Table 6, replace the Key with:

<table>
<thead>
<tr>
<th>Key</th>
<th>Tolerances, expressed in millimetres (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OD, outer diameter of ring</td>
<td>$0.15 - 0.006$</td>
</tr>
<tr>
<td>2 ODT, outside diameter T</td>
<td>$0.05, (± 0.002)$</td>
</tr>
<tr>
<td>3 C width of flat</td>
<td>$0.15 + 0.006$</td>
</tr>
<tr>
<td>4 R_1 radius in ring</td>
<td>See Note 1</td>
</tr>
<tr>
<td>5 H^a height of ring</td>
<td>$0.2 (± 0.008)$</td>
</tr>
<tr>
<td>6 A^a width of ring</td>
<td>$0.2 (± 0.008)$</td>
</tr>
<tr>
<td>7 E depth of groove</td>
<td>$0.5, -0 (± 0.02, -0)$</td>
</tr>
<tr>
<td>8 G outside diameter of groove</td>
<td>$0.1, -0 (± 0.004, -0)$</td>
</tr>
<tr>
<td>9 N width of groove</td>
<td>$0.1, -0 (± 0.004, -0)$</td>
</tr>
<tr>
<td>10 R_2 radius in groove</td>
<td>max.</td>
</tr>
<tr>
<td>11 Break sharp corner</td>
<td></td>
</tr>
<tr>
<td>12 D hole diameter</td>
<td>$0.05, (± 0.02)$</td>
</tr>
</tbody>
</table>

Table 6, change SBX 150 for dimension E, from:

5.59 mm to 5.56 mm

Table 6, change SBX 151 for dimension G, from:

77.79 mm to 77.77 mm
Table 6, change SBX 153 for Outside diameter of ring from:

100,94 (3.74) to 100,94 (3.974)

Table 8, change *K (Diameter of Raised Face) for 103,5 MPa (15 000 psi) rating from:

147 mm (3,985 in) to 79 mm (3,110 in)

Section 5.1.7.1 (first sentence), change:

“The minimum validation test procedures that shall be used to qualify product designs in accordance with Table 3 are defined in 3.5.1.7.” to

“The minimum validation test procedures that shall be used to qualify product designs in accordance with Table 3 are defined as follows.”

Section 5.4.6.2.2 (last paragraph, 2nd sentence), change:

“If a pressure-monitoring gauge and/or chart recorder is used for documentation purposes, the chart record should have a pressure settling rate not exceeding 3 % of the test pressure per 15 min or per 2 MPa (300 psi), whichever is less.” to

“If a pressure-monitoring gauge and/or chart recorder is used for documentation purposes, the chart record should have a pressure settling rate not exceeding 3 % of the test pressure or 2 MPa (300 psi) per 15 min, whichever is less.”

Table 11, change Groove location for Nominal size and bore 279 mm (11 in.) from:

162 mm (6,370 in.) to

136 mm (5,370 in.)

Table 11, the proposed change Groove location for Nominal size and bore 279 mm (11 in.) from 162 mm (6,370 in.) to 136 mm (5,370 in.), issued in September 2011 as part of Errata 1, has been withdrawn. The Groove location for Nominal size and bore 279 mm (11 in.) has been reinstated to 162 mm (6,370 in.) as originally published.

Section 7.10.4.2.4 (last sentence), change

7.10.4.2.4 to

7.10.4.2.3
Section 7.13.5.3 (last sentence), change reference from:

7.8.4.2
to
7.8.3.2

Section 7.14.3.2 (last sentence), change reference from:

7.8.4.2
to
7.8.3.2

Section 7.16.4.6 (list), change the list to the following:

— drilling riser system;
— subsea well control package (WCP) or wireline cutter;
— completion/workover riser or stress joint;
— landing string (drill pipe or tubing running string);
— LWRP;
— wire rope deployment system.

Section 7.16.6 (last sentence), change reference from:

7.8.4.2
to
7.8.3.2

Section 7.18.1, insert after the 1st sentence:

See API 17R for more information on flowline connectors.

Section 7.18.4.3.b (2nd paragraph), change reference from:

7.8.4.2
to
7.8.3.2

Section 7.21.3.2.2.e, change the reference from:

7.22.3.2.4
to
7.21.3.2.4
Section 7.21.3.2.3.g, change the reference from:

7.22.3.2.5
to
7.21.3.2.5

Section 7.22.1 (2nd sentence), change the reference from:

7.2.2
to
7.22

Section 9.2.6 (last sentence), change:

7.12
to
7.13

Table G.2, change superscript in last two entries from:

“b”
to
“a”

Add footnote:

a Calculated based on reduced yield strength of 655 MPa (95,000 psi)

Table G.4, change superscript in last two entries from:

“b”
to
“a”

Add footnote

a Calculated based on reduced yield strength of 655 MPa (95,000 psi)

Section G.1.3 Equation (G.1) change the equation to read:

\[T = \frac{F(P)}{2 \times 10^2} \left[\frac{1}{N} + \pi(P)(\sec 30^\circ) \right] + \left[\frac{h + D + 3,175}{4 \times 10^2} \right] (F(f)) \]
Section G.1.3 Equation (G.2) change the equation to read:

\[
T = \frac{F(P)\left[\left(\frac{1}{N}\right) + \pi(f)(P)(\sec 30^\circ)\right]}{2(12)\left[\pi(P) - (f)\left(\frac{1}{N}\right)(\sec 30^\circ)\right]} + \left[\frac{h + D + 0.125}{(4)(12)}\right](P)(f)
\]

Section K.2.3.5 Equation (K.4) change the equation and list to read:

\[
H = \left(\frac{F}{2} + h\right) + C
\]

where

- \(F \) is the shackle flange width as defined by item 5 in Figure K.1
- \(F_p \) is the pad eye design load as defined in Section K.3.1
- \(C \) (clearance) = 12.7 mm (0.5 in) for shackles with \(F_p \leq 57827 \) N (13 000 lb);
- \(C \) (clearance) = 25.4 mm (1.0 in) for shackles with \(F_p > 57827 \) N (13 000 lb).

Section K.3.3.3.3 Equation (K.21) change the lead-in paragraph and equation to read:

The permissible stress for butt or fillet welds in shear is determined using a safety factor for the weld in shear of 1.0/0.4, or 2.5 (based on the distortion-energy theory as the criterion of failure) as given in Inequality (K.21):

\[
\frac{S_y}{S_s} \geq 2.5
\]

(K.21)

Section K.3.3.3.6 Equation (K.29) change the lead-in paragraph and equation to read:

The permissible stress for butt or fillet welds in shear is determined using a safety factor for the weld in shear of 1.0/0.4, or 2.5 (based on the distortion-energy theory as the criterion of failure) as given in Inequality (K.29):

\[
\frac{S_y}{\tau} \geq 2.5
\]

(K.29)

Insert at the end of the Bibliography:

[53] API RP 17R, Recommended Practice for Flowline Connectors and Jumpers