore water < 
0.2 mg/L  (not, either 
Cwat benzene > 10,000 
ug/L or UZ source 
implied)

NAPL??DISSOLVED??

• aerobic conditions are observed in the unsaturated zone for all 
cases where benzene concentrations in groundwater  < 10,000 ppb

• 3 events (< 1%) w/ limited O2 (2% < O2 < 5%) (clay, clayey silt)

• data appear to support 1st-order kinetics at dissolved-phase sites
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Parameter Sensitivities
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� sensitivities to 
λ, L, and D 
(fine-grained 
soil) imply AF 
is highly 
variable

� consistent with 
initial database 
analyses

� exclusion 
criteria (i.e.,   
L = 3.5 m) more 
rational 
approach than 
“bioattenuation
factor” at 
dissolved-
phase sites
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� if used appropriately, models can be extremely 
beneficial in guiding VI investigations (data collection)

� modeling is not appropriate without a basic 
understanding of the CSM (1-D transport)

� more sophisticated models (as opposed to conservative 
software) can be extremely helpful in refining 
predictions and limiting uncertainties, provided:

- model assumptions and limitations are realized

- sensitivities are sufficiently characterized

- adequate field data is available to support application

- bounds are placed on unknowns with significant variability

Summary
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� for petroleum hydrocarbons, meaningful screening 
levels can only be established by accounting for 
biodegradation, especially at dissolved-phase only sites 

� use of conservative 1st-order rate constant in 
screening-level model supported by initial evaluation of 
hydrocarbon database (> 2% O2 present, BTEX concs. < 
200 µg/L)

� application of screening model indicates current 
screening levels for benzene are far too conservative 
for dissolved-phase sites

� analysis indicates exclusion criteria (i.e., L = 3 m) is 
likely better approach than “bioattenuation factor”

Summary (Cont.’d)


