Addressing Impacts of Produced Water

- Effects on Soils, Plants, and Water
- Rules of Thumb: Potential for Impacts
- Soils: Remedy Selection and Implementation
- Groundwater: Simple Modeling Tool
- Site Investigation Guidelines
Addressing Impacts of Produced Water

Background on API Publication 4758

GOAL
Provide concise technical guidelines based on prior publications.

SCOPE
1) Will produced water release cause unacceptable impact?
2) Appropriate and effective response actions?

WHERE
www.api.org/produced_water

API 4758: “Strategies for Addressing Salt Impacts of Produced Water Releases to Plants, Soil, and Groundwater”
How: High TDS in soil pore water prevents osmotic uptake, causing desiccation. Most sensitive at germination stage.

What: Bare soils, stunted growth, deep blue-green foliage (not yellow), tip burn and cupping.

Source: API Publication 4663; from Donahue et al., 1983. Photo used with permission of www.laspilitas.com. TDS = Total Dissolved Solids
Salt Impacts to Plants: East Texas Site, 2001

Releases at PW Injection Facility

Timber loss over 5-acres; growth of salt tolerant brush (*willow baccharis*)

PW = Produced water
Salt Impacts to Soils

Clay Soil Dispersion

- **How:**
 - Sodium in PW exchanges with K, Ca, Mg in clay minerals.

- **What:**
 - Loss of soil cohesion
 - Loss of permeability, drainage
 - Increased erosion

- **When:**
 - Affected soil ESP > 15%

Source: API Publication 4663. ESP = Exchangeable Sodium Percentage. PW = Produced Water
High-sodium brine spill to lake causing dispersal and erosion of clay soils in dam.
Salt Impacts to Plants: Former Brine Pit

Former brine pit with vegetation loss and surface erosion.
Salt loading can impair beneficial use of surface water or groundwater.

<table>
<thead>
<tr>
<th>Use</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking Water:</td>
<td>Secondary MCLs for TDS (500 mg/L) and chloride (250 mg/L).</td>
</tr>
<tr>
<td>Aquatic Life:</td>
<td>USEPA acute (860 mg/L) and chronic (230 mg/L) criteria for Cl. State criteria for TDS: 250 - 2500 mg/L.</td>
</tr>
<tr>
<td>Irrigation:</td>
<td>Salinity hazards above ~1,500 mg/L TDS.</td>
</tr>
<tr>
<td>Livestock:</td>
<td>Useable with TDS up to 3,200 mg/L, with some effects.</td>
</tr>
</tbody>
</table>

SOURCE: API Publication 4663. CI = Chloride TDS = Total Dissolved Solids
(In-situ photo of affected groundwater)
Rules of Thumb:

Will Soil be Impacted by PW Release?

<table>
<thead>
<tr>
<th>Nope</th>
<th>Yep</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP < 5%</td>
<td>ESP > 22%</td>
</tr>
<tr>
<td>EC < 4 mmhos/cm</td>
<td>EC > 16 mmhos/cm</td>
</tr>
</tbody>
</table>

Affected Soil Contains:

- ESP < 5%
- EC < 4 mmhos/cm
- ESP > 22%
- EC > 16 mmhos/cm

KEY POINT:

For soil conditions between these extremes, must consider climate, drainage, vegetation, etc.

ESP = Exchangeable Sodium Percentage; EC = Electrical Conductivity (saturated paste)
Rules of Thumb:
Will Groundwater be Impacted by PW Release?

<table>
<thead>
<tr>
<th>SPILL SITE CONDITIONS:</th>
<th>LESS LIKELY</th>
<th>MORE LIKELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Volume</td>
<td>< 100 bbls</td>
<td>> 100 bbls</td>
</tr>
<tr>
<td>Chloride Content</td>
<td>< 100,000 mg/L</td>
<td>>100,000 mg/L</td>
</tr>
<tr>
<td>Depth to GW</td>
<td>> 10 ft</td>
<td>< 10 ft</td>
</tr>
<tr>
<td>Soil Type</td>
<td>clayey</td>
<td>sandy</td>
</tr>
<tr>
<td>Spill Area (volume/area)</td>
<td>< 0.15 bbl/sq ft</td>
<td></td>
</tr>
</tbody>
</table>

KEY POINT:
Most important variables for predicting groundwater impact = chloride mass, climate, soil type, depth to GW, aquifer thickness and flow.

Soil Remediation Options: *Will They Work?*

NATURAL RESTORATION

Okay If …
- Soil EC < 16 mmhos/cm
- Soil fertile
- PEI > 4 in/yr
- Adequate drainage
- Halophytes will grow
- Active remedy could increase damage

If not, try **IN-SITU CHEMICAL AMENDMENT**

Okay If …
- Soils will leach salt naturally or leaching can be enhanced
- Erosion can be controlled

If not, try **MECHANICAL REMEDIATION**

- No technical restrictions, except collateral effects

SEE Decision Chart in API 4758

KEY POINT: If need rapid remedy, use chemical amendment or mechanical remediation.

Source: Adapted from API Publication 4663. PEI = Precipitation Evaporation Index
Soil Remediation: Natural Restoration

Concept: Use plants and natural water flushing to restore salt-impacted soil.

Option A: Monitor natural revegetation process for 1 to 3 years.
- **Mulch:** 2 to 4 inches
- **Fertilizer:** 28 lb per 1,000 sq ft of 13-13-13
- **Watering:** *Don’t water clay soils!*

Option B: Plant halophytic vegetation to restore affected area.

Rules of Thumb:
- **Mulch:** 2 to 4 inches
- **Fertilizer:** 28 lb per 1,000 sq ft of 13-13-13
- **Watering:** *Don’t water clay soils!*

Source: API Publication 4663. Photo courtesy of David Carty, Greenbridge Earthworks.
Soil Remediation: Natural Restoration

Source: Photos courtesy of David Carty, Greenbridge Earthworks.
Salt Remediation: *In-Situ Chemical Amendment*

Concept: Add calcium to replace sodium and restore clay soil structure.

- **Drainage:** Improve as needed to leach Na.
- **Gypsum:** 13 lb/100 sq ft (or calculate per ESP, CEC, Na).
- **Mix:** Focus = upper 2 ft of soil. Add fertilizer and mulch if needed.
- **Irrigation:** Pulse flooding can reduce water requirements 50%. Perimeter berms improve infiltration.

Source: API Publication 4663. Photo courtesy of David Carty, Greenbridge Earthworks.
API 4758: Addressing Impacts of Produced Water

Soil Remediation: *Chemical Amendment*

Source: Photos courtesy of David Carty, Greenbridge Earthworks.
Soil Remediation: Mechanical Remediation

Concept: Optional methods for mixing, spreading, or relocating salt-impacted soil.

- **Land-spreading:** Mix affected soil with unaffected soil to reduce soil EC.
- **Burial:** Construct burial vault with capillary barrier; and gypsum, clay cover, and topsoil layers atop affected soil.
- **Road spreading**
- **Other:** Soil washing; landfill disposal.

BURIAL VAULT

SOURCE: API Publication 4663. Photo courtesy of David Carty, Greenbridge Earthworks.
API 4758: Addressing Impacts of Produced Water

Evaluating Groundwater Impacts: Simple Modeling Tool

KEY POINT: All calcs based on simple nomographs ...no computer.

Step 1: Mass of chloride to soil

Step 2: Chloride infiltration to GW

Step 3: Chloride conc. in GW

Step 4: Chloride plume migration

API guide provides planning model to predict chloride impacts on GW
Site Investigation: Data Needs

- **Soil Tests:**
 - EC, ESP (or SAR), CEC, Na, cleanup goal.
- **Soil Properties:**
 - Hydr. cond., shrink-swell pot’l, slope, depth to GW, soil type (0-3 ft), unsat zone soil type.
- **Prod. Water:**
 - Vol. and area of release Na, TDS, Cl levels.
- **Climate:**
 - Annual rainfall, evaporation.
- **GW Data:**
 - Source width, GW velocity, aquifer thickness, nearest well, cleanup goal.

Key Data Needs for Evaluation of Soil & GW Impacts

KEY POINT:

API 4758 provides simple guidelines on data collection and field and lab analyses.

EC = Electrical Conductance (soil paste); ESP = Exchangeable Sodium Percentage; SAR = Sodium Absorption Ratio; CEC = Cation; Exchange Capacity; Na = Sodium; TDS = Total Dissolved Solids; GW = Groundwater.
API 4758: Addressing Impacts of Produced Water

Where to Learn More

API 4758

Download free or buy fancy printed version.

www.api.org/produced_water