Serving the oil and natural gas industry with information

API is pleased to present its 2019 publications programs and services catalog.

The 2019 edition lists API standards, recommended practices, equipment specifications, other technical documents, and reports and studies to help the oil and natural gas industry safely, efficiently, and responsibly supply energy to billions of people around the world.

Each year API distributes more than 300,000 copies of its publications.

For upstream, API publications cover offshore structures and floating production systems, tubular goods, valves and wellhead equipment, and drilling and production equipment. In the downstream arena, API publications address marketing and pipeline operations and refinery equipment, including storage tanks, pressure-relieving systems, compressors, turbines, and pumps. API also has publications that cut across industry sectors, covering fire and safety protection and petroleum measurement. API information technology standards cover EDI, eBusiness, telecommunications, and information technology applications for the oil and natural gas industry.

Other API publications cataloged here include economic analysis, toxicological test results, opinion research reports, and educational materials that provide basic information about the oil and natural gas industry and how technology is transforming it.

The publications in the catalog are intended for all segments of the oil and natural gas industry.

Please direct questions about the catalog to the API Standards Department at 202-682-8417.

Sincerely,

Lakshmy A. Mahon
Director, Global Industry Services
API
Table of Contents

Exploration and Production 1
- General: Oil Field Equipment and Materials 1
- Offshore Structures 3
- Derricks and Masts 7
- Tubular Goods 8
- Valves and Wellhead Equipment 12
- Drilling Equipment 16
- Hoisting Tools 17
- Wire Rope 18
- Oil Well Cements 18
- Field Operating Equipment 21
- Lease Production Vessels 24
- Drilling, Completion, and Fracturing Fluids 25
- Offshore Safety and Antipollution 27
- Fiberglass and Plastic Pipe 28
- Drilling Well Control Equipment and Systems 29
- Subsea Production Systems 31
- Completion Equipment 37
- Supply Chain Management 40
- Drilling and Production Operations 42
 - Training 44
- Community Engagement 45
- Health, Environment, and Safety
 - Exploration and Production Safety Standards 46
 - General 47
 - Naturally Occurring Radioactive Materials 48
 - Waste 49
 - Security 49

Petroleum Measurement 51
- Manual of Petroleum Measurement Standards 51

Marketing 77
- General 77
- Aviation 77
- Marketing Operations 78
- Used Oil 79
- Tank Truck Operations 79
- Motor Oils and Lubricants 80
- Diesel Fuel 80
- Health, Environment, and Safety
 - General 80
 - Waste 80
 - Water 80
 - Soil and Groundwater 81
 - Security 81

Refining 91
- Inspection of Refinery Equipment 91
- Mechanical Equipment Standards for Refinery Service 94
 - Equipment Datasheets 98
- Storage Tanks 98
- Pressure-Relieving Systems for Refinery Service 102
- Piping Component and Valve Standards 103
- Electrical Installations and Equipment 106
- Heat Transfer Equipment Standards for Refinery Service 107
- Instrumentation and Control Systems 108
- Technical Data Book Petroleum Refining 109
 - Related Items 110
- Characterization and Thermodynamics 110
- Materials Engineering Publications 110
- Petroleum Products and Petroleum Product Surveys 116
- Process Safety Standards 117
- Health, Environment, and Safety
 - General 118
 - Soil and Groundwater 119
 - Security 119

Safety and Fire Protection 121
- Upstream Safety Standards 121
- Multi-Segment Publications 122
- Storage Tank Safety Standards 128

Health and Environmental Issues 129
- Air Research 129
 - Emissions: General 129
 - Emissions: Exploration and Production 131
 - Emissions: Marketing 132
 - Emissions: Refining 132
 - Emissions: Vehicles 134
 - Exposure: Assessment and Monitoring 134
 - Modeling 135
 - Ozone 135
- Environment and Safety Data 136
- Human Health Related Research 137
- Natural Resource Damage Assessment 139
- Pollution Prevention 139
- Soil and Groundwater Research 140
 - Contaminant Fate and Transport 142
 - Remedial Technologies 143
 - Site Characterization 144
- Environmental Stewardship Program Publications 146
- Storage Tank Research 146
- Surface Water Research 148
 - Biomonitoring 150
 - Effluents: Exploration and Production 151
 - Effluents: Marketing 151
 - Effluents: Refining 152
 - Oil Spills 152
 - Oil Spills: MSRC Reports 156
 - Biennial Oil Spill Conference Proceedings 158
 - Sediments 159
 - Waste Research 159
Table of Contents

API Data Products
- API Data 161

Policy and Economic Studies
- Discussion Papers 163
- Research Studies 163
- Other Publications 164
- Papers on Specific Issues 164

Communications and Education Outreach
165

Translated Publications
- Chinese 167
- Kazakh 169
- Portuguese 170
- Russian 170
- Spanish 174

Historical Publications
- MPMS Chapter 11.1—1980 177
- Withdrawn in 2018 178
- Withdrawn Publications 178

Publications by Number
193

Title Listing for Unnumbered Publications
219

Meetings, Conferences, Workshops, and Training Courses
221

Ordering Information

<table>
<thead>
<tr>
<th>Mail Orders</th>
<th>Phone Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Publications</td>
<td>+1 800 854 7179 (Toll-free: U.S. and Canada)</td>
</tr>
<tr>
<td>IHS</td>
<td></td>
</tr>
<tr>
<td>15 Inverness Way East</td>
<td>+1 303 397 7956 (Local and International)</td>
</tr>
<tr>
<td>M/S C303B</td>
<td></td>
</tr>
<tr>
<td>Englewood, CO 80112-5776</td>
<td>USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fax Orders</th>
<th>Online Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>303-397-2740</td>
<td>www.api.org/publications</td>
</tr>
</tbody>
</table>

Questions?
+1 800 624 3974 (Toll-free: U.S. and Canada)
+1 303 792 2181 (Local and International)

API provides the public with online access to nearly 200 key industry standards via our IBR (Incorporated by Reference) Reading Room. These standards cover all aspects of the oil and gas industry, including process safety, refinery and chemical plant operations and equipment, offshore drilling, hydraulic fracturing and well construction, and pipeline safety on welding, and public awareness programs. API’s goal is to provide the public with access to these standards, particularly those related to safety or that have been incorporated into federal regulation.

Please view the read-only publications at http://publications.api.org. (Internet Explorer is the recommended browser for viewing the documents.)

The standards are available for review only. Print and PDF versions continue to be available for purchase at the API Publications Store at http://www.techstreet.com/api.
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards.

NOTE: Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

GENERAL: OIL FIELD EQUIPMENT AND MATERIALS

The API Composite List

This is a directory of companies licensed to use the API Monogram and APIQR Registration Mark. This directory also lists the companies who have registered Perforator Designs with API. It provides an alphabetical listing of approximately 1,400 manufacturers licensed (at the time of publication) to mark their products with the API Monogram. It also contains a classified listing (by specific API specification) of these licensed manufacturers, as well as over 200 APIQR ISO 9000 registered firms. This directory was developed to assist those individuals desiring to purchase products and services meeting API specifications from companies whose quality systems and capabilities are verified by API’s Quality Programs. It is updated and published quarterly.

A searchable on-line version of the composite list is updated weekly and can be found at https://mycerts.api.org/Search/CompositeSearch.

Free*

Spec Q1 ◆
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry

(includes Errata 1 dated February 2014, Errata 2 dated March 2014, Addendum 1 dated June 2016, and Addendum 2 dated June 2018)

Establishes the minimum quality management system requirements for organizations that manufacture products or provide manufacturing-related processes under a product specification for use in the petroleum and natural gas industry. This specification specifies requirements of a quality management system for an organization to demonstrate its ability to consistently provide reliable products and manufacturing-related processes that meet customer and legal requirements. This specification specifies requirements of a quality management system for an organization to demonstrate its ability to consistently provide reliable products and manufacturing-related processes that meet customer and legal requirements. The quality management system requirements specified in this specification are in alignment with the clause requirements and format of product used for the provision of services and use of service-related product (API Q2). Pages: 47

9th Edition | June 2013 | Effective Date: June 1, 2014
Product Number: G0Q109 | Price: $124.00

Spec Q1 *
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Chinese

Chinese translation of Spec Q1.

9th Edition | June 2013 | Product Number: G0Q109C | Price: $87.00

Spec Q1 *
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Portuguese

Portuguese translation of Spec Q1.

9th Edition | June 2013 | Product Number: G0Q109P | Price: $124.00

Spec Q1 *
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Russian

Russian translation of Spec Q1.

9th Edition | June 2013 | Product Number: G0Q109R | Price: $99.00

Spec Q2 ◆
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries

(includes Addendum 1 dated June 2016)

Defines the quality management system requirements for service supply organizations for the petroleum and natural gas industries. It is intended to apply to the provision of services during exploration, development, and production in the oil and gas industry. This includes activities involved in upstream oil and gas well construction, production, and abandonment. It is intended to apply when specified by the operator to the service provided. This document specifies requirements of a quality management system to demonstrate an organization’s ability to consistently provide services that meet customer and applicable statutory and regulatory requirements, including processes for continual improvement of the system and the assurance of conformity to customer and applicable and regulatory requirements. Pages: 21

Product Number: G0Q201 | Price: $82.00

Spec Q2 *
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese

Chinese translation of Spec Q2.

1st Edition | December 2011 | Product Number: G0Q201C | Price: $58.00

Spec Q2 *
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Portuguese

Portuguese translation of Spec Q2.

1st Edition | December 2011 | Product Number: G0Q201P | Price: $82.00

Spec Q2 *
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Russian

Russian translation of Spec Q2.

1st Edition | December 2011 | Product Number: G0Q201R | Price: $66.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Facilities Systems Completion Planning and Execution

Applies to a wide variety of projects within the oil and gas industry excluding subsurface. Although intended for oil and gas industry, the process described in this document can be applied to other industries as well. It is intended that the processes and practices established herein can be applied and adapted from a single piece of tagged equipment to a complex petrochemical facility. The process described is intended to be applied at a system level. The systems completion process is the sequential activities within a project that verify and prove the construction, installation, integration, testing, and preparation of systems have been completed as designed, and thus, the facility is ready for start-up and operations. The systems completion process is designed to help prepare and manage the transfer of care, custody, and control of facilities under construction through appropriate certification and documentation, such that the details of progress are evident. Pages: 11

1st Edition | July 2013 | Product Number: G1FSC01 | Price: $62.00

TR 1PER15K-1

Protocol for Verification and Validation of High-Pressure High-Temperature Equipment

Focuses on an evaluation process for HPHT equipment in the petroleum and natural gas industries that includes design verification analysis, design validation, material selection considerations, and manufacturing process controls necessary to ensure the equipment is fit-for-service in the applicable HPHT environment where HPHT environments are intended to mean one or more of the following well conditions exist:

• the completion of the well requires completion equipment or well control equipment assigned a pressure rating greater than 15,000 psig or a temperature rating greater than 350 °F;
• the maximum anticipated surface pressure or shut-in tubing pressure is greater than 15,000 psig on the seafloor for a well with a subsea wellhead or at the surface for a well with a surface wellhead; or
• the flowing temperature is greater than 350 °F on the seafloor for a well with a subsea wellhead or on the surface for a well with a surface wellhead.

The design verification and validation protocols in this report should be used as a guide by the various API standards committees to develop future documents on equipment specifications for HPHT service. This report is not intended to replace existing API equipment specifications, but to supplement them by illustrating accepted practices and principles that may be considered in order to maintain the safety and integrity of the equipment. This report is intended to apply to the following equipment: wellheads, tubing heads, tubulars, packers, connections, seals, seal assemblies, production trees, chokes, and well control equipment. It may be used for other equipment in HPHT service. Pages: 90

1st Edition | March 2013 | Product Number: G1PER15K11 | Price: $151.00
OFFSHORE STRUCTURES

API Proceedings of the 2014 Offshore Structural Reliability Conference

The 2014 Offshore Structural Reliability Conference was hosted by API for the purpose of sharing the collective knowledge of applying reliability theories and operating experiences in order to address the offshore design and operational challenges facing the industry. These proceedings contain the material presented at this conference that included alternating sessions of instruction and topical papers starting with the history of offshore reliability studies, progressed to current activities, and then finally outlined issues for future resolution. This event was of interest for operators, engineers, regulators, academicians, and anyone else involved in the design and operations of offshore structures. Pages: 802

1st Edition | December 2015 | Product Number: G2A011 | Price: Free*

RP 2A-WSD
Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design

Contains requirements for the design and construction of new fixed offshore platforms and for the relocation of existing platforms used for drilling development, and storage of hydrocarbons in offshore areas. In addition, this document should be used in conjunction with RP 2SIM for the assessment of existing platforms in the event that it becomes necessary to make a determination of the fitness-for-purpose of the structure. Pages: 310

22nd Edition | November 2014 | Product Number: G2AWS22 | Price: $407.00

Spec 2B ◆
Specification for the Fabrication of Structural Steel Pipe

Covers the fabrication of structural steel pipe formed from plate steel with longitudinal and circumferential butt-welded seams. Pipe is typically in sizes of 14 in. outside diameter and greater, with a wall thickness 3/8 in. and greater (up to a nominal 40 ft in length), and is suitable for use in construction of welded offshore structures. The use of the ERW process or spiral welded pipe is not included in this specification. Pipe fabricated under this specification is intended to be used primarily in piling and main structural members, including tubular truss connections, where internal stiffeners are not usually required. Pages: 8

Spec 2B *
Specification for the Fabrication of Structural Steel Pipe—Chinese
Chinese translation of Spec 2B.

6th Edition | July 2001 | Product Number: G02B06C | Price: $61.00

Spec 2C ◆
Offshore Pedestal-Mounted Cranes
(includes Errata 1 dated March 2013)

Provides requirements for design, construction, and testing of offshore pedestal mounted cranes. Offshore cranes are defined in this specification as pedestal mounted elevating and rotating lift devices for transfer of materials or personnel to or from marine vessels and structures. Offshore cranes are typically mounted on a fixed (bottom supported) or floating platform structure used in drilling and production operations. Spec 2C is not intended to be used for the design, fabrication, and testing of davits and/or emergency escape devices. Spec 2C is also not intended to be used for shipboard cranes or heavy lift cranes. Pages: 124

7th Edition | March 2012 | Effective Date: October 1, 2012 | Product Number: G02C07 | Price: $147.00

Spec 2C *
Offshore Pedestal-Mounted Cranes—Chinese
Chinese translation of Spec 2C.

7th Edition | March 2012 | Product Number: G02C07C | Price: $104.00

RP 2D
Operation and Maintenance of Offshore Cranes
(includes Errata 1 dated August 2015)

Intended to serve as a guide to crane owners and operators in developing and maintaining practices and procedures for use in the safe operation of pedestal-mounted revolving cranes on fixed or floating offshore platforms, jackup drilling rigs, semi-submersible drilling rigs and other types of mobile offshore drilling units (MODUs). Guidelines are also given for the pre-use inspection and testing of temporary cranes (also called self-erecting, leapfrog or bootstrap cranes) that are erected offshore.

Equipment (e.g. davits, launch frames) used only for launching life-saving appliances (life boats or life rafts) are not included in the scope of this document.

Pages: 120

7th Edition | November 2014 | Product Number: G02D07 | Price: $149.00

RP 2EQ/ISO 19901-2:2004
Seismic Design Procedures and Criteria for Offshore Structures

Contains requirements for defining the seismic design procedures and criteria for offshore structures and is a modified adoption of ISO 19901-2. The intent of the modification is to map the requirements of ISO 19901-2 to the United States’ offshore continental shelf (U.S. OCS). The requirements are applicable to fixed steel structures and fixed concrete structures. The effects of seismic events on floating structures and partially buoyant structures are briefly discussed. The site-specific assessment of jack-ups in elevated condition is only covered to the extent that the requirements are applicable. This document defines the seismic requirements for new construction of structures in accordance with RP 2A-WSD, 22nd Edition and later. Earlier editions of RP 2A-WSD are not applicable. Only earthquake-induced ground motions are addressed in detail. Other geologically induced hazards such as liquefaction, slope instability, faults, tsunamis, mud volcanoes, and shock waves are mentioned and briefly discussed. The requirements are intended to reduce risks to persons, the environment, and assets to the lowest levels that are reasonably practicable.

This edition of RP 2EQ is the modified national adoption of ISO 19901-2:2004. Pages: 54

1st Edition | November 2014 | Product Number: GG2EQ01 | Price: $129.00

Spec 2F ◆
Specification for Mooring Chain
Covers flash-welded chain and forged center connecting links used for mooring of offshore floating vessels such as drilling vessels, pipe lay barges, deck barges, and storage tankers. Pages: 16

Spec 2F *
Specification for Mooring Chain—Chinese
Chinese translation of Spec 2F.

6th Edition | June 1997 | Product Number: G02F06C | Price: $65.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 2FB
Reaffirmed Practice for Design of Offshore Facilities Against Fire and Blast Loading

Provides an assessment process for the consideration of fire and blast in the design of offshore structures and includes guidance and examples for setting performance criteria. This document complements the contents of Section 18 of RP 2A-WSD, 21st Edition with more comprehensive guidance in design of both fixed and floating offshore structures against fire and blast loading. Guidance on the implementation of safety and environmental management practices and hazard identification, event definition and risk assessment can be found in RP 75 and the RP 14 series. The interface with these documents is identified and emphasized throughout, as structural engineers need to work closely with facilities engineers experienced in performing hazard analyses as described in RP 14, and with the operator's safety management system as described in RP 75. Pages: 63

1st Edition | April 2006 | Reaffirmed: January 2012
Product Number: G2FB01 | Price: $162.00

RP 2FIS
Planning, Designing, and Constructing Floating Production Systems

Provides guidelines for design, fabrication, installation, inspection, and operation of floating production systems (FPSs). A FPS may be designed with the capability of one or more stages of hydrocarbon processing, as well as drilling, well workover, product storage, and export. This document addresses only floating systems where a buoyant hull of some form supports the deck, production, and other systems. Bottom-fixed components, such as self-sustaining risers and station keeping systems, such as turret mooring, catenary anchor leg mooring (CALM), single anchor leg mooring (SALM), etc., are considered as ancillary components and are addressed in more detail in other API recommended practices. Pages: 191

2nd Edition | October 2011 | Product Number: G2FSP02 | Price: $192.00

RP 2GEO/ISO 19901-4:2003
Geotechnical and Foundation Design Considerations (includes Addendum 1 dated October 2014)

Contains requirements and recommendations for those aspects of geoscience and foundation engineering that are applicable to a broad range of offshore structures, rather than to a particular structure type. Such aspects are site characterization, soil and rock characterization, design and installation of foundations supported by the seabed (shallow foundations), identification of hazards, and design of pile foundations.

Aspects of soil mechanics and foundation engineering that apply equally to offshore and onshore structures are not addressed. The user of this document is expected to be familiar with such aspects.

This edition of RP 2GEO is the modified national adoption of ISO 19901-4:2003. Pages: 103

1st Edition | April 2011 | Product Number: G2GEO01 | Price: $159.00

Spec 2H
Specification for Carbon Manganese Steel Plate for Offshore Structures

Covers two grades of intermediate strength steel plates up to 4 in. thick for use in welded construction of offshore structures, in selected critical portions that must resist impact, plastic fatigue loading, and lamellar tearing. These steels are intended for fabrication primarily by cold forming and welding as per Spec 2B. The welding procedure is of fundamental importance and it is presumed that procedures will be suitable for the steels and their intended service. Conversely, the steels should be amenable to fabrication and welding under shipyard and offshore conditions. Pages: 24

9th Edition | July 2006 | Effective Date: February 1, 2007
Reaffirmed: January 2012 | Product Number: G02H09 | Price: $97.00

RP 2MET/ISO 19901-1:2006
Deprivation of Metocean Design and Operating Conditions

Contains general requirements for the determination and use of meteorological and oceanographic (metocean) conditions for the design, construction, and operation of offshore structures in the petroleum and natural gas industries.

The requirements are divided into two broad types:
• those that relate to the determination of environmental conditions in general, together with the metocean parameters that are required to adequately describe them;
• those that relate to the characterization and use of metocean parameters for the design, the construction activities or the operation of offshore structures.

The environmental conditions and metocean parameters discussed in this document comprise the following:
• extreme and abnormal values of metocean parameters that recur with given return periods that are considerably longer than the design service life of the structure,
• long-term distributions of metocean parameters, in the form of cumulative, conditional, marginal, or joint statistics of metocean parameters, and
• normal environmental conditions that are expected to occur frequently during the design service life of the structure.

Metocean parameters are applicable to
• the determination of actions and action effects for the design of new structures,
• the determination of actions and action effects for the assessment of existing structures,
• the site-specific assessment of mobile offshore units,
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

• the determination of limiting environmental conditions, weather windows, actions and action effects for pre-service and post-service situations (i.e. fabrication, transportation, and installation or decommissioning and removal of a structure), and
• the operation of the platform, where appropriate.

This edition of RP 2MET is the modified national adoption of ISO 19901-1:2006. Pages: 168
1st Edition | November 2014
Product Number: GG2MET01 | Price: $206.00

RP 2MOP/ISO 19901-6:2009
Marine Operations
(includes Errata 1 dated April 2015)

Provides requirements and guidance for the planning and engineering of marine operations, encompassing the design and analysis of the components, systems, equipment, and procedures required to perform marine operations, as well as the methods or procedures developed to carry them out safely. This document is also applicable to modifications of existing structures, e.g. installation of additional topsides modules.

This edition of RP 2MOP is the identical national adoption of ISO 19901-6:2009. Pages: 168
1st Edition | July 2010 | Reaffirmed: April 2015
Product Number: GG2MOP1 | Price: $250.00

Spec 2MT1 ◆
Specification for Carbon Manganese Steel Plate with Improved Toughness for Offshore Structures

Covers one grade of intermediate strength steel plates for use in welded construction of offshore structures. These steels are intended for fabrication primarily by cold forming and welding, as per Spec 2B. The primary use of these steels is for Class “B” applications as defined in RP 2A. Specs 2H, 2W, and 2Y cover other steels providing improved mechanical properties and toughness for Class “A” applications and should be used where substantial z-direction stresses are expected. Pages: 6
2nd Edition | September 2001 | Effective Date: March 1, 2002
Reaffirmed: January 2012 | Product Number: G2MT12 | Price: $85.00

Spec 2MT2 ◆
Rolled Shapes with Improved Notch Toughness

Covers rolled shapes (wide flange shapes, angles, etc.), having a specified minimum yield strength of 50 ksi (345 Mpa), intended for use in offshore structures. Commonly available Class A, Class B, and Class C beams refer to degrees of fracture criticality as described in RP 2A-WSD, with Class C being for the least critical applications. For special critical applications, Class AZ shapes may be specified, by agreement, using Supplement S101. Pages: 8
1st Edition | June 2002 | Effective Date: December 1, 2002
Reaffirmed: June 2015 | Product Number: G2MT21 | Price: $81.00

RP 2N/ISO 19906:2010
Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions

Specifies requirements and provides recommendations and guidance for the design, construction, transportation, installation, and removal of offshore structures, related to the activities of the petroleum and natural gas industries in arctic and cold regions. Reference to arctic and cold regions includes both the Arctic and other cold regions that are subject to similar sea ice, iceberg, and icing conditions. The objective of this standard is to ensure that offshore structures in arctic and cold regions provide an appropriate level of reliability with respect to personnel safety, environmental protection, and asset value to the owner, to the industry, and to society in general.

This standard does not contain requirements for the operation, maintenance, service-life inspection, or repair of arctic and cold region offshore structures, except where the design strategy imposes specific requirements. While this standard does not apply specifically to mobile offshore drilling units, the procedures relating to ice actions and ice management contained herein are applicable to the assessment of such units. This standard does not apply to mechanical, process, and electrical equipment or any specialized process equipment associated with arctic and cold region offshore operations except in so far as it is necessary for the structure to sustain safely the actions imposed by the installation, housing, and operation of such equipment.

This edition of RP 2N is the modified national adoption of ISO 19906:2010. Pages: 458
3rd Edition | April 2015 | Product Number: G02N03 | Price: $205.00

Std 2RD
Dynamic Risers for Floating Production Systems

Addresses structural analysis procedures, design guidelines, component selection criteria, and typical designs for all new riser systems used on FPSs. Guidance is also given for developing load information for the equipment attached to the ends of the risers. The recommended practice for structural design of risers, as reflected in this document, is generally based on the principles of limiting stresses in the risers and related components under normal, extreme, and accidental conditions. This document assumes that the risers will be made of steel or titanium pipe or unbonded flexible pipe. However, other materials, such as aluminum, are not excluded if risers built using these materials can be shown to be fit for purpose. Design considerations for unbonded flexible pipe are included primarily by reference to RP 17B and Spec 17J. Pages: 81
2nd Edition | September 2013 | Product Number: G2RD02 | Price: $252.00

Bull 2S
Design of Windlass Wildcats for Floating Offshore Structures

Covers the design of windlass Wildcats to ensure proper fit and function between wildcard and mooring chain. Wildcats are of the five-welth type for use with studlink anchor chain conforming to the classification society Grades 1, 2, and 3, ORQ and Grade 4 chain. Wildcat dimensions are provided for chains in integral 1/8 in. (3 mm) steps, ranging in size from 2 in. to 4 in. (51 mm to 102 mm). Wildcat dimensions for chain in intermediate 1/16 in. (1.5 mm) steps are not provided, but wildcats in these sizes are permitted within the scope of this publication. Pages: 7
Product Number: G02S02 | Price: $78.00

Spec 2SC ◆
Manufacture of Structural Steel Castings for Primary Offshore Applications

Castings manufactured to this specification are intended for use in the fabrication of offshore structures, manufacture of critical marine or mechanical or other system components intended for application on permanent offshore structures, or for components used in the construction of offshore tendons, risers and pipelines. This specification is based on the experience acquired during the design, construction, operation, and maintenance of offshore processing units and permanent facilities, as supplemented with the experience of operating companies with topsides, fixed platforms, floating structures (e.g. TLPs and spars), and their tendons and risers. Castings in these applications tend to be limited production components, with relatively few replications, and receive more intense scrutiny than routine mass production runs. Pages: 29
1st Edition | September 2009 | Effective Date: March 1, 2010
Reaffirmed: June 2015 | Product Number: G2SC01 | Price: $117.00
Catenary moorings for both permanent and temporary offshore installations

- Monohull-based floating production, storage, and offloading units (FPSOs, FSUs);
- Mobile offshore units (MOUs);
- Spar platforms;
- Mobile offshore drilling units (MODUs);
- Catenary anchor leg mooring (CALM) buoys;
- Catenary moorings for both permanent and temporary offshore installations

This document applies to synthetic fiber ropes used in the form of taut leg or catenary moorings for all permanent and temporary offshore installations. This specification defines the minimum requirements for manufacture, testing, and inspection of carbon and low-alloy steel forgings, including extrusions and heavy-wall seamless tubular product, grades 345 N/mm² to 586 N/mm² (50 ksi to 85 ksi) for use in primary steel applications. Service categories A, B, and C (SCA, SCB, and SCC) reflect forging geometry and method of incorporation into the overall system, rather than levels of criticality. They may also be designated by the user (purchaser) to reflect moderately different but standardized levels of performance.

Pages: 26

1st Edition | August 2013 | Product Number: G2SF01 | Price: $88.00

RP 2SIM

Structural Integrity Management of Fixed Offshore Structures

Serves as a guide for the structural integrity management of fixed offshore structures used for the drilling, development, production, and storage of hydrocarbons in offshore areas. Specific guidance is provided for the evaluation of structural damage, above and below water structural inspection, fitness-for-purpose assessment, risk reduction, and mitigation planning, and the process of decommissioning.

The SIM process provided in this recommended practice is applicable to platforms installed at any location worldwide. However, this recommended practice also provides specific metocean criteria, which are only applicable for use in fitness-for-purpose assessments of platforms located in the U.S. Gulf of Mexico and the U.S. West Coast.

Pages: 97

1st Edition | November 2014 | Product Number: G2SIM01 | Price: $175.00

RP 2SK

Design and Analysis of Stationkeeping Systems for Floating Structures

Includes Addendum 1 dated May 2008

Presents a rational method for analyzing, designing, or evaluating mooring systems used with floating units. This method provides a uniform analysis tool that, when combined with an understanding of the environment at a particular location, the characteristics of the unit being moored, and other factors, can be used to determine the adequacy and safety of the mooring system. Some design guidelines for dynamic positioning systems are also included. Appendix K of 2SK replaces RP 95F.

Pages: 181

Product Number: G2SK03 | Price: $131.00

RP 2SM

Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring

Covers the design, manufacture, and installation of synthetic fiber ropes to include the design and analysis considerations of mooring systems, design criteria for mooring components, rope design and testing, quality assurance, and in-service maintenance and inspection.

This document applies to synthetic fiber ropes used in the form of taut leg or catenary moorings for both permanent and temporary offshore installations such as:

- Monohull-based floating production, storage, and offloading units (FPSOs);
- Monohull-based floating storage units (FSOs, FSUs);
- Monohull or semi-submersible based floating production units (FPUs, FPSds);
- Mobile offshore drilling units (MODUs);
- Spar platforms;

*These translations are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

RP 2X
Recommended Practice for Ultrasonic and Magnetic Examination of Offshore Structural Fabrication and Guidelines for Qualification of Technicians

Contains guidance on commonly used NDE methods such as visual (VT), penetrant (PT), magnetic particle (MT), radiography (RT), and ultrasonic (UT) examinations, which are routinely used in offshore structural fabrication. This recommended practice primarily addresses the MT and UT methods. Guidance on VT, PT, and RT is incorporated by reference to AWS D1.1. Further recommendations are offered for determining the qualifications of personnel using MT and UT techniques. Recommendations are also offered for the integration of these techniques into a general quality control program. The interrelationship between joint design, the significance of defects in welds, and the ability of NDE personnel to detect critical-size defects is also discussed. Pages: 77

Product Number: G02X04 | Price: $151.00

Spec 2Y *
Specification for Steel Plates, Quenched-and-Tempered, for Offshore Structures

Covers two grades of high strength steel plate for use in welded construction of offshore structures, in selected critical portions that must resist impact, plastic fatigue loading, and lamellar tearing. Grade 50 is covered in thicknesses up to 6 in. (150 mm) inclusive, and Grade 60 is covered in thicknesses up to 4 in. (100 mm) inclusive. Pages: 13

5th Edition | December 2006 | Effective Date: June 1, 2007
Reaffirmed: January 2012 | Product Number: G02Y05 | Price: $97.00

RP 2Z
Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures

Covers requirements for preproduction qualification, by special welding and mechanical testing, of specific steelmaking and processing procedures for the manufacture of steel of a specified chemical composition range by a specific steel producer. This is a recommended practice for material selection and qualification, but not for the performance of production weld joints. This recommended practice was developed in conjunction with, and is intended primarily for use with, Specs 2W and 2Y. However, it may be used as a supplement to other material specifications (e.g. Spec 2H) if so desired. Pages: 19

Product Number: G02Z04 | Price: $123.00

RP 2Z *
Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures—Russian

Russian translation of RP 2Z.

4th Edition | September 2005 | Product Number: G02Z04R | Price: $98.00

RP 95J
Gulf of Mexico Jackup Operations for Hurricane Season

Presents an interim approach to siting jackup mobile offshore drilling units (MODUs) and to recommend certain operational procedures to enhance jackup survivability and stationkeeping during hurricane season in the Gulf of Mexico during drilling and workover and while stacked (idled) at a non-sheltered location. This RP provides guidance and processes, and when combined with an understanding of the environment at a particular location, the characteristics of the unit being utilized, and other factors, it may be used to enhance operational integrity. This RP was developed through a cooperative arrangement with the International Association of Drilling Contractors’ (IADC) Jackup Rig Committee. Specifically, this RP provides guidance in the following areas:

- site—including location-specific, geotechnical, and metocean;
- preloading process;
- air gap recommendations;
- unit preparations and evacuation;
- post storm recovery; and
- post storm inspections. Pages: 15

Product Number: G95J01 | Price: $64.00

DERREKKS AND MASTS

Spec 4F *
Specification for Drilling and Well Servicing Structures—Chinese

Chinese translation of Spec 4F.

RP 4G
Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures

(includes Addendum 1 dated August 2016)

Provides guidelines and establishes recommended procedures for inspection, maintenance, and repair of items for drilling and well servicing operations in the petroleum industry. These recommendations should be considered as supplemental to, and not as a substitute for, the manufacturer’s instructions and the recommendations in RP 54. Pages: 57

Product Number: G04G04 | Price: $119.00

RP 4G *
Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures—Chinese

Chinese translation of RP 4G.

4th Edition | April 2012 | Product Number: G04G04C | Price: $84.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 5A3/ISO 13678:2010
Recommended Practice on Thread Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements

Provides requirements, recommendations, and methods for the testing of thread compounds intended for use on threaded casing, tubing, and line pipe connections and for thread compounds intended for use on rotary shouldered connections. The tests outlined are used to evaluate the critical performance properties and physical and chemical characteristics of thread compounds under laboratory conditions.

This edition of RP 5A3 is the identical national adoption of ISO 13678:2010. Pages: 47

Product Number: GX5A303 | Price: $149.00

RP 5A5/ISO 15463:2003
Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe

 Specifies requirements and gives recommendations for field inspection and testing of oil country tubular goods (OCTG). This International Standard covers the practices and technology commonly used in field inspection; however, certain practices may also be suitable for mill inspections. Covers the qualification of inspection personnel, a description of inspection methods and apparatus calibration and standardization procedures for various inspection methods. The evaluation of imperfections and marking of inspected OCTG are included. Applicable to field inspection of OCTG and is not applicable for use as a basis for acceptance or rejection.

This edition of RP 5A5 is the identical national adoption of ISO 15463:2003. Pages: 118

Product Number: GX5A507 | Price: $162.00

Spec 5B
Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads

Covers dimensions, tolerances, and marking requirements for API threads and the gauges that control the acceptance criteria for the threads. Thread element gauges, instruments, and requirements for the inspection of threads for line pipe, round thread casing, round thread tubing; and buttress casing connections are included. Pages: 116

16th Edition | December 2017 | Product Number: G5B016 | Price: $155.00

RP 5B1
Gauging and Inspection of Casing, Tubing and Line Pipe Threads

Covers threading, gauging, gauging practice, and inspection of threads for casing, tubing, and line pipe made under Specs 5CT, 5DP and 5L. Also covers gauge specifications and certification for casing, tubing, and line pipe gauges. Pages: 48

Product Number: G05B105 | Price: $146.00
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Price</th>
<th>Edition</th>
<th>Date</th>
<th>Subject及 Spec名称</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G05C501</td>
<td>$98.00</td>
<td>3rd Edition</td>
<td>May 2018</td>
<td>RP 5C5</td>
<td>Procedures for Testing Casing and Tubing Connections</td>
</tr>
<tr>
<td>GX5C501</td>
<td>$186.00</td>
<td>1st Edition</td>
<td>August 2009</td>
<td>Spec 5C and Spec 7</td>
<td>Specification for Drill Pipe-Chinese</td>
</tr>
<tr>
<td>G05C504</td>
<td>$148.00</td>
<td>4th Edition</td>
<td>January 2017</td>
<td>RP 5C6</td>
<td>Pipe with Welded Connectors</td>
</tr>
<tr>
<td>GG5CRA01</td>
<td>$131.00</td>
<td>4th Edition</td>
<td>January 2017</td>
<td>RP 5C8</td>
<td>Care, Maintenance, and Inspection of Coiled Tubing</td>
</tr>
<tr>
<td>G05C504R</td>
<td>$214.00</td>
<td>10th Edition</td>
<td>June 2018</td>
<td>Spec 5CT</td>
<td>Casing and Tubing—Russian</td>
</tr>
<tr>
<td>GX5DP01C</td>
<td>$131.00</td>
<td>10th Edition</td>
<td>June 2018</td>
<td>Spec 5L</td>
<td>Line Pipe</td>
</tr>
<tr>
<td>G05L46</td>
<td>$284.00</td>
<td>46th Edition</td>
<td>April 2018</td>
<td>RP 5EX</td>
<td>Design, Verification, and Application of Solid Expandable Systems</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 5L1
Recommended Practice for Railroad Transportation of Line Pipe
Applies to the transportation on railcars of Spec 5L steel line pipe in sizes 2½" and larger in lengths longer than single random. These recommendations cover coated or uncoated pipe, but they do not encompass loading practices designed to protect pipe coating from damage. Pages: 5
Product Number: G5L107 | Price: $61.00

RP 5L1 *
Recommended Practice for Railroad Transportation of Line Pipe—Russian
Russian translation of RP 5L1.
7th Edition | September 2009 | Product Number: G5L107R | Price: $47.00

RP 5L2
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service
Provides for the internal coating of line pipe used for non-corrosive natural gas service. It is limited to the application of internal coatings on new pipe prior to installation. Pages: 21
Product Number: G5L204 | Price: $85.00

RP 5L2 *
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Chinese
Chinese translation of RP 5L2.
4th Edition | July 2002 | Product Number: G5L204C | Price: $61.00

RP 5L2 *
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Kazakh
Kazakh translation of RP 5L2.
4th Edition | July 2002 | Product Number: G5L204K | Price: $69.00

RP 5L2 *
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Russian
Russian translation of RP 5L2.

RP 5L3
Drop-Weight Tear Tests on Line Pipe
Describes procedures for a recommended method for conducting drop-weight tear tests to measure the fracture appearance or fracture ductility of line pipe as referenced in Spec 5L. Pages: 11

RP 5L3 *
Drop-Weight Tear Tests on Line Pipe—Russian
Russian translation of RP 5L3.

RP 5L7
Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe
Provides recommendations for materials, application, testing, and inspection of internal fusion bonded epoxy coatings on line pipe. Pages: 25
Product Number: G02906 | Price: $92.00

RP 5L7 *
Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe—Russian
Russian translation of RP 5L7.
2nd Edition | June 1988 | Product Number: G02906R | Price: $74.00

RP 5L8
Recommended Practice for Field Inspection of New Line Pipe
Covers the qualification of inspection personnel, a description of inspection methods, and apparatus calibration and standardization procedures for various inspection methods. The evaluation of imperfections and marking of inspected new line pipe are included. Also included are recommended procedures for field inspection and testing of new plain-end line pipe. This document was prepared specifically to address the practices and technology used in field inspection of line pipe, and certain parts are not suitable or appropriate for mill inspections. Pages: 39
Product Number: G05L82 | Price: $129.00

RP 5L8 *
Recommended Practice for Field Inspection of New Line Pipe—Kazakh
Kazakh translation of RP 5L8.
2nd Edition | December 1996 | Product Number: G05L82K | Price: $103.00

RP 5L8 *
Recommended Practice for Field Inspection of New Line Pipe—Russian
Russian translation of RP 5L8.
2nd Edition | December 1996 | Product Number: G05L82R | Price: $103.00

RP 5L9
External Fusion Bonded Epoxy Coating of Line Pipe
Provides standards for pipe suitable for use in conveying gas, water, and oil in both the oil and natural gas industries. Covers seamless and welded steel line pipe, including standard-weight and extra-strong threaded line pipe, and standard-weight plain-end, regular-weight plain-end, special plain-end, extra-strong plain-end, and double-extra-strong plain-end pipe, as well as bell and spigot and through-flowing (TFL) pipe. Pages: 35
Product Number: G5L901 | Price: $81.00

RP 5L9 *
External Fusion Bonded Epoxy Coating of Line Pipe—Kazakh
1st Edition | December 2001 | Product Number: G5L901K | Price: $66.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 5LC
CRA Line Pipe
(includes Errata 1 dated October 2015)
Covers seamless, centrifugal cast, and welded corrosion resistant alloy line pipe as well as austenitic stainless, martensitic stainless, duplex stainless, and Ni-base alloys. Also includes standard weight, regular weight, special, extra strong, and double extra strong plain end line pipe as well as processes of manufacturer, chemical and physical requirements, and methods of testing. Pages: 110
Product Number: G5LC04 | Price: $180.00

Spec 5LCP
Specification on Coiled Line Pipe
(includes Errata 1 dated July 2007)
Provides standards for pipe suitable for use in conveying gas, water, and oil in both the oil and natural gas industries. Covers welded steel continuously milled coiled line pipe in the size range 0.5 in. (12.7 mm) to 6.625 in. (168.3 mm). Pipe that is pipe-to-pipe welded outside the confines of the manufacturing plant is not included within this document. Pages: 42
2nd Edition | October 2006 | Effective Date: April 18, 2007
Reaffirmed: November 2012 | Product Number: G5LCP2 | Price: $150.00

Spec 5LD
CRA Clad or Lined Steel Pipe
(includes Errata 1 dated June 2017)
Covers seamless, centrifugal cast, and welded clad steel line pipe, and lined steel pipe with improved corrosion-resistant properties. The clad and lined steel line pipe specified in this document shall be composed of a base metal outside and CRA layer inside the pipe. The base material shall conform to Spec 5L, except as modified in the 5LC document. Provides standards for pipe with improved corrosion resistance suitable for use in conveying gas, water, and oil in both the oil and natural gas industries. Pages: 38
Product Number: G5LD04 | Price: $149.00

Spec 5LD
CRA Clad or Lined Steel Pipe—Russian
Russian translation of Spec 5LD.

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

RP 5LT
Recommended Practice for Truck Transportation of Line Pipe
Applies to the transportation on railcars of Spec 5L steel line pipe in sizes 2 3/4 in and larger in lengths longer than single random. These recommendations cover coated or uncoated pipe, but they do not encompass loading practices designed to protect pipe coating from damage. Pages: 6
1st Edition | March 2012 | Product Number: G5LT01 | Price: $61.00

RP 5LT
Recommended Practice for Truck Transportation of Line Pipe—Russian
Russian translation of RP 5LT.
1st Edition | March 2012 | Product Number: G5LT01R | Price: $48.00

RP 5LW
Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels
Applies to the transportation of Spec 5L steel line pipe by ship or barge. Covers both inland and marine waterways except in cases where the specific requirement of a paragraph references only marine or only inland-waterway transport. Pages: 5
Product Number: G5LW03 | Price: $61.00

RP 5LW
Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels—Russian
Russian translation of RP 5LW.
3rd Edition | September 2009 | Product Number: G5LW03R | Price: $48.00

RP 5SI
Recommended Practice for Purchaser Representative Surveillance and/or Inspection at the Supplier
Establishes a set of general guidelines addressing the protocol between purchasers, suppliers, and the purchaser representative for surveillance and/or inspection by the purchaser representative. It is a general document for use at the request of the purchaser of API products and is intended to provide only general guidance to the industry. Addresses the relationship and responsibility of the purchaser, suppliers, and purchaser representatives regarding surveillance and/or inspection of products from placement of the order or the pre-production meeting, as appropriate, through the point of title transfer from suppliers to purchasers. Pages: 7
Product Number: G5SI01 | Price: $59.00

RP 5SI
Recommended Practice for Purchaser Representative Surveillance and/or Inspection at the Supplier—Russian
Russian translation of RP 5SI.
1st Edition | January 2006 | Product Number: G5SI01R | Price: $47.00
Exploration and Production

Spec 5ST ◆
Specification for Coiled Tubing—U.S. Customary and SI Units
Covers the manufacturing, inspection, and testing of all carbon and low alloy steel coiled tubing in Grades CT70, CT80, CT90, CT100, and CT110, in the designations and wall thicknesses given in Table A.5, that can be used as work strings, completion strings, and static installations in oil and gas wells. Coiled tubing may be ordered to this specification. Coiled tubing is manufactured using the continuously milled process. This specification does not cover the joining of seamless or welded tubing segments in lengths less than 200 ft (61 m). Pages: 68
Product Number: G5ST01 | Price: $138.00

Spec 5ST *
Specification for Coiled Tubing—U.S. Customary and SI Units—Chinese
Chinese translation of Spec 5ST.
1st Edition | April 2010 | Product Number: G5ST01C | Price: $97.00

Bull 5T1
Imperfection and Defect Terminology
Provides terms and definitions and example figures of imperfections and defects that occur in manufacturing steel tubulars. The words “imperfection” and “defect” refer to metallurgical and other features of steel tubular products, which may or may not affect the performance of the products. Inspection requirements and acceptance criteria are not defined in this document, and are found instead in the respective product specification. Pages: 65
11th Edition | October 2017 | Product Number: G05T111 | Price: $131.00

Bull 5T1 * ■
Imperfection and Defect Terminology—Russian
Russian translation of Bull 5T1.
11th Edition | October 2017 | Product Number: G05T111R | Price: $105.00

TR 5TP
Torque-Position Assembly Guidelines for API Casing and Tubing Connections
Provides alternative connection assembly procedures to those found in Spec 5B (power turns) and those found in RP 5C1 (optimum torque). The procedures set forth are referred to as “torque-position” because the make-up torque and final position are used as acceptance criteria for the assembly operation. The connections are threaded in accordance with Spec 5B. The torque-position assembly parameters have been developed for most SC (short round thread casing), LC (long round thread casing), BC (buttress thread casing), and EU (external upset tubing) connections. Torque-position is a precision assembly method that relies on a controlled process for successful implementation. When defined threading and assembly procedures are followed, the performance of the resulting assembled connection is optimized. Pages: 30
1st Edition | December 2013 | Product Number: G5TP01 | Price: $118.00

Spec 6A ◆ ■
Specification for Wellhead and Tree Equipment
Specifies requirements for the performance, dimensional and functional interchangeability, design, materials, testing, welding, marking, handling, storing, shipment, purchasing, repair, and remanufacture of wellhead and tree equipment for use in the petroleum and natural gas industries. This document does not apply to field use, field testing, or field repair of wellhead and Christmas tree equipment.

This document is applicable to the following specific equipment: wellhead equipment (integral, blind, and test flanges; ring gaskets; threaded connectors; tees and crosses; bullplugs; valve-removal plugs; standard and nonstandard top connectors; crossover connectors; other end connectors; adapter spools and spacer spools; gate, plug, and ball valves; actuated valves [manual and remote]; check valves [swing and lift-type]; back-pressure valves; slip-type and mandrel-type casing and tubing hangers, casing and tubing heads [housings and adapters]; valves prepared for actuators, and actuators; underwater safety valve [USV] assemblies, valves prepared for actuators, and actuators; boardroom shutdown valve [BSDV] assemblies, valves prepared for actuators, and actuators; and tree assemblies).

This document defines service conditions in terms of pressure, temperature, and material class for the well-bore constituents, and operating conditions. This international standard establishes requirements for four product specification levels (PSL). These four PSL designations define different levels of technical quality requirements. Pages: 414
21st Edition | November 2018 | Effective Date: November 1, 2019
Product Number: GX06A21 | Price: $295.00

Spec 6A * ■
Specification for Wellhead and Tree Equipment—Russian
Russian translation of Spec 6A.
21st Edition | November 2018
Product Number: GX06A21R | Price: $236.00

TR 5TRSR22
Technical Report in SR22 Supplementary Requirements for Enhanced Leak Resistance LTC
Covers the supplemental requirements for Enhanced Leak Resistance LTC (5C22) connections and the changes in Spec 5CT, Std 5B, 5B1, and RP 5C1 needed to produce and inspect these connections. By agreement between the purchaser and manufacturer, the supplemental requirements for SR22 shall apply to connections manufactured in accordance with Spec 5CT. Pages: 24
1st Edition | June 2002 | Product Number: GSR22 | Price: $91.00

RP 5UE
Recommended Practice for Ultrasonic Evaluation of Pipe Imperfections
(includes Addendum 1 dated April 2009)
Describes procedures that may be used to “prove-up” the depth or size of imperfections. Included in this practice are the recommended procedures for ultrasonic prove-up inspection of new pipe using the Amplitude Comparison Technique and the Amplitude-Distance Differential Technique for evaluation of
• surface breaking imperfections in the body of pipe, and
• surface breaking and subsurface imperfections in the weld area of electric resistance, electric induction or laser welded pipe, and
• surface breaking and subsurface imperfections in the weld area of arc welded pipe. Pages: 22
Product Number: GSUE02 | Price: $81.00

VALVES AND WELLHEAD EQUIPMENT

Spec 6A ◆ ■
Specification for Wellhead and Tree Equipment
Specifies requirements for the performance, dimensional and functional interchangeability, design, materials, testing, welding, marking, handling, storing, shipment, purchasing, repair, and remanufacture of wellhead and tree equipment. Pages: 414

This document is applicable to the following specific equipment: wellhead equipment (integral, blind, and test flanges; ring gaskets; threaded connectors; tees and crosses; bullplugs; valve-removal plugs; standard and nonstandard top connectors; crossover connectors; other end connectors; adapter spools and spacer spools; gate, plug, and ball valves; actuated valves [manual and remote]; check valves [swing and lift-type]; back-pressure valves; slip-type and mandrel-type casing and tubing hangers, casing and tubing heads [housings and adapters]; valves prepared for actuators, and actuators; underwater safety valve [USV] assemblies, valves prepared for actuators, and actuators; boardroom shutdown valve [BSDV] assemblies, valves prepared for actuators, and actuators; and tree assemblies).

This document defines service conditions in terms of pressure, temperature, and material class for the well-bore constituents, and operating conditions. This international standard establishes requirements for four product specification levels (PSL). These four PSL designations define different levels of technical quality requirements. Pages: 414
21st Edition | November 2018 | Effective Date: November 1, 2019
Product Number: GX06A21 | Price: $295.00

Spec 6A * ■
Specification for Wellhead and Tree Equipment—Russian
Russian translation of Spec 6A.
21st Edition | November 2018
Product Number: GX06A21R | Price: $236.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Std 6ACRA
Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment
(includes Errata 1 dated October 2015, Addendum 1 dated September 2017, Errata 2 dated February 2018, and Addendum 2 dated September 2018)
Provides requirements for age-hardened nickel-base alloys that are intended to supplement the existing requirements of Spec 6A. For downstream applications, refer to Spec 5CRA.
These additional requirements include detailed process control requirements and detailed testing requirements. The purpose of these additional requirements is to ensure that the age-hardened nickel-base alloys used in the manufacture of Spec 6A pressure-containing and pressure-controlling components are not embrittled by the presence of an excessive level of deleterious phases and meet the minimum metallurgical quality requirements. This standard is intended to apply to pressure-containing and pressure-controlling components as defined in Spec 6A. Requirements of this standard may be applied by voluntary conformance by a manufacturer, normative reference in Spec 6A or other product specification(s), or by contractual agreement.
This document expands the scope of Std 6A718. With its issuance, it replaces Std 6A718, 2nd Edition in its entirety.

TR 6AF
Technical Report on Capabilities of API Flanges Under Combinations of Load
(includes Errata 1 dated March 2017)
This publication is a new entry in this catalog.

TR 6AF1
Technical Report on Temperature Derating of API Flanges Under Combination of Loading
Continuation to the report on the capabilities of flanges under combined loadings (PRAC B6-21) that resulted in the publication of Bull 6AF. Included in this technical report is an in-depth look into the effect of elevated temperatures of API flanges. The results in this report are analytical and assume a temperature gradient across the flange as stated in this report.

TR 6AF2
Technical Report on Capabilities of API Integral Flanges Under Combination of Loading—Phase II
(includes Errata 1 dated November 2018)
Result of the evaluation of the load carrying capacity of Spec 6A integral flanges, including the end tension and bending moment in addition to the conventional rated pressure and makeup forces. The effect of a temperature difference corresponding to 250 °F on the inside and 30 °F on the outside is also evaluated. Three-dimensional finite element meshes are generated for the Type 6B and Type 6BX flanges. The computer program SESAM is used to obtain the stresses at selected critical flange and hub sections and to determine the gasket reaction due to each of the four unit load cases and the temperature difference load case. The leakage criterion is defined as the load combination with reduces the initial makeup compressive forces in the gasket to zero. The stresses in each defined section are linearized in accordance with the ASME Section VIII, Division 2 procedure to determine the membrane and membrane-plus-bending stress intensities. The stress intensities are checked against the allowable conditions specified in Spec 6A.

Spec 6AV1
Validation of Safety and Shutdown Valves for Sandy Service
There are three service classes—Class I, Class II, and Class III—for API 6A surface safety valve (SSV), underwater safety valve (USV), or boarding shutdown valve (BSDV). This standard establishes sandy service design validation for valves to meet Class II and Class III.
Class II is intended to validate the valve bore sealing mechanism if substances such as sand can be expected to cause safety or shutdown valve failure.
Class III adds additional requirements and validation of the bonnet assembly inclusive of stem seals and may be selected by the user/purchaser. Validation to Class III also validates the same SSV/USV/BSDV for Class II in accordance with scaling limitations specified in the document.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Recommendations for the repair and remanufacture of steel ball, check, gate, and plug valves normally used in pipeline applications, as defined by Spec 6D. This RP covers repair or remanufacturing of end user’s (owner’s) valves for continued service in the owner’s production applications. Repaired or remanufactured valves may not meet API and/or the OEM standard requirements for new valves. The owner is responsible for the correct application of valves repaired or remanufactured per this document. It does not cover repair or remanufacture of used or surplus valves intended for resale. Furthermore, field repair is outside the scope of this document. Pages: 11

2nd Edition | May 2012 | Product Number: G06DR2 | Price: $65.00

RP 6DRC

Recommended Practice for the Repair and Remanufacture of Pipeline Valves

Provides guidelines for the repair and remanufacture of steel ball, check, gate, and plug valves normally used in pipeline applications, as defined by Spec 6D. This RP covers repair or remanufacturing of end user’s (owner’s) valves for continued service in the owner’s production applications. Repaired or remanufactured valves may not meet API and/or the OEM standard requirements for new valves. The owner is responsible for the correct application of valves repaired or remanufactured per this document. It does not cover repair or remanufacture of used or surplus valves intended for resale. Furthermore, field repair is outside the scope of this document. Pages: 11

2nd Edition | May 2012 | Product Number: G06DR2R | Price: $65.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating. The recommendation practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating.
The user is subject to additional inspection and testing—the user is recut after service. It should be realized that recut finishing. This standard applies both to newly manufactured connections and for special tolerance requirements, qualification, testing, inspection, and finishing. This standard is applicable to the following preferred rotary shouldered connection designs. These are traceable to an internationally supported tool joints, rotary shouldered connections, and gauging will remain in Spec 7 until they are moved into ISO documents in the future. This edition of Spec 7-1 is the identical national adoption of ISO 10424-1:2004.

Test data values that are acceptable based on their respective application, the responsibility of the user of this standard to establish the appropriate test data values that are acceptable based on their respective application, operational limitations, and safety practices. Pages: 18

This standard is intended to be used in a laboratory environment and is not intended for use in the field during operations. The testing requirements in this standard are not represented at well conditions. This standard is divided into four major areas: machine apparatus, procedures, materials, and reporting. This standard will not address the significance of specific data values. It is the responsibility of the user of this standard to establish the appropriate test data values that are acceptable based on their respective application, operational limitations, and safety practices. Pages: 18

Oil Field Chain and Sprockets
Covers the manufacture of the components for, and the assembly and packaging of, single and multiple strand, numbers 40 through 240, standard and heavy series roller chains for oil field applications, including chain designation, chain length tolerance, tensile strength specifications, pin and bushing press-out specifications, and dynamic test requirements. For informational purposes, Annex A provides recommendations for installation, lubrication, and maintenance of oil field chain drives, and Annex B includes a basic description of roller chain sprockets. Pages: 29

Recommended Practice for Drill Stem Design and Operating Limits
Covers recommendations for the design and selection of drill string members and includes considerations of hole angle control, drilling fluids, weight, and rotary speed. Tables and graphs are included that present dimensional, mechanical, and performance properties of new and used drill pipe; new tool joints used with new and used drill pipe; drill collars; and kellys. Recommended standards for inspection of used drill pipe, used tubing work strings, and used tool joints are included. Pages: 154

Casing Wear Tests
Provides a method by which results will be reproducible, under a specified set of conditions, for conducting tests that determine casing wear due to rotation of drill stem elements.

This standard is intended to be used in a laboratory environment and is not intended for use in the field during operations. The testing requirements in this standard are not represented at well conditions. This standard is divided into four major areas: machine apparatus, procedures, materials, and reporting. This standard will not address the significance of specific data values. It is the responsibility of the user of this standard to establish the appropriate test data values that are acceptable based on their respective application, operational limitations, and safety practices. Pages: 18

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Recommended Practice for Inspection and Classification of Drill Stem Element Inspection
(includes Errata 1 dated October 2009)
Specifies the requirements for each level of inspection and procedures for the inspection and testing of used drill stem elements. This document has been prepared to address the practices and technology commonly used in inspection. This document also specifies the qualification of inspection personnel, a description of inspection methods, and apparatus calibration and standardization procedures for various inspection methods. The evaluation of imperfections and the marking of inspected drill stem elements is included. This edition of RP 7G-2 is the identical national adoption of ISO 10407-2:2008. Pages: 213
Product Number: GX7G201 | Price: $144.00

RP 7G-2/ISO 10407-2:2008 *
Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish
Spanish translation of RP 7G-2.
1st Edition | August 2009 | Product Number: GX7G201SP | Price: $144.00

RP 7HU1
Safe Use of 2-Inch Hammer Unions for Oilfield Applications
(includes Errata 1 dated February 2014)
Sets forth procedural recommendations as well as an engineering solution to the mismatching of a female 2-in. Figure 402, a female 2-in. Figure 602, or a female 2-in. Figure 1002 hammer union component (sub) with a male 2-in. Figure 1502 hammer union component (wing nut) as described in 3.2. The procedural recommendations described in this recommended practice should be implemented to reduce further incidents. The engineering solution, which makes impossible the mating of female 2-in. Figure 402, 2-in. Figure 602, and/or 2-in. Figure 1002 subs with the wing nut of the 2-in. Figure 1502 hammer union, applies to the manufacture of new hammer union components and should not be applied in the modification of existing hammer union components due to unknown factors caused by field wear. Pages: 12
Product Number: H7HU11 | Price: $38.00

Spec 7K
Drilling and Well Servicing Equipment
(includes Errata 1 dated May 2016, Errata 2 dated August 2016, and Errata 3 dated October 2017)
Provides general principles and specifies requirements for design, manufacture, and testing of new drilling and well-servicing equipment and of replacement primary load-carrying components manufactured subsequent to the publication of this specification. This specification is applicable to the following equipment:
- rotary tables;
- rotary bushings;
- high-pressure mud and cement hoses;
- piston mud-pump components;
- drawworks components;
- manual tongs;
- safety clamps not used as hoisting devices;
- blowout preventer (BOP) handling systems;
- pressure-relieving devices for high-pressure drilling fluid circulating systems;
- sub-line valves for manual and power tongs;
- rotary slips, both manual and powered;
- slip bowls; and
- spiders, both manual and powered. Pages: 130
6th Edition | December 2015 | Product Number: G07K06 | Price: $206.00

Spec 7NRV
Specification for Drill String Non-Return Valves
Provides the minimum acceptable requirements for drill string non-return valve (NRV) equipment. It covers drill string non-return valves, non-return valve subs, non-return valve landing nipples, non-return valve equalizing heads, and all components that establish tolerances and/or clearances that may affect performance or interchangeability of the NRV equipment. Non-return valve subs, non-return valve landing nipples, non-return valve equalizing heads, and NRVs manufactured by different facilities or manufacturers may be supplied as separate items. Pages: 19
Product Number: G7NRV01 | Price: $72.00

Spec 7NRV *
Specification for Drill String Non-Return Valves—Chinese
Chinese translation of Spec 7NRV.
1st Edition | July 2006 | Product Number: G7NRV01C | Price: $50.00

HOISTING TOOLS

RP 8B
Recommended Practice for Procedures for Inspection, Maintenance, Repair, and Remanufacture of Hoisting Equipment
Provides guidelines and establishes requirements for inspection, maintenance, repair, and remanufacture of hoisting equipment manufactured according to Spec 8A, Spec 8C, or ISO 13535 used in drilling and production operations, in order to maintain the serviceability of this equipment. Items of drilling and production hoisting equipment covered are:
- crown-block sheaves and bearings;
- traveling blocks and hook blocks;
- block-to-hook adapters;
- connectors and link adapters;
- drilling hooks;
- tubing hooks and sucker-rod hooks;
- elevator links;
- casing elevators, tubing elevators, drill-pipe elevators, and drill-collar elevators;
- sucker-rod elevators;
- rotary swivel-bail adapters;

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 9C ♦
Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)
(includes Errata dated May 2014)
Provides requirements for the design, manufacture, and testing of hoisting equipment suitable for use in drilling and production operations. This specification is applicable to numerous drilling and production hoisting equipment, some of which include: hoisting sheaves, traveling and hook blocks; elevator links, casing elevators, sucker rod elevators, rotary and power swivels, drilling hooks, wireline anchors, drill string motion compensators, and safety clamps. Pages: 53
5th Edition | April 2012 | Effective Date: October 1, 2012
Product Number: G08C05 | Price: $144.00

Spec 9C ♦
Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)—Chinese
Chinese translation of Spec 9C.
5th Edition | April 2012 | Product Number: GX08C05C | Price: $101.00

WIRE ROPE

Spec 9A ♦
Specification for Wire Rope
(includes Errata 1 dated October 2012 and Addendum 1 dated November 2016)
Specifies the minimum requirements and terms of acceptance for the manufacture and testing of steel wire ropes not exceeding rope grade 2160 for the petroleum and natural gas industries. The following products are covered by this specification:
• wire rope,
• bright- or drawn-galvanized wire rope,
• well-measuring wire, and
• well-measuring strand.
Typical applications include tubing lines, rod hanger lines, sand lines, cable-tool drilling and clean out lines, cable tool casing lines, rotary drilling lines, winch lines, horse head pumping unit lines, torpedo lines, mast raising lines, guideline tensioner lines, riser tensioner lines, and mooring and anchor lines. Ropes for lifting slings and cranes, and wire for well-measuring and strand for well-servicing, are also included. The minimum breaking forces for the more common sizes, grades, and constructions of stranded rope are given in tables. However, this standard does not restrict itself to the classes covered by those tables. Other types, such as ropes with compacted strands and compacted (swaged) ropes, may also conform with its requirements. The minimum breaking force values for these ropes are provided by the manufacturer. For information only, other tables present the minimum breaking forces for large diameter stranded and spiral ropes (i.e. spiral strand and locked coil), while approximate nominal length masses for the more common stranded rope constructions and large diameter stranded and spiral ropes are also given. Pages: 57
26th Edition | May 2011 | Effective Date: November 1, 2011
Reaffirmed: April 2016 | Product Number: G9A026 | Price: $112.00

Spec 9A ♦
Specification for Wire Rope—Chinese
Chinese translation of Spec 9A.

RP 9B
Application, Care, and Use of Wire Ropes for Oil Field Service
Covers typical wire rope applications for the oil and gas industry. Typical practices in the application of wire rope to oil field service are indicated in Table 1, which shows the sizes and constructions commonly used. Because of the variety of equipment designs, the selection of other constructions than those shown is justifiable.
In oilfield service, wire rope is often referred to as wire line or cable. For the purpose of clarity, these various expressions are incorporated in this recommended practice. Pages: 44
14th Edition | October 2015 | Product Number: G9B014 | Price: $124.00

OIL WELL CEMENTS

Bull E3 ♦
Wellbore Plugging and Abandonment Practices
Addresses the environmental concerns related to well abandonment and inactive well practices. The primary environmental concerns are protection of usable aquifers from fluid migration; and isolation of hydrocarbon production and water injection intervals. Additional issues in the document include protection of surface soils and surface waters, future and use, and permanent documentation of plugged and abandoned wellbore locations and conditions. Pages: 22
2nd Edition | April 2018 | Product Number: G11008 | Price: $142.00

Spec 10A/ISO 10426-1:2009 ♦
Specification for Cements and Materials for Well Cementing
Specifies requirements and gives recommendations for six classes of well cements, including their chemical and physical requirements and procedures for physical testing. This specification is applicable to well cement classes A, B, C, and D, which are the products obtained by grinding Portland cement clinker and, if needed, calcium sulfate as an interground additive. Processing additives can be used in the manufacture of cement of these classes. Suitable set-modifying agents can be interground or blended during manufacture of class D cement. This specification is also applicable to well cement classes G and H, which are the products obtained by grinding clinker with no additives other than one or more forms of calcium sulfate, water or chemical additives as required for chromium (VI) reduction.
This edition of Spec 10A is the identical national adoption of ISO 10426-1:2009 (includes ISO errata). Pages: 38
Product Number: GX10A24 | Price: $149.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 10B-2
Recommended Practice for Testing Well Cements

(includes Errata 1 dated June 2006 and Errata 2 dated January 2007)
(supersedes RP 10B)

Provides methods for the testing of cement slurries and related materials under simulated well conditions. Pages: 111

2nd Edition | April 2013 | Product Number: G10B202 | Price: $227.00

RP 10B-2 *
Recommended Practice for Testing Well Cements—Russian

Russian translation of RP 10B-2.

2nd Edition | April 2013 | Product Number: G10B202R | Price: $182.00

RP 10B-3
Testing of Well Cements Used in Deepwater Well Construction

Provides procedures for testing well cement slurries and cement blends for use in a deepwater environment or wells drilled in areas with a low seafloor temperature or areas where low well temperatures exist. For the purposes of this document the term “deepwater” includes areas where low seafloor temperatures exist, independent of water depth.

The procedures contained in this document serve as guidance for the testing of well cement slurries used in deepwater well construction. Additionally, testing methods contained in this document (most notably at mudline conditions) may also be used in those circumstances where low seafloor temperatures are found at shallow water depths. These conditions are found in areas including the North Sea, Norwegian Sea, Barents Sea, Kara Sea, Beaufort Sea, Chukchi Sea, Caspian Sea, and Black Sea.

The test methods contained in this recommended practice, though generally based on API 10B-2, take into account the specialized testing requirements and unique wellbore temperature profiles found in deepwater wells or wells in areas with low seafloor temperatures. This document does not address the mitigation of shallow water flow zones in deepwater wells, which is addressed in RP 65.

Pages: 32

2nd Edition | January 2016 | Product Number: G10B32 | Price: $98.00

RP 10B-4
Preparation and Testing of Foamed Cement Formulations at Atmospheric Pressure

Defines the test methods including the generation of unfoamed base and their corresponding foamed cement slurries at atmospheric pressure. These procedures are developed for foaming cement slurries with air, atmospheric conditions, which could mimic a foam quality experienced with nitrogen at downhole conditions; they may be modified to accommodate other gases such as nitrogen. Slurries that are foamed with nitrogen, and their properties, will also be discussed within this standard as they are relevant to the scope of the standard.

This standard does not address testing at pressures above atmospheric conditions nor does this standard include or consider the effects of nitrogen solubility in the nitrogen fraction calculations. Pages: 40

2nd Edition | October 2015 | Product Number: G10B402 | Price: $98.00

RP 10B-5/ISO 10426-5:2004
Recommended Practice on Determination of Shrinkage and Expansion of Well Cement Formulations at Atmospheric Pressure

Provides the methods for the testing of well cement formulations to determine the dimension changes during the curing process (cement hydration) at atmospheric pressure only. This is a base document, because under real well cementing conditions shrinkage and expansion take place under pressure and different boundary conditions.

This edition of RP 10B-5 is the identical national adoption of ISO 10426-5:2004.

Pages: 13

Product Number: GX10B501 | Price: $82.00

RP 10B-6/ISO 10426-6:2008
Recommended Practice on Determining the Static Gel Strength of Cement Formulations

This document specifies requirements and provides test methods for the determination of static gel strength (SGS) of the cement slurries and related materials under simulated well conditions.

This edition of RP 10B-6 is the modified national adoption of ISO 10426-6:2008.

Pages: 7

1st Edition | August 2010 | Reaffirmed: April 2015
Product Number: GG10B601 | Price: $64.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
**TR 10TR1 *
Cement Sheath Evaluation—Kazakh
Kazakh translation of TR 10TR1.
1st Edition | May 2008 | Product Number: G10TR12K | Price: $119.00

**TR 10TR1 *
Cement Sheath Evaluation—Russian
Russian translation of TR 10TR1.

**TR 10TR2 *
Shrinkage and Expansion in Oilwell Cements
Provides the petroleum industry with information for three types of centralizers, their selection and application, and their advantages and limitations. Pages: 23
1st Edition | July 2008 | Product Number: G10TR12R | Price: $126.00

**TR 10TR3 *
Technical Report on Temperatures for API Cement Operating Thickening Time Tests
Summarizes work performed by the 1984-91 API Task Group on Cementing Temperature Schedules to update the temperatures in API well-simulation test schedules found in RP 10B. The Task Group reviewed the largest set of temperature data available to the industry to date, resulting in significant improvements to the temperatures in the well-simulation test schedules. Pages: 57

**TR 10TR4 *
Selection of Centralizers for Primary Cementing Operations
Provides the petroleum industry with information for three types of centralizers, their selection and application, and their advantages and limitations. Pages: 23
1st Edition | May 2008 | Product Number: G10TR140 | Price: $50.00

**TR 10TR4 *
Selection of Centralizers for Primary Cementing Operations—Russian
Russian translation of TR 10TR4.
1st Edition | May 2008 | Product Number: G10TR140R | Price: $49.00

**TR 10TR5 *
Methods for Testing of Solid and Rigid Centralizers
Provides the industry with methods for testing rigid and solid centralizers. Pages: 16
1st Edition | May 2008 | Product Number: G10TR150 | Price: $63.00

**TR 10TR5 *
Methods for Testing of Solid and Rigid Centralizers—Kazakh
Kazakh translation of TR 10TR5.
1st Edition | May 2008 | Product Number: G10TR150K | Price: $50.00

**TR 10TR5 *
Methods for Testing of Solid and Rigid Centralizers—Russian
Russian translation of TR 10TR5.
1st Edition | May 2008 | Product Number: G10TR150R | Price: $49.00

**TR 10TR6 *
Evaluation and Testing of Mechanical Cement Wiper plugs
Provides recommended testing, evaluation, and performance requirements for mechanical cement wiper plugs. Mechanical cementing wiper plugs are used in most application including casing, liners, drill pipe, and tubing for primary and remedial cementing operations where they serve multiple functions in well operations, such as the following:
- separation of fluids inside of pipe,
- wiping of materials from the inner surface of pipe,
- operation of a downhole tool,
- surface indication of a downhole event, and
- formation of a temporary pressure barrier. Pages: 46

**TR 10TR7 *
Mechanical Behavior of Cement
Provides the necessary cement property data for use in cement sheath integrity simulations. The compressive strength tests and nondestructive sonic determination of compressive strength of cement defined in API 10B-2 do not provide suitable data for cement sheath integrity simulations. The methods of API 10B-2 provide information on the strength of cement to ensure that the cement is suitable for general well construction applications and to determine when sufficient strength is developed to allow well operations to continue. Pages: 63
1st Edition | December 2017 | Product Number: G10TR170 | Price: $121.00

**RP 65-1 *
Cementing Shallow-Water Flow Zones in Deepwater Wells
Describes methods designed to prevent shallow-water flow (SWF) during and following cementing of wells located in deep water. It is the compilation of technology and practices developed and used by many operators around the world. Although most of the discussion in this standard is focused on SWF, shallow flows can be mixtures of water, gas, gas hydrates, and formation fines. There is no single method of preventing SWF, and many of the activities described can require customization to fit individual well conditions. Pages: 71
2nd Edition | June 2018 | Product Number: G65101 | Price: $137.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Std 65-2 ✦
Isolating Potential Flow Zones During Well Construction
Contains best practices for zone isolation in wells to prevent annular pressure and/ or flow through or past pressure-containment barriers that are installed and verified during well construction. Well construction practices that may affect barrier sealing performance are mentioned along with methods to help ensure positive effects or to minimize any negative ones. The objectives of this guideline are two-fold. The first is to help prevent and/or control flows just prior to, during, and after primary cementing operations to install or “set” casing and liner pipe strings in wells. The second objective is to help prevent sustained casing pressure (SCP). The guidance from this document covers recommendations for pressure-containment barrier design and installation and well construction practices that affect the zone isolation process to prevent or mitigate annular fluid flow or pressure. Pages: 83
Product Number: G65202 | Price: $134.00

FIELD OPERATING EQUIPMENT

RP 11AR
Recommended Practice for Care and Use of Subsurface Pumps
(includes Errata dated December 2013)
Provides information on the proper selection, operation, and maintenance of subsurface pumps so the best economical life can be obtained. Pages: 50
Product Number: G11AR4 | Price: $128.00

Spec 11AX ✦
Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings
Provides the requirements and guidelines for the design of subsurface sucker rod pumps and their components as defined herein for use in the sucker rod lift method for the petroleum and natural gas industry. The specification covers subsurface sucker rod pump assemblies (including insert and tubing), components, and fittings in commonly used bore sizes for the sucker rod lift method. Sufficient dimensional and material requirements are provided to assure interchangeability and standardization of all component parts. The specification does not cover specialty subsurface sucker rod pump accessories or special design components. Also, installation, operation, and maintenance of these products are not included in this specification; however, recommendations can be found in RP 11AR. Pages: 107
Product Number: G11AX13 | Price: $180.00

Spec 11AX ✦
Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings—Russian
Russian translation of Spec 11AX.

Spec 11B ✦
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees
(includes Errata 1 dated October 2010 and Errata 2 dated February 2011)
Provides the requirements and guidelines for the design and rating of steel sucker rods and pony rods, polished rods, polished rod liners, couplings and sub-couplings, fiber reinforced plastic (FRP) sucker rods, sinker bars, polished rod clamps, stuffing boxes, and pumping tees as defined herein for use in the sucker rod lift method for the petroleum and natural gas industry. Annexes A through H provide the requirements for specific products. Annex I includes the requirements for thread gauges, Annex J illustrates the components of a sucker rod lift system, and Annex K shows examples of sucker rod discontinuities. This specification does not cover sucker rod guides, sucker rod rotators, shear tools, on-off tools, stabilizer bars, sealing elements used in stuffing boxes, or interface connections for stuffing boxes and pumping tees. Also, installation, operation, and maintenance of these products are not included in this specification. Pages: 91
Product Number: G11B27 | Price: $160.00

Spec 11B ✦
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Chinese
Chinese translation of Spec 11B.

Spec 11B ✦
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Russian
Russian translation of Spec 11B.

RP 11BR
Recommended Practice for the Care and Handling of Sucker Rods
Covers the care and handling of steel sucker rods, including guidelines on selection, allowable stress, proper joint makeup, corrosion control, and used rod inspection. Pages: 28
Product Number: G11BR09 | Price: $108.00

RP 11BR ✦
Recommended Practice for the Care and Handling of Sucker Rods—Chinese
Chinese translation of RP 11BR.
9th Edition | August 2008 | Product Number: G11BR09C | Price: $76.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
counterbalance units, prime movers and power transmission devices outside of materials, installation and maintenance of the equipment, beam type not exceed 3,600 r/min. This standard does not cover chemical properties any stage does not exceed 5,000 ft/min and the speed of any shaft does
designs applied to beam pumping units in which the pitch-line velocity of
identified in this specification are limited to single and multiple stage
specification. Also included are the requirements for the design and rating of
structure and/or gear reducer by the polished rod load are considered in this
are all components between the carrier bar and the speed reducer input
This edition of Std 1103 is the identical national adoption of ISO 15136-2:2006. Pages: 99
Product Number: G11D301 | Price: $109.00
Spec 11E ◆
Specification for Pumping Units
(includes Errata 1 dated August 2015 and Addendum 1 dated April 2018)
Provides the requirements and guidelines for the design and rating of beam
pumping units for use in the petroleum and natural gas industry. Included
are all components between the carrier bar and the speed reducer input
This includes the beam pump structure, the pumping unit gear
reducer, and the pumping unit chain reducer. Only loads imposed on the
structure and/or gear reducer by the polished rod load are considered in this
specification. Also included are the requirements for the design and rating of
enclosed speed reducers wherein the involute gear tooth designs include
helical and herringbone gearing. The rating methods and influences
identified in this specification are limited to single and multiple stage
designs applied to beam pumping units in which the pitch-line velocity of
any stage does not exceed 3,600 r/min and the speed of any shaft does
not exceed 3,600 r/min. This standard does not cover chemical properties of
materials, installation and maintenance of the equipment, beam type
counterbalance units, prime movers and power transmission devices outside the
gear reducer, or control systems. Pages: 104
19th Edition | November 2013 | Effective Date: May 1, 2014
Product Number: G11E019 | Price: $175.00
Spec 11E *
Specification for Pumping Units—Chinese
Chinese translation of Spec 11E.
19th Edition | November 2013
Product Number: G11E019C | Price: $123.00
Spec 11E *
Specification for Pumping Units—Russian
Russian translation of Spec 11E.
19th Edition | November 2013
Product Number: G11E019R | Price: $140.00
RP 11G
Recommended Practice for Guarding of Pumping Units
Provides a reference or guide for the design, manufacture, and installation of
guards for oil well pumping units. It is based on practices that experience
has shown to be functionally safe and practical. This recommended practice
is intended to provide safeguards for all persons who are required to work
around or on oil well pumping units. Pages: 17
3rd Edition | November 2009 | Reaffirmed: March 2015
Product Number: G11G003 | Price: $82.00
*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Exploration and Production

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

TR 11L6 * Technical Report on Electric Motor Prime Mover for Beam Pumping Unit Service—Chinese

2nd Edition | May 2008 | Product Number: G11L602C | Price: $63.00

RP 11S Recommended Practice for the Operation, Maintenance, and Troubleshooting of Electric Submersible Pump Installations

Covers all of the major components that comprise a standard electric submersible pumping system, their operation, maintenance, and troubleshooting. It is specifically prepared for installations in oil and water producing wells where the equipment is installed on tubing. It is not prepared for equipment selection or application. Pages: 18

Product Number: G11S03 | Price: $85.00

RP 11S1 Recommended Practice for Electrical Submersible Pump Teardown Report

Covers a recommended electrical submersible pump teardown report form. It also includes equipment schematic drawings that may provide assistance in identifying equipment components. These schematics are for generic equipment components, and there may be differences between manufacturers on the exact description or configuration of the assemblies. Pages: 36

Reaffirmed: October 2013 | Product Number: G11S13 | Price: $126.00

RP 11S2 Recommended Practice for Electric Submersible Pump Testing

Provides guidelines and procedures covering electric submersible pump performance testing intended to establish product consistency. These practices are generally considered appropriate for the majority of pump applications. This document covers the acceptance testing of electric submersible pumps (sold as new) by manufacturers, vendors, or users to the prescribed minimum specifications. Pages: 12

2nd Edition | August 1997 | Effective Date: October 1, 1997
Reaffirmed: October 2013 | Product Number: G11S22 | Price: $85.00

RP 11S2 * Recommended Practice for Electric Submersible Pump Testing—Russian

Russian translation of RP 11S2.

2nd Edition | August 1997 | Product Number: G11S22R | Price: $69.00

RP 11S3 Recommended Practice for Electrical Submersible Pump Installations

Addresses the installation and replacement of all major components comprising an electrical submersible pumping system. Specifically, it addresses equipment installation on tubing in oil and gas production operations. Pages: 11

Product Number: G11S32 | Price: $92.00

RP 11S3 * Recommended Practice for Electrical Submersible Pump Installations—Russian

Russian translation of RP 11S3.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

RP 11S4 Recommended Practice for Sizing and Selection of Electric Submersible Pump Installations

Discusses in some detail each component of the ESP system (pump, motor, intake, seal or protector, cable, switchboard, etc.) as far as what must be considered for the best selection at a desired rate and well conditions. Examples are given to illustrate the basic design procedure and illustrate how PVT correlations, multiphase flow correlations, and inflow performance relationships are used. Summary designs and computer examples using the detailed design principles are presented that show how design considerations fit together and how tools such as computer programs allow faster solutions resulting in easier trial and error calculations for optimization of designs and study of existing installations. Topics such as PVT correlations, multiphase flow correlations, and inflow performance relationships are discussed in the appendices. Pages: 31

Product Number: G11S43 | Price: $81.00

RP 11S5 Recommended Practice for the Application of Electrical Submersible Cable Systems

Covers the application (size and configuration) of electrical submersible cable systems by manufacturers, vendors, or users. The document addresses the various uses of different cable insulation systems, including jackets, braids, armor, and related coverings, as well as auxiliary cable components for cable conductors. The document also addresses splicing and terminating cables including splicing, lengthening, and repairs. Pages: 38

Product Number: G11S52 | Price: $112.00

RP 11S6 Recommended Practice for Testing of Electric Submersible Pump Cable Systems

Covers field testing of electric submersible pump cable systems. This document is organized into three major topic categories. The first category provides general definitions and an overview of terms, safety considerations, and cable system preparation guidelines. The second category identifies various situations under which testing is performed. The third category identifies test methods and procedures. Pages: 18

Product Number: G11S61 | Price: $92.00

RP 11S7 Recommended Practice on Application and Testing of Electric Submersible Pump Seal Chamber Sections

Applies to the seal chamber section used in support of an electric submersible motor. The recommended practice contains tutorial, testing, and failure evaluation information on the seal chamber section used in support of an electric submersible motor. The document provides a general understanding of construction and functioning of seal chamber sections, identification of well conditions, system requirements, and characteristics that influence component section and application. Pages: 28

Product Number: G05947 | Price: $92.00

RP 11S8 Recommended Practice on Electric Submersible System Vibrations

Provides guidelines to establish consistency in the control and analysis of electric submersible pumping system (ESP) system vibrations. This document is considered appropriate for the testing of ESP systems and subsystems for the majority of ESP applications. This RP covers the vibration limits, testing, and analysis of ESP systems and subsystems. Pages: 18

2nd Edition | October 2012 | Product Number: G11S802 | Price: $80.00

* This publication is a new entry in this catalog.
◆ This publication is related to an API licensing, certification, or accreditation program.
Spec 12B ◆
Specification for Bolted Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed and open top, bolted steel storage tanks in various standard sizes and capacities for internal pressures approximately atmospheric. This specification is designed to provide the oil production industry with safe and economical bolted tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 31
16th Edition | November 2014
Product Number: G12B156 | Price: $124.00

Spec 12D ◆
Specification for Field-Welded Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed top, welded steel storage tanks with internal pressures approximately atmospheric at various sizes and capacities ranging from 500 to 10,000 barrels. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 29
12th Edition | June 2017 | Effective Date: December 1, 2017
Product Number: G12D12 | Price: $111.00

Spec 12F ◆
Specification for Shop Welded Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for shop-fabricated vertical, cylindrical, aboveground, closed top, welded steel storage tanks with internal pressures approximately atmospheric at various sizes and capacities ranging from 90 to 750 barrels. Tanks covered by this specification have been designed using established engineering calculations to determine minimum metal thickness and bolting specifications for each size tank filled with water. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. Pages: 25
12th Edition | October 2008 | Effective Date: April 1, 2009
2-Year Extension: November 2015
Product Number: G12F12 | Price: $100.00

Spec 12F ◆
Specification for Shop Welded Tanks for Storage of Production Liquids—Chinese
Chinese translation of Spec 12F.
12th Edition | October 2008 | Product Number: G12F12C | Price: $70.00

Spec 12J ◆
Specification for Oil and Gas Separators
Covers minimum requirements for the design, fabrication, and plant testing of oil and gas separators and oil-gas-water separators that are used in the production of oil and gas and are located at some point on the producing flow line between the wellhead and pipeline. Separators covered by this specification may be vertical, spherical, or single or double barrel horizontal. Unless otherwise agreed upon between the purchaser and the manufacturer, the jurisdiction of this specification terminates with the pressure vessel as defined in Section VII, Division 1 of the ASME Boiler and Pressure Vessel Code. Pressure vessels covered by this specification are normally classified as natural resource vessels. Separators outside the scope of this specification include centrifugal separators, filter separators, and desanding separators. Pages: 25
8th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12J08 | Price: $100.00

Spec 12J ◆
Specification for Oil and Gas Separators—Chinese
Chinese translation of Spec 12J.
8th Edition | October 2008 | Product Number: G12J08C | Price: $70.00

Spec 12J ◆
Specification for Oil and Gas Separators—Russian
Russian translation of Spec 12J.
8th Edition | October 2008 | Product Number: G12J08R | Price: $80.00

Spec 12K ◆
Specification for Indirect Type Oilfield Heaters
Covers minimum requirements for the design, fabrication, and shop testing of oilfield indirect type fired heaters that are used in the production of oil, gas, and associated fluid. The heaters are located at some point on the producing flow line between the wellhead and pipeline. Heater components covered by this specification include the pressurized coils, the shell, heater bath, firetube, and the firing system. For purposes of this specification, the termination of a heater coil is at the first bivel when coils are furnished beveled for welding, or the face of the first fitting when fittings are furnished as the inlet or outlet connection to the coil. All fittings and valves between the inlet and outlet of the coil are to be considered within the coil limit. Heaters outside the scope of this specification include steam and other vapor generators, reboilers, indirect heaters employing heat media other than water solutions, all types of direct fired heaters, shell-and-tube bundles or electrical heating elements, and coils operating at temperatures less than -20 °F. Pages: 35
8th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12K08 | Price: $118.00

Spec 12K ◆
Specification for Indirect Type Oilfield Heaters—Chinese
Chinese translation of Spec 12K.
8th Edition | October 2008 | Product Number: G12K08C | Price: $83.00

Spec 12L ◆
Specification for Vertical and Horizontal Emulsion Treaters
Covers minimum requirements for material, design, fabrication, and testing of vertical and horizontal emulsion treaters. Emulsion treating is normally conducted on crude oil immediately after it is separated from its associated gas in a vessel referred to as a treater or sometimes as a heater treater. High gas-oil ratio wells or those produced by gas lift may require the installation of an oil and gas separator upstream of the treater to remove most of the associated gas before the emulsion enters the treater. Where the water to oil ratio is high, freewater knockout may be required upstream of the treater. The jurisdiction of this specification terminates with each pressure vessel as applicable: the emulsion treater with firetube(s) and, if used, the heat exchanger(s) and water siphon. Pressure vessels covered by this specification are classified as natural resource vessels. An emulsion treater is a pressure vessel used in the oil producing industry for separating oil-water emulsions and gas and for breaking or resolving emulsified well streams into water and saleable clean oil components. Emulsion treaters are usually equipped with one or more removable firetubes or heat exchange elements through which heat is applied to the water and/or emulsion to aid the emulsion breaking process. Pages: 39
8th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12L05 | Price: $100.00
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

RP 12N
Recommended Practice for the Operation, Maintenance and Testing of Firebox Flame Arrestors
Covers practices that should be considered in the installation, maintenance, and testing of firebox flame arrestors installed on the air intake of oilfield production equipment. Pages: 6
Product Number: G12N02 | Price: $85.00

Spec 12P
Specification for Fiberglass Reinforced Plastic Tanks
Covers material, design, fabrication, and testing requirements for fiberglass reinforced plastic (FRP) tanks. Only shop-fabricated, vertical, cylindrical tanks are covered. Tanks covered by this specification are intended for above ground and atmospheric pressure service. This specification applies to new tanks. The requirements may be applied to existing tanks at the discretion of the owner/operator.
This specification is designed to provide the petroleum industry with various standard sizes of FRP tanks. Because of the versatility of FRP tanks, the user shall be responsible for determining the suitability of FRP tanks for the intended service. Unsupported cone bottom tanks are outside the scope of this specification. Pages: 27
4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G12P04 | Price: $111.00

RP 12R1
Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service
(includes Addendum 1 dated December 2017)
For use as a guide for new tank installations and maintenance of existing tanks, Spec 12R1 contains recommendations for good practices in the collection of well or lease production; gauging; delivery to pipeline carriers for transportation; and other production storage and treatment operations. This recommended practice is intended primarily for application to tanks fabricated to Specs 12F, 12D, 12F, and 12P when employed in on-land production service, but its basic principles are applicable to atmospheric tanks of other dimensions and specifications when they are employed in similar oil and gas production, treating, and processing services. It is not applicable to refineries, petrochemical plants, marketing bulk stations, or pipeline storage facilities operated by carriers. Pages: 63
2-Year Extension: November 2015
Product Number: G12R15 | Price: $136.00

DRILLING, COMPLETION, AND FRACTURING FLUIDS

Spec 13A/ISO 13500:2009 *
Specification for Drilling Fluid Materials—Chinese
Chinese translation of Spec 13A.
18th Edition | February 2010
Product Number: GX13A018C | Price: $131.00

RP 13B-1/ISO 10414-1:2008
Recommended Practice for Field Testing Water-Based Drilling Fluids (includes Errata 1 dated August 2014)
Provides standard procedures for determining the following characteristics of water-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- water, oil, and solids contents;
- sand content;
- methylene blue capacity;
- pH;
- alkalinity and lime content;
- chloride content;
- total hardness as calcium.
Annexes A through K provide additional test methods.
This edition of API 13B-1 is the identical national adoption of ISO 10414-1:2008. Pages: 91
Product Number: GX13B14 | Price: $170.00

RP 13B-2
Recommended Practice for Field Testing Oil-Based Drilling Fluids (includes Errata 1 dated August 2014 and Errata 2 dated March 2018)
Provides standard procedures for determining the following characteristics of oil-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- oil, water, and solids concentrations;
- alkalinity, chloride concentration, and calcium concentration;
- electrical stability;
- lime and calcium concentrations, calcium chloride, and sodium chloride concentrations;
- low-gravity solids and weighting material concentrations.
The annexes provide additional test methods or examples that can optionally be used for the determination of:
- shear strength (Annex A);
- oil and water concentrations from cuttings (Annex B);
- drilling fluid activity (Annex C);
- aniline point (Annex D);
- lime, salinity, and solids concentration (Annex E);
- sampling, inspection, and rejection (Annex F);
- rig-site sampling (Annex G);
- cuttings activity (Annex H);
- active sulfide (Annex I);
- calibration and verification of glassware, thermometers, viscometers, retort kit cups, and drilling fluid balances (Annex J);
- high-temperature/high-pressure filtration using the permeability-plugging apparatus (PPA) (Annex K);
- elastomer compatibility (Annex L);
- sand content of oil-based fluid (Annex M);
- identification and monitoring of weight-material sag (Annex N);
- oil-based drilling fluid test report form (Annex O). Pages: 141
5th Edition | April 2014
Product Number: G13B205 | Price: $211.00

Spec 13A/ISO 13500:2009 *
Specification for Drilling Fluid Materials—Chinese
Chinese translation of Spec 13A.
18th Edition | February 2010
Product Number: GX13A018C | Price: $131.00

RP 13B-1/ISO 10414-1:2008
Recommended Practice for Field Testing Water-Based Drilling Fluids (includes Errata 1 dated August 2014)
Provides standard procedures for determining the following characteristics of water-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- water, oil, and solids contents;
- sand content;
- methylene blue capacity;
- pH;
- alkalinity and lime content;
- chloride content;
- total hardness as calcium.
Annexes A through K provide additional test methods.
This edition of API 13B-1 is the identical national adoption of ISO 10414-1:2008. Pages: 91
Product Number: GX13B14 | Price: $170.00

RP 13B-2
Recommended Practice for Field Testing Oil-Based Drilling Fluids (includes Errata 1 dated August 2014 and Errata 2 dated March 2018)
Provides standard procedures for determining the following characteristics of oil-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- oil, water, and solids concentrations;
- alkalinity, chloride concentration, and calcium concentration;
- electrical stability;
- lime and calcium concentrations, calcium chloride, and sodium chloride concentrations;
- low-gravity solids and weighting material concentrations.
The annexes provide additional test methods or examples that can optionally be used for the determination of:
- shear strength (Annex A);
- oil and water concentrations from cuttings (Annex B);
- drilling fluid activity (Annex C);
- aniline point (Annex D);
- lime, salinity, and solids concentration (Annex E);
- sampling, inspection, and rejection (Annex F);
- rig-site sampling (Annex G);
- cuttings activity (Annex H);
- active sulfide (Annex I);
- calibration and verification of glassware, thermometers, viscometers, retort kit cups, and drilling fluid balances (Annex J);
- high-temperature/high-pressure filtration using the permeability-plugging apparatus (PPA) (Annex K);
- elastomer compatibility (Annex L);
- sand content of oil-based fluid (Annex M);
- identification and monitoring of weight-material sag (Annex N);
- oil-based drilling fluid test report form (Annex O). Pages: 141
5th Edition | April 2014
Product Number: G13B205 | Price: $211.00

Spec 13A/ISO 13500:2009 *
Specification for Drilling Fluid Materials—Chinese
Chinese translation of Spec 13A.
18th Edition | February 2010
Product Number: GX13A018C | Price: $131.00

RP 13B-1/ISO 10414-1:2008
Recommended Practice for Field Testing Water-Based Drilling Fluids (includes Errata 1 dated August 2014)
Provides standard procedures for determining the following characteristics of water-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- water, oil, and solids contents;
- sand content;
- methylene blue capacity;
- pH;
- alkalinity and lime content;
- chloride content;
- total hardness as calcium.
Annexes A through K provide additional test methods.
This edition of API 13B-1 is the identical national adoption of ISO 10414-1:2008. Pages: 91
Product Number: GX13B14 | Price: $170.00

RP 13B-2
Recommended Practice for Field Testing Oil-Based Drilling Fluids (includes Errata 1 dated August 2014 and Errata 2 dated March 2018)
Provides standard procedures for determining the following characteristics of oil-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- oil, water, and solids concentrations;
- alkalinity, chloride concentration, and calcium concentration;
- electrical stability;
- lime and calcium concentrations, calcium chloride, and sodium chloride concentrations;
- low-gravity solids and weighting material concentrations.
The annexes provide additional test methods or examples that can optionally be used for the determination of:
- shear strength (Annex A);
- oil and water concentrations from cuttings (Annex B);
- drilling fluid activity (Annex C);
- aniline point (Annex D);
- lime, salinity, and solids concentration (Annex E);
- sampling, inspection, and rejection (Annex F);
- rig-site sampling (Annex G);
- cuttings activity (Annex H);
- active sulfide (Annex I);
- calibration and verification of glassware, thermometers, viscometers, retort kit cups, and drilling fluid balances (Annex J);
- high-temperature/high-pressure filtration using the permeability-plugging apparatus (PPA) (Annex K);
- elastomer compatibility (Annex L);
- sand content of oil-based fluid (Annex M);
- identification and monitoring of weight-material sag (Annex N);
- oil-based drilling fluid test report form (Annex O). Pages: 141
5th Edition | April 2014
Product Number: G13B205 | Price: $211.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 13C
Recommended Practice on Drilling Fluid Processing Systems Evaluation

Specifies a standard procedure for assessing and modifying the performance of solids control equipment systems commonly used in the field in petroleum and natural gas drilling fluids processing. The procedure described in this standard is not intended for the comparison of similar types of individual pieces of equipment. Pages: 60

7th Edition | September 2017 | Product Number: G13C07 | Price: $159.00

RP 13D
Rheology and Hydraulics of Oil-Well Drilling Fluids

Provides a basic understanding of and guidance about drilling fluid rheology and hydraulics, and their application to drilling operations. For this recommended practice, rheology is the study of flow characteristics of a drilling fluid and how these characteristics affect movement of the fluid. Specific measurements are made on a fluid to determine rheological parameters under a variety of conditions. From this information the circulating system can be designed or evaluated regarding how it will accomplish certain desired objectives. Pages: 98

Product Number: GX13I18 | Price: $192.00

RP 13J
Testing of Heavy Brines

Covers the physical properties, potential contaminants, and test procedures for heavy brine fluids manufactured for use in oil and gas well drilling, completion, fracturing, and workover fluids. RP 13J provides methods for assessing the physical characteristics of heavy brines used in field operations. It includes procedures for evaluating the density or specific gravity, the clarity or amount of particulate matter carried in the brines, the crystallization point or the temperature (both ambient and under pressure) at which the brines make the transition between liquid and solid, the pH, and iron contamination. It also contains a discussion of gas hydrate formation and mitigation, brine viscosity, corrosion testing, buffering capacity, and a standardized reporting form. RP 13J is intended for the use of manufacturers, service companies, and end users of heavy brines. Pages: 76

5th Edition | October 2014 | Product Number: G13J05 | Price: $134.00

RP 13K
Recommended Practice for Chemical Analysis of Barite

Barite is used to increase the density of oil well drilling fluids. It is a mined product that can contain significant quantities of minerals other than its main component, barium sulfate. It is the objective of this publication to provide a comprehensive, detailed description of the chemical analytical procedures for quantitatively determining the mineral and chemical constituents of barite. These procedures are quite elaborate and will normally be carried out in a well-equipped laboratory. Pages: 51

Product Number: G13K03 | Price: $110.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
TR 13TR1
Stress Corrosion Cracking of Corrosion Resistant Alloys in Halide Brines Exposed to Acidic Production Gas

Evaluates the stress corrosion cracking (SCC) risks of a range of corrosion resistant alloys (CRAs) in various halide brine compositions for the case of exposure to acidic production gas (CO₂ + H₂S). Also evaluated are SCC risks due to air exposure. However, the testing became focused on a group of martensitic stainless steels alloyed with Ni and Mo, which are collectively referred to as modified 13Cr martensitic stainless steel (SS) or alternatively as super (S13Cr) martensitic SSs. Most tests evaluated the as-received brine, excluding proprietary additives such as corrosion inhibitor or oxygen scavengers. For completeness and comparison, test results provided by member companies in the API program or in the publications are cited; these test protocols may be different from those in the API test protocols hence, where that occurs, significant differences are noted. Pages: 39

TR 13TR3
Size Measurement of Dry, Granular Drilling Fluid Particulates

Serves as a guide for selection of appropriate techniques to determine the particulate size distribution (PSD) of relatively large, dry solid additives for drilling fluids, especially lost circulation materials (LCMs). Detailed procedures for the utilization of any specific PSD method are not included. The technician should refer to and be guided by the measurement equipment manufacturer's instructions.

The particulates range in size from approximately one micron to as much as several millimeters in diameter and are considered “granular” in shape, i.e. relatively isometric (of similar length, width, and height). The recommendations in this technical report generally are not applicable to the measurement of the PSD of non-isometric (high aspect ratio) materials, such as fibers or flakes. Pages: 32

1st Edition | October 2018 | Product Number: G13TR31 | Price: $98.00

OFFSHORE SAFETY AND ANTIPOLLUTION

Std 2CCU
Offshore Cargo Carrying Units

Defines the design, material, manufacture, inspection, repair, maintenance, and marking requirements for offshore cargo carrying units (CCU) and lifting sets to include dry goods boxes, baskets, and other skids designed to move equipment and goods offshore with maximum gross weight up to 70,000 kg (154,323 lb). Pages: 57

1st Edition | August 2017 | Product Number: G2CCU01 | Price: $108.00

RP 14B
Design, Installation, Operation, Test, and Redress of Subsurface Safety Valve Systems

Establishes requirements and provides guidelines for subsurface safety valve (SSSV) system equipment. This includes requirements for SSSV system design, installation, operation, testing, redress, support activities, documentation, and failure reporting. SSSV system equipment addressed by this document includes control systems, control lines, SSSVs, and secondary tools as defined herein. SSSV types including surface controlled (SCSSV), sub-surface controlled (SSCSV), and sub-surface injection safety valves (SSISV) are included. Requirements for testing of SSSVs including frequency and acceptance criteria are included. Alternate technology SSSV equipment and systems are included in these requirements. This document is not applicable to design, qualification, or repair activities for SSSVs. This document does not specify when a SSSV is required. Pages: 37

NOTE: Spec 14A provides requirements for SSSV equipment design, qualification, and repair.

6th Edition | September 2015 | Product Number: G14B06 | Price: $130.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 14FZ
Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Zone 0, Zone 1, and Zone 2 Locations

Recommended minimum requirements and guidelines for the design, installation, and maintenance of electrical systems on fixed and floating petroleum facilities located offshore. For facilities classified as Division 1 or Division 2, reference RP 14F. These facilities include drilling, producing, and pipeline transportation facilities associated with oil and gas exploration and production. This recommended practice (RP) is not applicable to Mobile Offshore Drilling Units (MODUs) without production facilities. This document is intended to bring together in one place a brief description of basic desirable electrical practices for offshore electrical systems. The recommended practices contained herein recognize that special electrical considerations exist for offshore petroleum facilities. These include:
- inherent electrical shock possibility presented by the marine environment and steel decks;
- space limitations that require that equipment be installed in or near hazardous (classified) locations;
- corrosive marine environment;
- motion and buoyancy concerns associated with floating facilities.

Pages: 177
2nd Edition | May 2013 | Product Number: G14FZ02 | Price: $288.00

RP 14G
Recommended Practice for Fire Prevention and Control on Fixed Open-Type Offshore Production Platforms

Presents recommendations for minimizing the likelihood of an accidental fire, and for designing, inspecting, and maintaining fire control systems. It emphasizes the need to train personnel in firefighting, to conduct routine drills, and to establish methods and procedures for safe evacuation. The fire control systems discussed are intended to provide an early response to incipient fires and prevent their growth. Applicable to fixed open-type offshore production platforms that are generally installed in moderate climates and that have sufficient natural ventilation to minimize the accumulation of vapors. Enclosed areas, such as quarters, buildings, and equipment enclosures, normally installed on this type platform, are addressed.

Pages: 38
Product Number: G14G04 | Price: $128.00

RP 14J
Recommended Practice for Design and Hazards Analysis for Offshore Production Facilities

Provides useful procedures and guidelines for planning, designing, and arranging offshore production facilities and performing a hazards analysis on open-type offshore production facilities. Discusses several procedures that can be used to perform a hazards analysis, and presents minimum requirements for process safety information and hazards analysis that can be used for satisfying RP 75.

Pages: 75
Product Number: G14J02 | Price: $121.00

Bull 91
Planning and Conducting Surface Preparation and Coating Operations for Oil and Natural Gas Drilling and Production Facilities in a Marine Environment

Worldwide, marine exploration, production, development, and decommissioning operations are conducted from a variety of structures. These installations must be inspected periodically and maintained in order to assure structural integrity and minimize pollution risks. Maintenance of an offshore structure, regardless of its classification, necessarily includes blasting and coating activities. The purpose of this publication is to establish practices and procedures that should be followed to minimize the discharge of spent blast abrasive, and paint overspray to the surrounding waters during these activities.

Pages: 16
1st Edition | June 2007 | Product Number: G09101 | Price: $63.00

FIBERGLASS AND PLASTIC PIPE

RP 15CLT
Recommended Practice for Composite Lined Steel Tubular Goods

Provides guidelines for the design, manufacturing, qualification, and application of composite lined carbon steel downhole tubing in the handling and transport of multiphase fluids, hydrocarbon gases, hydrocarbon liquids, and water. The principles outlined in this RP also apply to line pipe applications. Composite lined tubing typically consists of a fiber reinforced polymer liner within the steel host, providing protection of that steel host from corrosive attack. Both API and premium connections can be employed, typically using corrosive barrier rings to maintain corrosion resistance between ends of adjacent liners. This document contains recommendations on material selection, product qualification, and definition of safety and design factors. Quality control tests, minimum performance requirements are included. The RP applies to composite lined carbon steel for system pressure up to 10,000 psi (69 MPa) and maximum temperatures of 300 °F (150 °C). The principles described in this document can easily be extended to apply to products being developed by manufacturers for application outside this range.

Pages: 13
1st Edition | September 2007 | Reaffirmed: October 2018
Product Number: G15CLT1 | Price: $85.00

Spec 15HR
High-Pressure Fiberglass Line Pipe (includes Errata 1 dated August 2016)

Formulated to provide for the availability of safe, dimensionally, and functionally inter-changeable high-pressure fiberglass line pipe with a pressure rating from 500 lbf/in.² to 5000 lbf/in.² (3.45 MPa to 34.5 MPa), inclusive, in 250 lbf/in.² (1.72 MPa) increments for pipes ≤ than NPS 12 in. and 100 lbf/in.² (0.69 MPa) increments for pipes > than NPS 12 in. This specification is limited to mechanical connections and the technical content provides requirements for performance, design, materials, tests and inspection, marking, handling, storing, and shipping. Critical components are items of equipment having requirements specified in this document. This specification is applicable to rigid pipe components made from thermosetting resins and reinforced with glass fibers. Typical thermosetting resins are epoxy, polyester, vinyl ester, and phenolic. Thermoplastic resins are excluded from the scope of this specification. Any internal liners applied shall be made also from thermosetting resins. Fiberglass line pipe for use in low-pressure systems are covered in Spec 15LR. This specification covers fiberglass pipe utilized for the production of oil and gas. Specific equipment covered by this specification is high-pressure line pipe and couplings, fittings, flanges, reducers, and adapters. Pages: 42
4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G15HR4 | Price: $113.00

Spec 15LE
Specification for Polyethylene Line Pipe (PE)

Provides standards for polyethylene (PE) line pipe suitable for use in conveying oil, gas, and non-potable water in underground, aboveground, and reliner applications for the oil and gas producing industries. The technical content of this document provides requirements and guidelines for performance, design, materials inspection, dimensions and tolerances, marking, handling, storing, and shipping.

Pages: 38
4th Edition | January 2008 | Effective Date: July 1, 2008
Reaffirmed: October 2018 | Product Number: G15LE4 | Price: $104.00
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

Spec 15LE *
Specification for Polyethylene Line Pipe (PE)—Chinese
Chinese translation of Spec 15LE.

Spec 15LR ◆
Specification for Low Pressure Fiberglass Line Pipe (includes Errata 1 dated June 2018)
Covers filament wound (FW) and centrifugally cast (CC) fiberglass line pipe and fittings for pipe in diameters up to and including 24 in. in diameter and up to and including 1000 psig cyclic operating pressures. In addition, at the manufacturer’s option, the pipe may also be rated for static operating pressures up to 1000 psig. It is recommended that the pipe and fittings be purchased by cyclic pressure rating. The standard pressure ratings range from 150 psig to 300 psig in 50 psig increments, and from 300 psig to 1000 psig in 100 psig increments, based on either cyclic pressure or static pressure. Pages: 25
7th Edition | August 2001 | Effective Date: February 1, 2002
Reaffirmed: October 2018 | Product Number: G15LR7 | Price: $100.00

Spec 15LR *
Specification for Low Pressure Fiberglass Line Pipe—Chinese
Chinese translation of Spec 15LR.
7th Edition | August 2001 | Product Number: G15LR7C | Price: $70.00

Spec 15PX ◆
Specification for Crosslinked Polyethylene (PEX) Line Pipe
Covers PEX line pipe utilized for the production and transportation of oil, gas, and nonpotable water. The piping is intended for use in new construction, structural, pressure-rated liner, line extension, and repair of both aboveground and buried pipe applications. Specific equipment covered by this specification is listed as follows:
- PEX line pipe;
- fittings. Pages: 45
7th Edition | September 2018 | Product Number: G15PX1 | Price: $98.00

Spec 15S
Spoolable Reinforced Plastic Line Pipe (includes Errata 1 dated July 2016)
Provides requirements for the manufacture and qualification of spoolable reinforced plastic line pipe in oilfield and energy applications including transport of multiphase fluids, hydrocarbon gases, hydrocarbon liquids, oilfield production chemicals, and nonpotable water. Also included are performance requirements for materials, pipe, and fittings. These products consist of a liner with helically wrapped steel or nonmetallic reinforcing elements and an outer cover. The helical reinforcing elements shall be a single material. Additional nonhelical reinforcing elements are acceptable. The spoolable reinforced line pipe under this specification is capable of being spooled for storage, transport, and installation. For offshore use, additional requirements may apply and are not within the scope of this document. This specification is confined to pipe, end-fittings, and couplings and does not relate to other system components and appurtenances. Where other system components (e.g., elbows, tees, valves) are of conventional construction, they will be governed by other applicable codes and practices. Pages: 62
2nd Edition | March 2016 | Effective Date: September 1, 2016
Product Number: G15S02 | Price: $129.00

Spec 16A ◆
Defines the requirements for performance, design, materials, testing and inspection, welding, marking, handling, storing, and shipping of drill-through equipment used for drilling for oil and gas. Specifically, this document applies to the manufacture and testing of ram blowout preventers; ram blocks, packers, and top seals; annular blowout preventers; annular packing units; and associated connectors.
This standard also covers the testing, inspection, welding, marking, certification, handling, storing, and shipping of equipment repaired or remanufactured per this standard. Pages: 122

Spec 16C ◆
Choke and Kill Equipment (includes Errata 1 dated July 2015, Errata 2 dated November 2015, Errata 3 dated February 2016, and Addendum 1 and Errata 4 dated July 2016)
Establishes the minimum requirements for the design and manufacture of following types of new equipment:
- articulated choke and kill lines;
- choke and kill manifold buffer chamber;
- choke and kill manifold assembly;
- drilling choke actuators;
- drilling choke controls;
- drilling chokes;
- flexible choke and kill lines;
- union connections used in choke and kill assemblies;
- rigid choke and kill lines;
- swivel unions used in choke and kill equipment.
These requirements were formulated to provide for safe and functionally interchangeable surface and subsea choke and kill system equipment utilized for drilling oil and gas wells.
Technical content provides the minimum requirements for performance, design, materials, welding, testing, inspection, storing, and shipping. Pages: 114
2nd Edition | March 2015 | Product Number: G16C02 | Price: $155.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

◆ This publication is related to an API licensing, certification, or accreditation program.
systems for floating drilling operations. Its purpose is to serve as a reference for diverter equipment system categories: control systems for surface mounted BOP stacks; control systems for subsea BOP stacks; control systems for diverter equipment; auxiliary equipment control systems and interfaces; emergency disconnect sequenced systems; backup systems; special deepwater/harsh environment features. Pages: 144

3rd Edition | November 2018 | Effective Date: May 1, 2019
Product Number: G16D03 | Price: $195.00

Spec 16F ◆
Specification for Marine Drilling Riser Equipment
Establishes standards of performance and quality for the design, manufacture, and fabrication of marine drilling riser equipment used in conjunction with a subsea blowout preventer (BOP) stack. This specification applies to all riser system components that are in the primary load path during operation, running, and retrieval, including but not limited to riser couplings, riser main tube, riser adapters, riser external lines when used for load sharing, riser tensioner rings, telescopic joints, flex/ball joints, and special riser joints. Pages: 120

2nd Edition | November 2017 | Product Number: G16F02 | Price: $142.00

Spec 16F *
Specification for Marine Drilling Riser Equipment—Russian
Russian translation of Spec 16F.

2nd Edition | November 2017 | Product Number: G16F02R | Price: $114.00

RP 16Q
Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems
Pertains to the design, selection, operation, and maintenance of marine riser systems for floating drilling operations. Its purpose is to serve as a reference for designers, for those who select system components, and for those who use and maintain this equipment. For the purposes of this standard, a marine drilling riser system includes the tensioner system and all equipment manufactured in accordance with the lower flex/ball joint and the bottom connection of the upper flex/ball joint. It specifically excludes the diverter, LMRP BOP stack, and hydraulic connectors. Pages: 90

2nd Edition | April 2017 | Product Number: G16Q02 | Price: $125.00

RP 16Q *
Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems
Russian translation of RP 16Q.

2nd Edition | April 2017 | Product Number: G16Q02R | Price: $100.00

Spec 16RCD ◆
Specification for Rotating Control Devices
Formulated to provide for the availability of safe and functionally interchangeable rotating control devices (RCDs) utilized in air drilling, drilling operations for oil and gas, and geothermal drilling operations. Technical content provides requirements for design, performance, materials, tests and inspection, welding, marking, handling, storing, and shipping. This specification does not apply to field use or field testing of RCDs. Critical components are those parts having requirements specified in this document. Pages: 52

2nd Edition | September 2015 | Effective Date: March 10, 2016
Product Number: G16RCD02 | Price: $160.00

RP 16ST
Coiled Tubing Well Control Equipment Systems
Addresses coiled tubing well control equipment assembly and operation as it relates to well control practices. Industry practices for performing well control operations using fluids for hydrostatic pressure balance are not addressed in this recommended practice. This document covers well control equipment assembly and operation used in coiled tubing intervention and coiled tubing drilling applications performed through:
- christmas trees constructed to standards stipulated in Spec 6A and/or Spec 11W;
- a surface flow head or surface test tree constructed to standards stipulated in Spec 6A;
- drill pipe or workstrings with connections manufactured in accordance with Spec 7 and/or Spec 5CT. Pages: 75

Product Number: G16ST01 | Price: $149.00

TR 16TR1 ◆
BOP Shear Ram Performance Test Protocol
(Includes Errata 1 dated October 2018)
Outlines the standardized test protocol, including data and reporting requirements, for performing sealing and non-sealing blowout preventer (BOP) shear ram performance tests. This protocol determines the parameters that can support field system performance and confidence in successful sealing and sealing.

This document is not intended to be used for qualifying BOP shear rams or as a factory acceptance test procedure. Qualification and factory acceptance testing of BOP shear rams is per API 16A. Pages: 30

1st Edition | July 2018 | Product Number: G16TR11 | Price: $100.00

Std 53 ◆
Well Control Equipment Systems for Drilling Wells
Provides requirements on the installation and testing of blowout prevention equipment systems on land and marine drilling rigs (barge, platform, bottom-supported, and floating). Blowout preventer equipment systems are comprised of a combination of various components. The following components are required for operation under varying rig and well conditions: blowout preventers (BOPs); choke and kill lines; choke manifolds; control systems; auxiliary equipment. The primary functions of these systems are to confine well fluids to the wellbore, provide means to add fluid to the wellbore, and allow controlled volumes to be withdrawn from the wellbore. Pages: 86

5th Edition | December 2018 | Product Number: G05305 | Price: $156.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 59
Recommended Practice for Well Control Operations
Provides information that can serve as a voluntary industry guide for safe well control operations. This publication is designed to serve as a direct field aid in well control and as a technical source for teaching well control principles. This publication establishes recommended operations to retain pressure control of the well under pre-kick conditions and recommended practices to be utilized during a kick. It serves as a companion to RP 53 and RP 64. Pages: 92
2nd Edition | May 2006 | Reaffirmed: December 2018
Product Number: G59002 | Price: $126.00

RP 59 *
Recommended Practice for Well Control Operations—Kazakh
Kazakh translation of RP 59.

RP 59 *
Recommended Practice for Well Control Operations—Russian
Russian translation of RP 59.
2nd Edition | May 2006 | Product Number: G59002R | Price: $100.00

Std 64
Diverter Equipment Systems
(includes Errata 1 dated March 2018 and Addendum 1 dated December 2018)
Provides information on the design, manufacture, quality control, installation, maintenance, and testing of the diverter system, and associated components. The diverter system provides a flow control system to direct controlled or uncontrolled wellbore fluids away from the immediate drilling area for the safety of personnel and equipment. Pages: 69
3rd Edition | August 2017 | Product Number: G64003 | Price: $141.00

SUBSEA PRODUCTION SYSTEMS

RP 17A
Design and Operation of Subsea Production Systems—General Requirements and Recommendations
Provides guidelines for the design, installation, operation, repair, and decommissioning of subsea production systems. The elements of subsea production systems included are wellheads (both subsea and mudline casing suspension systems) and trees; pipelines and end connections; controls, control lines, and control fluids; templates and manifolds; and production riser (both rigid and flexible). Other sections cover operations, quality assurance, materials, and corrosion. This is intended as an umbrella document to govern other parts of the subsea document suite of standards dealing with more detailed requirements for the subsystems that typically form part of a subsea production system. However, in some areas (e.g. system design, structures, manifolds, lifting devices, and color and marking) more detailed requirements are included herein, as these subjects are not covered in a subsystem standard.
The complete subsea production system comprises several subsystems necessary to produce hydrocarbons from one or more subsea wells and transfer them to a given processing facility located offshore (fixed, floating, or subsea) or onshore, or to inject water/gas through subsea wells. Specialized equipment, such as split trees and trees and manifolds in atmospheric chambers, are not specifically discussed because of their limited use. However, the information presented is applicable to those types of equipment. Pages: 55
5th Edition | May 2017 | Product Number: GX17A05 | Price: $102.00

RP 17B
Recommended Practice for Flexible Pipe
Provides guidelines for the design, analysis, manufacture, testing, installation, and operation of flexible pipes and flexible pipe systems for onshore, subsea, and marine applications. This recommended practice (RP) supplements Specs 17J and 17K, which specify minimum requirements for the design, material selection, manufacture, testing, marking, and packaging of unbonded and bonded flexible pipe, respectively. This RP applies to flexible pipe assemblies, consisting of segments of flexible pipe body with end fittings attached to both ends. Both bonded and unbonded pipe types are covered. In addition, this RP applies to flexible pipe systems, including ancillary components. The applications covered by this RP are sweet- and sour-service production, including export and injection applications. This RP applies to both static and dynamic flexible pipe systems used as flowlines, risers, and jumpers. This RP does cover, in general terms, the use of flexible pipes for offshore loading systems. This RP does not cover flexible pipes for use in choke and kill lines or umbilical and control lines. Pages: 268
5th Edition | May 2014 | Product Number: G017B05 | Price: $237.00

Spec 17D/ISO 13628-4 *
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment
(includes Errata 1 dated September 2011, Errata 2 dated January 2012, Errata 3 dated June 2013, Errata 4 dated July 2013, Errata 5 dated October 2013, Errata 6 dated August 2015, Addendum 1 dated September 2015, and Errata 7 dated October 2015)
Provides specifications for subsea wellheads, mudline wellheads, drill-through mudline wellheads, and both vertical and horizontal subsea trees. It specifies the associated tooling necessary to handle, test, and install the equipment. It also specifies the areas of design, material, welding, quality control (including factory acceptance testing), marking, storing, and shipping for both individual sub-assemblies (used to build complete subsea tree assemblies) and complete subsea tree assemblies. The user is responsible for ensuring subsea equipment meets any additional requirements of governmental regulations for the country in which it is installed. This is outside the scope of this document. Where applicable, this document can also be used for equipment on satellite, cluster arrangements and multiple well template applications. This document includes equipment definitions, an explanation of equipment use and function, an explanation of service conditions and product specification levels, and a description of critical components. This document is not applicable to the rework and repair of used equipment. Pages: 254
2nd Edition | May 2011 | Effective Dates: February 1, 2013 [for Valve and Actuator Design Validation (Test Requirements) Only] and November 1, 2011 [for All Other Requirements]
Reaffirmed: November 2018 2-Year Extension: July 2016
Product Number: GX17D02 | Price: $192.00

Spec 17D/ISO 13628-4 *
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Chinese
Chinese translation of Spec 17D.
2nd Edition | May 2011 | Product Number: GX17D02C | Price: $154.00

Spec 17D/ISO 13628-4 *
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian
Russian translation of Spec 17D.
2nd Edition | May 2011 | Product Number: GX17D02R | Price: $192.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com
<table>
<thead>
<tr>
<th>Specification</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 17E</td>
<td>Specification for Subsea Umbilicals (includes Addendum 1 dated December 2017)</td>
<td>5th</td>
<td>July 2017</td>
<td>G17E05</td>
<td>$200.00</td>
</tr>
<tr>
<td>Std 17F</td>
<td>Standard for Subsea Production Control Systems (includes Errata 1 dated July 2018)</td>
<td>4th</td>
<td>November 2017</td>
<td>G17F04</td>
<td>$187.00</td>
</tr>
<tr>
<td>RP 17G/ISO 13628-7:2005</td>
<td>Recommended Practice for Completion/Workover Riser</td>
<td>4th</td>
<td>May 2014</td>
<td>G017F04</td>
<td>$249.00</td>
</tr>
<tr>
<td>Spec 17K</td>
<td>Specification for Bonded Flexible Pipe (includes Addendum 1 dated October 2017)</td>
<td>3rd</td>
<td>August 2017</td>
<td>G17K03</td>
<td>$140.00</td>
</tr>
<tr>
<td>RP 17H</td>
<td>Remotely Operated Tools and Interfaces on Subsea Production Systems (includes Errata 1 dated January 2014)</td>
<td>5th</td>
<td>July 2017</td>
<td>G17H05</td>
<td>$165.00</td>
</tr>
</tbody>
</table>
Spec 17L1
Specification for Flexible Pipe Ancillary Equipment
(includes Errata 1 dated January 2015 and Errata 2 dated November 2015)
Defines the technical requirements for safe, dimensionally and functionally interchangeable flexible pipe ancillary equipment that is designed and manufactured to uniform standards and criteria. Minimum requirements are specified for the design, material selection, manufacture, testing, documentation, marking, and packaging of flexible pipe ancillary equipment, with reference to existing codes and standards where applicable. The applicability relating to a specific item of ancillary equipment is stated at the beginning of the particular clause for the ancillary equipment in question. This document applies to the following flexible pipe ancillary equipment: bend stiffeners; bend restrictors; bellmouths; buoyancy modules and ballast modules; subsea buoys; tethers for subsea buoys and tether clamps; riser and tether bases; clamping devices; piggy-back clamps; repair clamps; I-/J-tube seals; pull-in heads/installation aids; connectors; load-transfer devices; mechanical protection; and fire protection. This document may be used for bonded flexible pipe ancillary equipment, though any requirements specific to these applications are not addressed. This document does not cover flexible pipe ancillary equipment beyond the connector, with the exception of riser bases and load-transfer devices. Therefore, this document does not cover turret structures or I-tubes and J-tubes, for example. In addition, this document does not cover flexible pipe storage devices such as reels, for example. This specification is intended to cover ancillary equipment made from several material types, including metallic, polymer and composite materials. It may also refer to material types for particular ancillary components that are not commonly used for such components currently, but may be adopted more frequently in the future. Pages: 340
1st Edition | March 2013 | Product Number: G17L101 | Price: $175.00

RP 17L2
Recommended Practice for Flexible Pipe Ancillary Equipment
Provides guidelines for the design, materials selection, analysis, testing, manufacture, handling, transportation, installation, and integrity management of flexible pipe ancillary equipment. It presents the current best practice for design and procurement of ancillary equipment and gives guidance on the implementation of the specification for standard flexible pipe products. In addition, this document presents guidelines on the qualification of prototype products. The applicability relating to a specific item of ancillary equipment within this recommended practice is stated at the beginning of the clause dedicated to that item of ancillary equipment. This document applies to the following flexible pipe ancillary equipment: bend stiffeners; bend restrictors; bellmouths; buoyancy modules and ballast modules; subsea buoys; tethers for subsea buoys and tether clamps; riser and tether bases; clamping devices; piggy-back clamps; repair clamps; I-/J-tube seals; pull-in heads/installation aids; connectors; load-transfer devices; mechanical protection; and fire protection. This document may be used for bonded flexible pipe ancillary equipment, though any requirements specific to these applications are not addressed. Where relevant, the applicability of recommendations to umbilicals is indicated in the Applicability subclause for the ancillary equipment in question. This document does not cover flexible pipe ancillary equipment beyond the connector, with the exception of riser bases and load-transfer devices. Therefore, this document does not cover turret structures or I-tubes and J-tubes, for example. In addition, it does not cover flexible pipe storage devices, for example reels. This recommended practice is intended to cover ancillary equipment made from several material types, including metallic, polymer, and composite materials. It may also refer to material types for particular ancillary components that are not commonly used for such components currently, but may be adopted in the future. Pages: 275
1st Edition | March 2013 | Product Number: G17L201 | Price: $175.00

RP 17N
Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management
(includes Addendum 1 dated May 2018)
Provides a structured approach that organizations can adopt to manage uncertainty throughout the life of a project. This may range from the management of general project risk through to the identification and removal of potential failure modes in particular equipment. This recommended practice aims to provide operators, contractors, and suppliers with guidance in the application of reliability techniques to subsea projects within their scope of work and supply only. It is applicable to standard and nonstandard equipment, and all phases of projects, from feasibility studies to operation. It does not prescribe the use of any specific equipment or limit the use of any existing installed equipment or recommend any action, beyond good engineering practice, where current reliability is judged to be acceptable. It is also not intended to replace individual company processes, procedures, document nomenclature, or numbering: it is a guide. However, this recommended practice may be used to enhance existing processes, if deemed appropriate.
Most organizations will find much that is familiar and recognized as good practice. Some annex sections may only be of interest to a reliability specialist. The basic approach, however, is simple and consistent, and when applied correctly, has the potential to greatly reduce the financial risk of designing, manufacturing, installing, and operating subsea equipment. Pages: 178
2nd Edition | June 2017 | Product Number: G17N02 | Price: $183.00

RP 17O
Recommended Practice for Subsea High Integrity Pressure Protection Systems (HIPPS)
Addresses the requirements for the use of high integrity pressure protection systems (HIPPS) for subsea applications. RP 14C, IEC 61508, and IEC 61511 specify the requirements for onshore, topsides, and subsea safety instrumented systems (SIS) and are applicable to HIPPS, which are designed to autonomously isolate downstream facilities from overpressure situations. This document integrates these requirements to address the specific needs of subsea production. These requirements cover the HIPPS pressure sensors, logic solver, shutdown valves, and ancillary devices including testing, communications, and monitoring subsystems. Pages: 45
2nd Edition | July 2014 | Product Number: G17O02 | Price: $124.00

Design and Operation of Subsea Production Systems—Subsea Structures and Manifolds
Addresses specific requirements and recommendations for subsea structures and manifolds, within the frameworks set forth by recognized and accepted industry specifications and standards. As such, it does not supersede or eliminate any requirement imposed by any other industry specification.
This recommended practice covers subsea manifolds and templates utilized for pressure control in both subsea production of oil and gas, and subsea injection services. Equipment within the scope of this recommended practice is listed as follows: production and injection manifolds; modular and integrated single satellite and multwell templates; subsea processing and subsea boosting stations; flowline riser bases and export riser bases (FRB, ERB); pipeline end manifolds (PLEM); pipeline end terminations (PLET); T- and Y-connections; subsea isolation valve structures (SSI); subsea controls and distribution structures; and associated protection structures.
This edition of Spec 17P is the identical national adoption of ISO 13628-15:2011. Pages: 69
1st Edition | January 2013 | Product Number: GG17P01 | Price: $155.00
RP 17Q
Recommended Practice on Subsea Equipment Qualification

Provides suppliers, contractors, and operators with process-level guidance to qualify equipment intended for use in subsea applications. This document is intended to provide high-level guidance only, so that the petroleum and natural gas industry has a common set of principles to follow for equipment qualification. It is written to simplify the qualification process and to align associated expectations within individual organizations and within the industry. It is not intended to replace existing company processes or procedures. The application of this recommended practice is dependent on the stakeholder companies (qualifier and end user) accepting its use. Although developed for application to subsea equipment, the process described by the recommended practice can be applied to non-subsea equipment as well. Pages: 54

2nd Edition | May 2018 | Product Number: G17Q02 | Price: $138.00

RP 17R
Recommended Practice for Flowline Connectors and Jumpers

Addresses specific requirements and recommendations for subsea flowline connectors and jumpers within the frameworks set forth by recognized and accepted industry specifications and standards. As such, it does not supersede or eliminate any requirement imposed by any other industry specification.

This document covers subsea flowline connectors and jumpers used for pressure containment in both subsea production of oil and gas, and subsea injection services. Equipment within the scope of this document are listed below.

Equipment used to make the following subsea connections are included:
- pipeline end terminations to manifolds,
- pipeline end terminations to trees,
- pipeline end terminations to riser bases,
- manifolds to trees,
- pipeline inline sleds to other subsea structures.

The following connection components and systems are included:
- jumper assemblies,
- monobore connectors systems,
- multibore connectors systems,
- pressure and flooding caps,
- connector actuation tools. Pages: 52

1st Edition | March 2015 | Product Number: G17R01 | Price: $124.00

RP 17S
Recommended Practice for the Design, Testing, and Operation of Subsea Multiphase Flow Meters

Provides recommendations for the sizing, specification, system integration, and testing of subsea flow meters (referred to as multiphase flow meters (MPFMs)) for measurement of full stream, multiphase flow. In subsea applications, MPFMs are normally used in well testing, allocation measurement, fiscal measurement, well management, and/or flow assurance applications. The categorization of MPFM application is important since it can be used to determine the required level of factory testing, independent verification, field maintenance, and ongoing verification required during operation. This document includes wet gas flow meters as a subset of MPFMs. In-line MPFMs are typically used in subsea applications and are the focus of this document. These recommendations and guidelines are intended for use by the engineer responsible for the delivery of the MPFM. Pages: 32

1st Edition | June 2015 | Product Number: G17S01 | Price: $88.00

TR 17TR1
Evaluation Standard for Internal Pressure Sheath Polymers for High Temperature Flexible Pipes

Defines the methodology and test procedures necessary for the evaluation of polymeric materials suitable for use as the internal pressure sheath of an unbonded flexible pipes in high temperature applications. It describes the processes by which the critical material properties, both static and dynamic, can be measured and evaluated against relevant performance criteria. This document relates primarily to the properties necessary for an internal pressure sheath required for oil and gas production. These are most relevant to high temperature applications. Only thermoplastic materials are considered for the internal pressure sheath. Elastomeric materials, which are used in bonded flexible pipes, are not considered in this document. Pages: 47

1st Edition | March 2003 | Product Number: G17TR1 | Price: $136.00

TR 17TR2
The Aging of PA-11 In Flexible Pipes

Provides comprehensive guidance on materials and pipe issues regarding the use and operation of PA-11 in flexible pipe applications and concentrates on the use of PA-11 in the internal sheath of flexible pipes. The collective goal of this document is to prevent failure of the internal pressure sheath, as a result of aging and associated loss of mechanical properties, by determining and disseminating the necessary scientific and practical information. Pages: 31

1st Edition | June 2003 | Product Number: G17TR2 | Price: $104.00

TR 17TR3
An Evaluation of the Risks and Benefits of Penetrations in Subsea Wellheads Below the BOP Stack

Provides an evaluation of the risks and benefits of allowing penetrations in subsea wellheads below the blowout preventer (BOP) stack so annuli other than the production tubing (commonly referred to as the “A” annulus) could be monitored. Current industry standards (Spec 17D and ISO 13628-4) for the design of subsea wellheads prohibit penetrations below the (BOP) stack. In contrast, U.S. regulations (30 CFR 250.517) require that all annuli be monitored for sustained casing pressure and that every occurrence of sustained casing pressure be reported immediately. The study concludes that the risks outweigh the benefits since the risk of maintaining the pressure barrier using a wellhead with penetrations is approximately 2.5 times that of a system without penetrations.

The scope of this study is limited to completed subsea wells in the Gulf of Mexico (GOM). The risks were evaluated using fault tree analysis for three systems:
- wellhead system without penetrations,
- wellhead system with one penetration, and
- wellhead system with two penetrations. Pages: 123

1st Edition | November 2004 | Product Number: G17TR31 | Price: $136.00

TR 17TR4
Subsea Equipment Pressure Ratings

The impact of operation in deep water on the pressure rating of equipment is a special concern. The objective of this document is to foster a better understanding of the effects of simultaneous internal and external pressures on the internal pressure rating of well control equipment. Pages: 12

2nd Edition | May 2016 | Product Number: G17TR402 | Price: $67.00
TR 17TR5
Avoidance of Blockages in Subsea Production Control and Chemical Injection Systems
Addresses the avoidance of blockages in subsea production control and chemical injection systems (CISs). It includes requirements and gives recommendations for the design and operation of subsea production systems (SPSs) with the aim of preventing blockages in control and production chemical fluid (PCF) conduits and associated connectors/fittings. In the context of design, this covers not only installed subsea hardware (trees, manifolds, etc.) and the connecting linkages (jumper arrangements, umbilicals, systems, etc.) but also the fluids to be conveyed, initially from the fluid manufacturers’ facilities through to bunkering at the host facility and, ultimately, injection or usage at remote subsea locations. The document also addresses the issues of topside equipment that provide the control and chemical injection (CI) services necessary for the operation and performance of a SPS. Pages: 44

TR 17TR6
Attributes of Production Chemicals in Subsea Production Systems
Identifies and specifies the essential attributes of production chemicals intended to be introduced to subsea oil and gas production systems. The document is intended for use by chemical suppliers to facilitate the provision of chemicals compatible with existing and intended subsea production systems (SPS) although it is envisaged that use of the document for specification purposes by the operators of such processes will assist in ensuring the completeness of requests to supply. This document specifies parameters that address manufacture, storage, and transportation of the production chemical, as well as its deployment using the SPS chemical injection system. The document provides for two approaches, requiring that parameters be either:
• measured and reconciled with SPS design and operation, or
• meet, or exceed, acceptance criteria specified, either in this document or by manufacturers of production chemicals or equipment used to deliver production chemicals.
This document is intended to be applicable to all subsea developments, irrespective of whether the development is in shallow or deep water. Pages: 42
1st Edition | March 2012 | Product Number: G17TR601 | Price: $101.00

TR 17TR7
Verification and Validation of Subsea Connectors
Provides requirements and recommendations for the verification and validation of subsea connectors. It is intended to serve as a common reference for designers, manufacturers, and users to improve the performance assessment of subsea connectors and to improve the reliability and integrity of subsea systems. This technical report is applicable to subsea connectors along the vertical centerline of subsea hardware (i.e. tree, tubing head, tree cap, tree running tool, well control package connectors, and EDP connectors), the subsea wellhead, and the completion/workover riser. The methodology provided herein may also be used in other connector designs. Connectors outboard of the vertical centerline are addressed in API 17R. Pages: 25
1st Edition | April 2017 | Product Number: G17TR701 | Price: $88.00

TR 17TR8
High-Pressure High-Temperature Design Guidelines
Serves as a general design guideline for HPHT application. It provides design guidelines for oil and gas subsea equipment used in high-pressure high-temperature (HPHT) environments. Pages: 112
2nd Edition | March 2018 | Product Number: G17TR82 | Price: $142.00

TR 17TR9
Umbilical Termination Assembly (UTA) Selection and Sizing Recommendations
Identifies and describes:
• technical, commercial, and installation risks associated with high-functionality umbilicals and umbilical terminations [resulting in large and heavy umbilical termination assemblies (UTAs)], especially with respect to installation;
• implications of decisions made early in the umbilical and subsea umbilical termination (SUT) planning, selection, and design phases, to ease the manufacturing, handling, and final umbilical/UTA installation;
• guidance on specification and sizing of umbilical terminations, including overall size, weight, and handling requirements.
This document acts as a reference guide during the early field development planning stage to ensure that due consideration is given to the implications of the size of UTAs and possible consequences during installation. It is intended to be used as a reference guide by end users and operators, UTA and umbilical manufacturers, installers, and front-end engineering design (FEED) companies. The intention is that the document will enable the currently inherent installation difficulties to be addressed upfront by the UTA designers, prior to commencing SUT design and functionality definition. It is also intended to be used as a reference document to enable reviews to be undertaken to ensure that installation risk has been properly considered as part of SUT design and operations reviews on a case-by-case basis. Pages: 53
1st Edition | August 2017 | Product Number: G17TR901 | Price: $107.00

TR 17TR10
Subsea Umbilical Termination (SUT) Design Recommendations
Provides best practice technical guidance for subsea umbilical design (SUT) design, in order to aid in making informed choices during the design phase. This document was generated in response to the increasing difficulties in installation of high-functionality SUTs, due to their increasing size. This document is intended to be used as a reference guide by operators, umbilical termination assembly (UTA) and umbilical specifiers, installers, and front-end engineering design (FEED) companies. It is also intended to be used as a reference document to enable reviews to be undertaken to ensure that installation risk has been properly considered as part of SUT design and operation reviews. Additionally, the document has been designed to be educational such that persons new to the industry, or, less experienced persons within the industry, can understand the implications of UTA design on installation feasibility. This document aims at capturing the primary aspects impacting on the overall dimensions and weight of the UTA, and highlighting the consequences of design choices. This document excludes multibore hub connection-type (MHC) UTAs that can connect the umbilical directly to other subsea hardware. Although MHC UTAs are out of scope, many of the guidelines in this document would apply. Pages: 66
1st Edition | December 2015 | Product Number: G17TR101 | Price: $107.00

TR 17TR11
Pressure Effects on Subsea Hardware During Flowline Pressure Testing in Deep Water
Provides guidance to the industry on allowable pressure loading of subsea hardware components that can occur during hydrotesting of subsea flowlines and risers and during pre-commissioning leak testing of these systems. There are potential problems with confusion arising from high hydrostatic pressure in deep water, partially due to the variety of applicable test specifications and partly from the inconsistent use of a variety of acronyms for pressure terminology. Pages: 11
1st Edition | September 2015 | Product Number: G17TR111 | Price: $82.00

This publication is a new entry in this catalog.
TR 17TR12
Consideration of External Pressure in the Design and Pressure Rating of Subsea Equipment

Addresses issues related to the effects of external pressure acting on subsea equipment installed in deepwater for containing or controlling wellbore fluids. External pressure at deepwater can significantly reduce the differential pressure acting on the wall of subsea equipment; therefore, this can improve its internal pressure containment capability. External pressure is typically ambient seawater pressure, but in some cases, external pressure may be due to the hydrostatic head of drilling mud, completion fluids, or other fluids contained within risers or other conduits that connect the subsea equipment to surface facilities.

This document provides guidance for subsea equipment designers/ manufacturers to consider external pressure (or differential pressure) when designing and validating subsea equipment. Additionally, this technical report provides guidance to equipment purchaser/end-user to appropriately select rated equipment for their subsea systems with consideration to the effects of external pressure in addition to internal pressure, including differential pressure across a closure mechanism, and other applied mechanical or structural loads under all potential operating scenarios and functionality criteria.

It is necessary that users of this technical report be aware of regulations from jurisdictional authority that may impose additional or different requirements to the consideration of external pressure or differential pressure in equipment designs. Pages: 28

1st Edition | March 2015 | Product Number: G17TR121 | Price: $98.00

TR 17TR13
General Overview of Subsea Production Systems

Subsea production systems can range in complexity from a single satellite well with a flowline linked to a fixed platform to several wells on a template producing and transferring via subsea processing facilities to a fixed or floating facility or directly to an onshore installation. The objectives of this document are to describe typical examples of the various subsystems and components that can be combined, in a variety of ways, to form complete subsea production systems; to describe the interfaces with typical downhole and topsides equipment that are relevant to subsea production systems; and to provide some basic design guidance on various aspects of subsea production systems. Pages: 100

1st Edition | March 2016 | Product Number: G17TR131 | Price: $124.00

TR 17TR15
API 17H Hydraulic Interfaces for Hot Stabs

Describes a number of common or previously used ROV hydraulic hot stab and receptacle configurations. The intent is to ensure backward compatibility of the hot stab described in API 17H, Second Edition, June 2013, and to align API 17H with API 553, API 17D, and API 16D. This technical report defines four major categories of hot stabs and describes the geometry to maintain compatibility across all manufacturers. Pages: 17

1st Edition | December 2017 | Product Number: G17TR151 | Price: $83.00

RP 17U
Recommended Practice for Wet and Dry Thermal Insulation of Subsea Flowlines and Equipment

Provides guidance for the performance, qualification, application, quality control, handling, and storage requirements of wet and dry thermal insulation for subsea applications in the petroleum and gas industries. This guideline also covers the inspection of the insulation, and the repair of insulation defects. For flowlines, the installation method is not defined and may be either S-lay, J-lay, or reel-lay. This guideline is intended to cover all three installation methods. This guideline also takes into consideration the design and structural handling of subsea trees, manifolds, pipeline end terminations (PLETs), flowline jumpers, etc., as it pertains to the placement of structure, sacrificial anodes, handling appurtenances, etc., to ensure the integrity of the insulation’s construction.

This recommended practice is applicable to the following systems and components:
- flowlines and risers;
- christmas tree, valve block, and piping;
- manifold valves and pipework;
- PLET piping;
- jumpers (i.e. piping and bends);
- connectors and fittings;
- valves and chokes. Pages: 24

1st Edition | February 2015 | Product Number: G17U01 | Price: $77.00

RP 17V
Recommended Practice for Analysis, Design, Installation, and Testing of Safety Systems for Subsea Applications

Presents recommendations for designing, installing, and testing a process safety system for subsea applications. The basic concepts of subsea safety systems are discussed and protection methods and requirements of the system are outlined. For the purposes of this document, “subsea system” includes all process components from the wellhead (and surface controlled subsurface safety valve [SCSSV]) to upstream of the boarding shutdown valve. For gas injection, water injection, and gas lift systems, the shutdown valve is within the scope of this document.

This document is a companion document to API 14C, which provides guidance for topsides safety systems on offshore production facilities. Some sections of this document refer to API 14C for safety system methodology and processes. This recommended practice illustrates how system analysis methods can be used to determine safety requirements to protect any process component. Actual analyses of the principal components are developed in such a manner that the requirements determined will be applicable whenever the component is used in the process. The safety requirements of the individual process components may then be integrated into a complete subsea safety system. The analysis procedures include a method to document and verify system integrity. The uniform method of identifying and symbolizing safety devices is presented in API 14C and adopted in this recommended practice. Pages: 63

1st Edition | February 2015 | Product Number: G17V01 | Price: $144.00

RP 17W
Recommended Practice for Subsea Capping Stacks

Contains subsea capping stack recommended practices for designing, building, and using, as well as maintaining and testing during storage. The document focuses on:
- topics for drafting a Basis of Design (BOD) document that could be used for constructing a new subsea capping stack;
- topics that may drive improvements for existing subsea capping stack equipment, and
- topics for drafting plans for storing, transporting, maintaining, and testing a subsea capping stack.

Other important elements of a complete subsea capping stack system that are addressed in this document include:
- minimal documentation requirements,
- minimal analysis and modeling that should accompany any subsea capping stack design,
- competencies of personnel who operate, maintain, and test subsea capping stacks, and
- potential unknowns/risks that may be encountered with incident wells that impact the use of a subsea capping stack and relevant contingency procedures.

While it is not within the scope of this document to recommend procedures to use a subsea capping stack, this document does contain example procedures for reference only. These procedures are not presented as a recommended practice but rather to indicate to industry that the preparation and use of such procedures is a recommended practice. Pages: 65

1st Edition | July 2014 | Product Number: G17W01 | Price: $129.00
addition, products covered by this specification apply only to applications within a conduit. Installation and maintenance of these products are outside the scope of this specification.

This specification includes requirements for the following:
- HPHT environment equipment;
- HPHT environment operational tools;
- external flow testing.

This edition of Spec 11D1 is the modified national adoption of ISO 14310:2008. Pages: 62

Spec 11D1/ISO 14310:2008
Packers and Bridge Plugs
Provides requirements and guidelines for packers and bridge plugs as defined herein for use in the petroleum and natural gas industry. This specification provides requirements for the functional specification and technical specification, including design, design verification and validation, materials, documentation and data control, repair, shipment, and storage. In addition, products covered by this specification apply only to applications within a conduit. Installation and maintenance of these products are outside the scope of this specification.

This edition of Spec 11D1 is the modified national adoption of ISO 14310:2008, Pages: 62

3rd Edition | April 2015 | Effective Date: October 9, 2015
Product Number: G11D103 | Price: $118.00

Spec 11D1/ISO 14310:2008
Packers and Bridge Plugs—Russian
Russian translation of Spec 11D1.
3rd Edition | April 2015 | Product Number: G11D103R | Price: $95.00

RP 11V5
Recommended Practices for Operation, Maintenance, Surveillance, and Troubleshooting of Gas-Lift Installations
Assists gas-lift system operators, analysts, technicians, engineers, and others in understanding how to effectively plan, operate, maintain, troubleshoot, and provide surveillance for gas-lift systems and gas-lift wells. These recommended practices discuss continuous gas-lift with injection in the casing/tubing annulus and production up the tubing. Annular flow gas-lift (injection down the tubing and production up the annulus), dual gas-lift (two tubing strings in the same casing), and intermittent gas-lift are mentioned; however, most of the discussion focuses on conventional gas-lift.

Product Number: G11V53 | Price: $160.00

RP 11V6
Recommended Practice for Design of Continuous Flow Gas Lift Installations Using Injection Pressure Operated Valves
Sets guidelines for continuous flow gas lift installation designs using injection pressure operated valves. The assumption is made that the designer is familiar with and has available data on the various factors that affect a design.

Product Number: G11V62 | Price: $153.00

RP 11V8
Recommended Practice for Gas Lift System Design and Performance Prediction
Emphasizes gas lift as a system and discusses methods used to predict its performance. Information must be gathered and models validated prior to a system design, which must precede wellbore gas lift mandrel and valve design. The subsurface and surface components of the system must be designed together to enhance the strengths of each and to minimize the constraints.

Pages: 79
Product Number: G11V81 | Price: $123.00

Spec 14A
Specification for Subsurface Safety Valve Equipment
(includes Errata 1 dated July 2015 and Addendum 1 dated June 2017)
Provides the requirements for subsurface safety valves (SSSVs), and the secondary tools as defined herein necessary to operate the features included within them, including all components that establish tolerances and/or clearances that may affect performance or interchangeability of the SSSV components. It includes repair operations and the interface connections to control conduits and/or other equipment, but does not cover the connections to the primary well conduit.

Product Number: G14A12 | Price: $232.00

Spec 14L/ISO 16070:2005
Specification for Lock Mandrels and Landing Nipples
Provides the requirements for lock mandrels and landing nipples within the production/injection conduit for the installation of flow control or other equipment used in the petroleum and natural gas industries. It includes the interface connections to the flow control or other equipment, but does not cover the connections to the well conduit.

This edition of Spec 14L is the identical national adoption of ISO 16070:2005.

Pages: 25
Product Number: GG14L02 | Price: $123.00

Spec 14L/ISO 16070:2005
Specification for Lock Mandrels and Landing Nipples—Chinese
Chinese translation of Spec 14L.
2nd Edition | July 2007 | Product Number: GX14L02C | Price: $87.00

Spec 19AC/ISO 14998:2013
Specification for Completion Accessories
Provides requirements and guidelines for completion accessories, as defined herein, for use in the petroleum and natural gas industry. This international standard provides requirements for the functional specification and technical specifications, including design, design verification and validation, materials, documentation and data control, quality requirements, redress, repair, shipment, and storage. This international standard covers the pressure-containing, nonpressure-containing, load-bearing, disconnect/reconnect, tubing-movement, and opening-a-port functionalities of completion accessories. Products covered under another API or international specification are not included. Also not included are other products such as line/tubing hangers, downhole well test tools, inflow control devices, surface-controlled downhole chokes, downhole artificial lift equipment, control lines and fittings, and all functionalities relating to electronics or fiber optics. This international standard does not cover the connections to the well conduit. Installation, application, and operation of these products are outside the scope of this international standard.

This edition of Spec 19AC is the modified national adoption of ISO 14998:2013.

Pages: 63
1st Edition | September 2016
Product Number: G19AC01 | Price: $115.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
The documents listed below are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

RP 19B

Recommended Practice for Evaluation of Well Perforators—Chinese (formerly RP 43)

Chinese translation of RP 19B.

RP 19B

Recommended Practice for Evaluation of Well Perforators—Kazakh (formerly RP 43)

Kazakh translation of RP 19B.

Std 19C

Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations

Provides standard testing procedures for evaluating proppants used in hydraulic fracturing and gravel-packing operations. The objective of this standard is to provide a consistent methodology for evaluating performance under the following conditions:

- ambient temperature and pressure,
- simulated wellbore (stressed Berea sandstone),
- elevated temperature.

2nd Edition | August 2018 | Product Number: GX19C02 | Price: $114.00

Spec 19G1/ISO 17078-1:2004

Side-Pocket Mandrels

Provides requirements for side-pocket mandrels used in the petroleum and natural gas industry. This document includes specifying, selecting, designing, manufacturing, quality control, testing, and preparation for shipping of side-pocket mandrels. This specification does not include gas-lift or any other flow-control valves or devices, latches, and/or associated wire line equipment that may or may not be covered in other ISO specifications.

Spec 19G1/ISO 17078-1:2004

Side-Pocket Mandrels—Chinese

Chinese translation of Spec 19G1

1st Edition | May 2010 | Product Number: GG19G101C | Price: $75.00

RP 19D/ISO 13503-5:2006

Measuring the Long-Term Conductivity of Proppants

Provides standard testing procedures for evaluating proppants used in hydraulic fracturing and gravel-packing operations. The proppants mentioned in this publication refer to sand, ceramic media, resin-coated proppants, gravel packing media, and other materials used for hydraulic fracturing and gravel-packing operations. The objective of RP 19D is to provide consistent methodology for evaluating performance under the following conditions:

- ambient temperature and pressure,
- simulated wellbore (stressed Berea sandstone),
- elevated temperature.

This edition also introduces a procedure to quantify the amount of debris that comes out of the perforating gun during detonation. Pages: 42

Product Number: G019B2 | Reaffirmed: April 2011

Phone Orders: +1 303 397 7956 (Local and International)
Flow-Control Devices for Side-Pocket Mandrels
Provides requirements for subsurface flow-control devices used in side-pocket mandrels (hereafter called flow-control devices) intended for use in the worldwide petroleum and natural gas industry. This includes requirements for specifying, selecting, designing, manufacturing, quality-control, testing, and preparation for shipping of flow-control devices. Additionally, it includes information regarding performance testing and calibration procedures.

The installation and retrieval of flow-control devices is outside the scope of Spec 19G2. Additionally, Spec 19G2 is not applicable to flow-control devices used in center-set mandrels or with tubing-retrievable applications.

Spec 19G2 does not include requirements for side-pocket mandrels, running, pulling, and kick-over tools, and latches that might or might not be covered in other API/ISO specifications. Reconditioning of used flow-control devices is outside of the scope of Spec 19G2.

This edition of Spec 19G2 is the modified national adoption of ISO 17078-2:2007. Pages: 132
Product Number: GX19G21 | Price: $160.00

Running Tools, Pulling Tools and Kick-Over Tools and Latches for Side-Pocket Mandrels
Provides requirements and guidelines for running tools, pulling tools, kick-over tools, and latches used for the installation and retrieval of flow control and other devices to be installed in side-pocket mandrels for use in the petroleum and natural gas industries. This includes requirements for specifying, selecting, designing, manufacturing, quality control, testing, and preparation for shipping of these tools and latches. Additionally, it includes information regarding performance testing and calibration procedures.

The processes of installation, retrieval, maintenance, and reconditioning of used running, pulling, and kick-over tools and latches are outside the scope of Spec 19G3. Center-set and tubing retrievable mandrel applications are not covered.

This edition of Spec 19G3 is the identical national adoption of ISO 17078-3:2009. Pages: 43
Product Number: GG19G301 | Price: $149.00

RP 19G4/ISO 17078-4:2010
Practices for Side-Pocket Mandrels and Related Equipment
Provides informative documentation to assist the user/purchaser and the supplier/manufacturer in specification, design, selection, testing, calibration, reconditioning, installation, and use of side-pocket mandrels, flow-control devices, and associated latches and installation tools. The product-design and manufacturing-related requirements for these products are included within the other parts of ISO 17078. The content and coverage of several industry documents are compiled and refined within RP 19G4 (all parts).

This edition of RP 19G4 is the identical national adoption of ISO 17078-4:2010. Pages: 48
1st Edition | June 2011 | Product Number: GG19G401
Reaffirmed: May 2017 | Price: $160.00

RP 19G9
Design, Operation, and Troubleshooting of Dual Gas-Lift Wells
Provides recommended practices for the selection, design, operation, surveillance, optimization, automation, and troubleshooting of dual gas-lift wells.

The purpose of this document is to present recommended practices, guidelines, and tools to help obtain optimum production from dual gas-lift wells. This document also contains practices that should be avoided to minimize problems, inefficiencies, and poor economics that may be associated with ineffective dual gas-lift operations. Compared to single completions, dual completions typically have a higher initial cost, have more operating problems, are more difficult and expensive to work over, and may produce less efficiently.

It is not the purpose of this document to recommend the practice of dual gas-lift. In some cases, dual gas-lift is problematic and often ineffective. Often it is difficult or even impossible to effectively produce both completions in a dual well using gas-lift, over the long term. Where there are other feasible alternatives to produce dual wells, they should be considered. However, many dually completed oil wells should be artificially lifted—initially, or after reservoir pressures have declined and/or water cuts have increased. In many cases, the only practical method of artificial lift for these wells is gas-lift. Therefore, every effort should be made to design and operate dual gas-lift systems as effectively as possible. Pages: 90
2nd Edition | April 2015 | Product Number: G19G92 | Price: $170.00

RP 19G10 ✹
Design and Operation of Intermittent Gas-Lift Systems
Covers the design and operation of intermittent gas-lift systems, including systems with chamber and plunger lift equipment. Included are the background and theory of each of these systems, as well as considerations for system design and operation. This information is intended for well engineers who seek to gain a general understanding of the theory and practices of intermittent gas-lift systems.

Not addressed in this recommended practice are absolutes in the development of an intermittent gas-lift system design or operation because of the range of variables for each well and field combination.

This document also contains three annexes. Annex A contains mathematical derivations and models of some of the most pertinent intermittent gas-lift calculations. Annex B contains a comprehensive example of an intermittent gas-lift design. Annex C describes how to use the Field (U.S. Customary) Units Calculator and SI Units Calculator. Pages: 120
1st Edition | September 2018
Product Number: G19G101 | Price: $162.00

RP 19G11 ✹
Dynamic Simulation of Gas-Lift Wells and Systems
Provides guidance and background for the application and use of dynamic simulation of gas-lift wells and their related systems. Discussion is included for use of steady-state, pseudo-steady-state, and dynamic numerical models. Also presented are guidelines to facilitate the application of these techniques to optimize well/system integrity, operations, life cycle design, and production. Additionally, a range of artificial lift and natural flowing systems and topics (e.g. gas well liquid loading) are addressed. The dynamic simulation recommendations (e.g. stable flow, hydrates, waxes, corrosion, liquid loading, and complex wells) can be implemented in other production systems (e.g. natural flowing wells). Not included are technical requirements for the hardware of the dynamic simulation system, the specifics of the system calculations, the responses to the output of the dynamic simulation data output, and specifics of what actions are required after the provided data is considered. Pages: 20
1st Edition | October 2018 | Product Number: G19G101 | Price: $156.00

Spec 19OH ✹
Openhole Isolation Equipment
Covers requirements and guidelines for openhole isolation equipment and bridge plugs as defined herein. Openhole isolation equipment includes swellable packers, inflatable packers, expandable packers, and openhole packers that are designed for use in the petroleum and natural gas industries. This specification provides requirements for design verification, design validation, manufacturing, quality, shipping, handling, storage, and related supporting topics.

Requirements for the end connections to the well conduit are not included in this specification. Also not covered are downhole anchoring devices (see API 11D1); cup-style packers; and requirements for the application, installation, and use of openhole isolation equipment. Equipment and technology covered by other API specifications and standards are exempted from this specification, such as:
• production packers,
• liner hanger systems,
• service tools,
• test tool packers.
Exploration and Production

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

Repairs, remanufacturing, and redress are excluded from this specification. Pages: 45
1st Edition | January 2018 | Product Number: G19OH1 | Price: $112.00

Spec 19V/ISO 17872:2009 ■ Sand Screens (includes Errata 1 dated November 2018)

Provides the requirements and guidelines for sand screens for use in the petroleum and natural gas industry. Included are the requirements for design, design validation, manufacturing, quality, storage, and transport. The requirements of this International Standard are applicable to wire-wrap screens, pre-pack screens, and metal-mesh screens.

The following items are outside the scope of this International Standard:
- expandable and/or compliant sand screens, slotted liners, or tubing and accessory items, such as centralizers or bull plugs;
- shunt screen technology, inflow control devices, downhole sensors, and selective isolation devices, even where they can be an integral part of the sand screen;
- analysis for sand retention efficiency;
- end connections of the basepipe.

This edition of Spec 19V is the modified national adoption of ISO 17872:2009. Pages: 79
1st Edition | July 2018 | Product Number: G19SS01 | Price: $165.00

Spec 19TT Specification for Downhole Well Test Tools and Related Equipment

Provides the requirements for downhole well test tools and related equipment as they are defined herein for use in the petroleum and natural gas industries. Included are the requirements for design, design validation, manufacturing, functional evaluation, quality, handling, storage, and service centers. Tools utilized in downhole well test operations include tester valves, circulating valves, well testing packers, safety joints, well testing safety valves, testing surface safety valves (TSSVs), slip joints, jars, work string tester valves, sampler carriers, gauge carriers, drain valves, related equipment, and tool end connections. This specification does not cover open hole well test tools, downhole gauges, samplers, surface equipment, subsea safety equipment, perforating equipment and accessories, pup joints external to well test tool assemblies, work string and its connections, conveyance or intervention systems, installation, control and monitoring conduits, and surface control systems. A downhole well test is an operation deploying a temporary completion in a well to safely acquire dynamic rates, formation pressure/temperature, and formation fluid data. Downhole well test tools are also used in operations of well perforating, well shut-ins, circulation control of fluids, and stimulation activities. This document covers the downhole tools used to perform these operations; however, the operational requirements of performing these operations are not included. Pages: 94
1st Edition | October 2016 | Product Number: G19TT01 | Price: $136.00

Spec 19V/ISO 28781:2010 ◆ Subsurface Barrier Valves and Related Equipment

Provides the requirements for subsurface barrier valves and related equipment as they are defined herein for use in the petroleum and natural gas industries. Included are the requirements for design, design validation, manufacturing, functional evaluation, repair, redress, handling, and storage. Subsurface barrier valves provide a means of isolating the formation or containing, pressure-controlling, and primary load-bearing components. This International Standard does not cover installation and maintenance, control systems such as computer systems, and control conduits not integral to the barrier valve. Also not included are products covered under ISO 17078, ISO 16070, ISO 14310, ISO 10432, and ISO 10423 and the following products: downhole chokes, wellhead plugs, sliding sleeves, casing-mounted flow-control valves, injection valves, well-condition-activated valves or drill-stem test tools. This International Standard does not cover the connections to the well conduit.

This edition of Spec 19V is the modified national adoption of ISO 28781:2010. Pages: 58
1st Edition | May 2013 | Product Number: GG19V01 | Price: $155.00

SUPPLY CHAIN MANAGEMENT

Spec 20A ◆ Carbon Steel, Alloy Steel, Stainless Steel, and Nickel Base Alloy Castings for Use in the Petroleum and Natural Gas Industry (includes Addendum 1 dated September 2018)

Identifies requirements for the foundry qualification, production, design, marking, and documentation of carbon steel, alloy steel, stainless steel, and nickel-base alloy castings used in the petroleum and natural gas industries when referenced by an applicable API product standard or otherwise specified as a requirement for compliance.

This specification applies to castings used in the manufacture of pressure containing, pressure-controlling, and primary load-bearing components. Castings manufactured in accordance with this API standard may be produced using any industry standard casting method. This specification provides manufacturers with a fixed methodology to examine a qualification casting and to compare the results of that examination to a defined set of acceptance criteria. The results of the qualification testing by material grouping are then used to establish a baseline Casting Specification Level (CSL) for subsequently produced castings.

This specification also provides manufacturers with a fixed production testing methodology to determine if subsequently produced castings conform to the minimum requirements for the intended CSL. The intent is that the production castings meet the minimum CSL requirements established during qualification testing by material grouping and/or the minimum CSL specified by the purchaser. Pages: 39
2nd Edition | August 2017 | Product Number: G20A02 | Price: $89.00

Spec 20B ◆ Open Die Shaped Forgings for Use in the Petroleum and Natural Gas Industry (includes Errata dated December 2013)

Specifies requirements for the qualification and production of open die shaped forgings for use in API service components in the petroleum and natural gas industries when referenced by an applicable equipment standard or otherwise specified as a requirement for compliance.

This API standard is applicable to equipment used in the oil and natural gas industries where service conditions warrant the use of individually shaped open die forgings, including rolled rings. Examples include pressure containing or load-bearing components. Forged bar, rolled bar, and forgings from which multiple parts are removed are beyond the scope of this specification.

This API standard establishes requirements for four forging specification levels (FSL). These four FSL designations define different levels of forged product technical, quality and qualification requirements. Pages: 20
1st Edition | April 2013 | Product Number: G20B01 | Price: $88.00

Spec 20C ◆ Closed Die Forgings for Use in the Petroleum and Natural Gas Industry

Specifies requirements and gives recommendations for the design, qualification, and production of closed-die forgings for use in API service components in the petroleum and natural gas industries when referenced by an applicable equipment standard or otherwise specified as a requirement for compliance. Spec 20C is applicable to equipment used in the oil and natural gas industries where service conditions warrant the use of closed die forgings. Examples include pressure containing or load-bearing components.
Std 20D
Nondestructive Examination Services for Equipment Used in the Petroleum and Natural Gas Industry
(includes Addendum 1 dated October 2016)

This standard establishes requirements for the qualification, production, and documentation of nondestructive examination services used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard establishes requirements for three bolting specification levels (BSLs). These three BSL designations define different levels of technical, quality, and qualification criteria. BSL-2 and BSL-3 are intended to be compatible with BSL-2 and BSL-3 as found in API 20E. BSL-1 is omitted from this standard. Pages: 21

1st Edition | September 2013 | Product Number: G20D01 | Price: $88.00

Spec 20E ◆
Alloy and Carbon Steel Bolting for Use in the Petroleum and Natural Gas Industries
(includes Addendum 1 dated September 2018)

This standard establishes requirements for the qualification, production, and documentation of alloy and carbon steel bolting used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard establishes requirements for three bolting specification levels (BSLs). These three BSL designations define different levels of technical, quality, and qualification criteria. This standard covers the following finished product forms, processes, and sizes:
- machined studs;
- machined bolts, screws, and nuts;
- cold formed bolts, screws, and nuts with cut or cold formed threads (BSL-1 only);
- hot formed bolts and screws < 1.5 in. (38.1 mm) nominal diameter;
- hot formed bolts and screws > 1.5 in. (38.1 mm) nominal diameter;
- roll threaded studs, bolts, and screws < 1.5 in. (38.1 mm) diameter;
- roll threaded studs, bolts, and screws > 1.5 in. (38.1 mm) diameter;
- hot formed nuts < 1.5 in. (38.1 mm) nominal diameter;
- hot formed nuts > 1.5 in. (38.1 mm) nominal diameter. Pages: 23

2nd Edition | February 2017 | Product Number: G20E02 | Price: $88.00

Spec 20F ◆◆
Corrosion-Resistant Bolting for Use in the Petroleum and Natural Gas Industries

This standard establishes requirements for the qualification, production, and documentation of corrosion-resistant bolting used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard establishes requirements for two bolting specification levels (BSLs). These two BSL designations define different levels of technical, quality, and qualification requirements: BSL-2 and BSL-3. The BSLs are numbered in increasing levels of requirements in order to reflect increasing technical, quality, and qualification criteria. These two BSLs are numbered in increasing levels of requirements in order to reflect increasing technical, quality, and qualification criteria. BSL-2 and BSL-3 are intended to be compatible with BSL-2 and BSL-3 as found in API 20E. BSL-1 is omitted from this standard. Pages: 32

2nd Edition | April 2018 | Product Number: G20F02 | Price: $89.00

Std 20H
Heat Treatment Services—Batch Type for Equipment Used in the Petroleum and Natural Gas Industry

This standard establishes requirements for the qualification of suppliers of heat treatment services used in the manufacture of equipment for the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard applies to all types of heat treatment services used in the manufacture of equipment for the petroleum and natural gas industries. This standard establishes requirements for three heat treatment specification levels (HSLs). These three HSL designations define different levels of technical, quality, and qualification criteria. Pages: 24

1st Edition | October 2015 | Product Number: G20H01 | Price: $67.00

Std 20J
Qualification of Distributors of Metallic Materials for Use in the Petroleum and Natural Gas Industries

This standard establishes requirements for the qualification of distributors of metallic materials used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard applies to all types of metallic materials used in the petroleum and natural gas industries. This standard establishes requirements for three distribution specification levels (DSLs). These three DSL designations define different levels of technical, quality, and qualification criteria. Pages: 36

1st Edition | May 2017 | Product Number: G20J01 | Price: $89.00

Std 20L ◆
Qualification of Polymeric Seal Manufacturers for Use in the Petroleum and Natural Gas Industries

This standard establishes requirements for the qualification of manufacturers of polymeric seals used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard applies to all types of polymeric seals used in the petroleum and natural gas industries. This standard establishes requirements for three manufacturing specification levels (MQLs). These three MQLs define different levels of quality and qualification criteria. Pages: 28

1st Edition | April 2018 | Product Number: G20L01 | Price: $67.00

Std 20M
Qualification of Suppliers of Machining Services for Use in the Petroleum and Natural Gas Industries

This standard establishes requirements for the qualification of suppliers of machining services used in the manufacture of equipment for the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard applies to all types of machining services used in the manufacture of equipment for the petroleum and natural gas industries. Final assembly, component testing (e.g., nondestructive examination, pressure testing) or a broker of machining services are outside the scope of this standard. These machining services are intended to be compatible with BSL-2 and BSL-3 as found in API 20E. BSL-1 is omitted from this standard. Pages: 27

1st Edition | October 2017 | Product Number: G20M01 | Price: $74.00

◆ This publication is a new entry in this catalog. ◆◆ This publication is related to an API licensing, certification, or accreditation program.
DRILLING AND PRODUCTION OPERATIONS

RP 31A
Standard Form for Hardcopy Presentation of Downhole Well Log Data
Provides an improved standard format for hardcopy presentation of downhole well log data. Standardizing the log form and data presentation allows the user to more easily combine a broad range of log data in order to interpret well status and performance. Pages: 18
Product Number: G31A01 | Price: $100.00

RP 45
Recommended Practice for Analysis of Oilfield Waters
Provides analysis methods for the determination of dissolved and dispersed components in oilfield waters (produced water, injected water, aqueous workover fluids, and stimulation fluids). Also includes the applications of oilfield water analyses; the proper collection, preservation, and labeling of field samples; a description of the various analytical methods available, including information regarding interferences, precision, accuracy, and detection limits; as well as the appropriate reporting formats for analytical results. Pages: 60
Product Number: G45003 | Price: $146.00

RP 50
Natural Gas Processing Plant Practices for Protection of the Environment
Assists gas plant operators in understanding their environmental responsibilities. It is intended to be used primarily by environmental, engineering, and operations personnel and by management involved in building, maintaining, modifying, and operating gas processing plants. Operations within the scope of this standard include natural gas processing and associated gas compression facilities. This publication begins with initial plant planning, permitting, and construction and ends with plant closure and site restoration procedures. General guidelines are provided to be used at gas plant locations to develop site-specific environmental programs. Pages: 23
Product Number: G50002 | Price: $112.00

RP 51
Onshore Oil and Gas Production Practices for Protection of the Environment
Provides environmentally sound practices to promote protection of the environment in domestic onshore oil and gas production operations. Production facilities, including produced water handling facilities, are covered. Coverage begins with design and construction of access roads and well locations and carries through to abandonment and site restoration activities. Pages: 17
3rd Edition | March 2001 | Reaffirmed: January 2013
Product Number: G51003 | Price: $53.00

RP 51R
Environmental Protection for Onshore Oil and Gas Production Operations and Leases
Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Gas compression for transmission purposes or production operations, such as gas lift, pressure maintenance, or enhanced oil recovery (EOR), is included. Annex A provides guidance for a company to consider as a “good neighbor.” Pages: 35
Product Number: G51R01 | Price: $78.00

RP 52
Land Drilling Practices for Protection of the Environment
Provides guidelines to promote the protection of the environment in land drilling operations. Pages: 40
2nd Edition | July 1995 | Reaffirmed: September 2010
Product Number: G52002 | Price: $118.00

RP 68
Recommended Practice for Oil and Gas Well Servicing and Workover Operations Involving Hydrogen Sulfide
Addresses personnel training, personnel protective equipment, contingency planning, and emergency procedures. Also included are classification of locations, materials and equipment, operations, rig practices, special operations, offshore operations, characteristics of hydrogen sulfide and sulfur dioxide, and evaluation and selection of hydrogen sulfide monitoring equipment. Pages: 54
Product Number: G68001 | Price: $78.00

RP 90
Annular Casing Pressure Management for Offshore Wells
Serves as a guide for managing annular casing pressure in offshore wells. This guide is meant to be used for offshore wells that exhibit annular casing pressure, including thermal casing pressure, sustained casing pressure (SCP), and operator-imposed pressure. Covers monitoring, diagnostic testing, the establishment of a maximum allowable wellhead operating pressure (MAWOP), and documentation of annular casing pressure for the various types of wells that occur offshore. Included also is a discussion of risk assessment methodologies that can be used for the evaluation of individual well situations where the annular casing pressure is not within the MAWOP guidelines. Provides guidelines in which a broad range of casing annuli that exhibit annular pressure can be managed in a routine fashion while maintaining an acceptable level of risk. Pages: 84
1st Edition | August 2006 | Reaffirmed: January 2012
Product Number: G09001 | Price: $187.00

RP 90-2
Annular Casing Pressure Management for Onshore Wells
Serves as a guide to monitor and manage annular casing pressure (ACP) in onshore wells, including production, injection, observation/monitoring, and storage wells. This document applies to wells that exhibit thermally induced, operator-imposed, or sustained ACP. It includes criteria for establishing diagnostic thresholds (DTs), monitoring, diagnostic testing, and documentation of ACP for onshore wells. Also included is a discussion of risk management considerations that can be used for the evaluation of individual well situations where the annular casing pressure falls outside the established diagnostic thresholds.
This document recognizes that an ACP outside of the established DTs can result in a risk to well integrity. The level of risk presented by ACP depends on many factors, including the design of the well, the performance of barrier systems within the well, the source of the annular casing pressure, and whether there is an indication of annular flow exists. This document provides guidelines in which a broad range of casing annuli that exhibit annular casing pressure can be managed while maintaining well integrity. Pages: 60
1st Edition | April 2016
Product Number: G090201 | Price: $187.00
Bull 92L
Drilling Ahead Safely with Lost Circulation in the Gulf of Mexico

Identifies items that should be considered to safely address lost circulation challenges when the equivalent circulating density (ECD) exceeds the fracture gradient. It addresses drilling margins and drilling ahead with mud losses, which are not addressed in Std 65-2. It provides guidance when lost circulation is experienced with either surface or subsea stack operations (excluding diverter operations). These practices may apply to other Outer Continental Shelf (OCS) environments such as offshore California and Florida.

Lost circulation during drilling operations, in the form of both seepage and fracture losses, is a common occurrence in the Gulf of Mexico and other OCS environments. Through extensive practical experience, operators and drilling contractors have learned that with proper information, planning, and execution, lost circulation can be safely managed to allow well construction goals to be met. The methods used to repair or manage lost circulation are based on well location, geology, pore and fracture pressures, drilling depth, well design, hydraulics, mud properties, and available contingencies. Pages: 14

1st Edition | August 2015 | Product Number: G92L01 | Price: $72.00

RP 92M
Managed Pressure Drilling Operations with Surface Back-Pressure

Provides information for planning, installation, testing, and operation of wells drilled with surface backpressure managed pressure drilling (MPD). This document applies only to drilling rigs with surface blowout preventers (BOPs), This document considers situations where the total drilling operation is performed balanced or overbalanced, including both hydrostatically overbalanced (no supplemental surface pressure needed to control inflow) and hydrostatically underbalanced (supplemental surface pressure needed to control inflow) systems. For underbalanced operations, refer to API 92U.

This document does not cover MPD operations with subsea BOP stacks. Pages: 33

1st Edition | September 2017 | Product Number: G92M01 | Price: $101.00

RP 92S
Managed Pressure Drilling Operations—Surface Back-Pressure with a Subsea Blowout Preventer

Provides information for planning, installation, testing, and operation of wells drilled with surface back-pressure (SBP) managed pressure drilling (MPD). This document applies only to drilling rigs with subsea blowout preventers (BOPs). This document considers situations where the total drilling operation is performed balanced or overbalanced, including both hydrostatically overbalanced (no supplemental surface pressure needed to control inflow) and hydrostatically underbalanced (supplemental surface pressure needed to control inflow) systems. Pages: 64

1st Edition | September 2018 | Product Number: G92S01 | Price: $126.00

RP 92U
Underbalanced Drilling Operations (includes Addendum 1 dated November 2015)

Provides information that can serve as a guide for planning, installation, operation, and testing of underbalanced drilling equipment systems on land and offshore drilling rigs [barge, platform, bottom-supported, and floating with surface blowout preventers (BOPs) installed] thereby ensuring consideration of personnel safety, public safety, integrity of the underbalanced drilling (UBD) equipment, and preservation of the environment for onshore and offshore UBD operations (including tripping of drill string). Pages: 72

Product Number: G92U01 | Price: $108.00

RP 96
Deepwater Well Design and Construction

Provides engineers a reference for deepwater (DW) well design as well as drilling and completion operations. This recommended practice (RP) will also be useful to support internal reviews, internal approvals, contractor engagements, and regulatory approvals.

The scope of this RP is to discuss DW drilling and completion activities performed on wells that are constructed using subsea blowout preventers (BOPs) with a subsea wellhead. This document addresses the following.

- Identifies the appropriate barrier and load case considerations to maintain well control during DW well operations (drilling, suspension, completion, production, and abandonment).
- Supplements barrier documentation in Std 65-2 with a more detailed description of barriers and discussion of the philosophy, number, type, testing, and management required to maintain well control. This document also supplements the barrier documentation in RP 90 in regard to annular pressure buildup. Abandonment barrier requirements are described for use when designing the well.
- Discusses load assumptions, resistance assumptions, and methodologies commonly used to achieve well designs with high reliability. The load case discussion includes less obvious events that can arise when unexpected circumstances are combined.
- Describes the risk assessment and mitigation practices commonly implemented during DW casing and equipment installation operations.

The purpose of this document is to enhance safety and minimize the likelihood of loss of well control or damage to the environment. These practices are generally intended to apply to subsea wells drilled with subsea BOPs in any water depth. Some of the descriptions of rig hardware and operations, such as remotely operated vehicles, are less relevant in shallower water depths [e.g., less than 500 ft (152 m)]. In these shallower water depths the operator may substitute alternative hardware or operations that maintain safety and system reliability.

The following aspects of DW well design and construction are outside the scope of this document.

- Detailed casing design load case definitions (does not include specific casing designs or design factors). Individual companies combine differing severities of loads and resistances or differing calculation methods to achieve designs with similar high levels of reliability.
- Wells drilled and/or completed with a surface BOP and high pressure riser from a floating production system; however, considerations for wells predrilled with floating rigs to be completed to a floating production system are included.
- Well control procedures (refer to RP 59 for well control information).
- Managed pressure drilling operations (including dual gradient drilling).
- Production operations and fluids handling downstream of the tree (subsea facilities/subsea architecture and surface facilities/offloading hydrocarbons).
- Intervention operations.
- Quality assurance programs. Pages: 158

1st Edition | March 2013 | Product Number: G09601 | Price: $180.00

Bull 97
Well Construction Interface Document Guidelines

Contains the structure and contents of a well control interface document (WCID) that links the drilling contractor’s safety case with the lease operator's safety management system. It includes well-specific information such as the basis of design, the well execution plan, and critical well activity risk assessment. This document exhibits how management of change and risk assessment processes will apply during well construction activities and assure personnel competency. A WCID also aligns all parties to assure their health, safety, and environment (HSE) standards are not compromised and all applicable regulatory requirements are met while undertaking shared activities. A WCID will assign or delineate specific responsibilities for the lease operator’s personnel as well as provide a vehicle for the drilling contractor to intervene in the case that unsafe acts are identified. Pages: 18

1st Edition | December 2013 | Product Number: G09701 | Price: $67.00
RP 98
Personal Protective Equipment Selection for Oil Spill Responders

Provides general information and guidance for the development of oil spill responder Personal Protective Equipment (PPE) control measures. Although an extensive amount of information has been developed on the topic of PPE for emergency responders, this document focuses on the PPE selection process as well as its technical evaluation based on the hazards present.

The purpose of this recommended practice is to assist users in developing effective PPE control measures for oil spill responses using a systematic approach. This recommended practice is intended for any company, organization, or agency that oversees or responds to oil spills. It is not a comprehensive “how-to” guide to selecting PPE for every type of situation that may be encountered; rather, it is a guidance document that discusses how proper PPE selection may be a useful control measure for responders when engineering and administrative controls may not be feasible or effective in reducing exposure to acceptable levels. Pages: 79

1st Edition | August 2013 | Product Number: G09801 | Price: $134.00

RP 99
Flash Fire Risk Assessment for the Upstream Oil and Gas Industry

Provides guidance for the upstream oil and gas industry on hazard identification and risk assessment exercises to assess and mitigate the risk of human injury caused by exposure to a flash fire. The scope of this document is limited to personnel exposed to the risk of hydrocarbon based flash fires in the upstream Exploration and Production (E&P) sector of the oil and gas industry. In general, this group includes oil and gas production, drilling, well bore (well servicing) operations, and gas processing prior to interstate pipeline transportation. Pages: 30

1st Edition | April 2014 | Product Number: G09901 | Price: $82.00

RP 100-1
Hydraulic Fracturing—Well Integrity and Fracture Containment

Contains recommended practices for onshore well construction and fracture stimulation design and execution as it relates to well integrity and fracture containment. These practices cover the design and installation of well equipment that protects and isolates ground water aquifers, delivery, and execution of the hydraulic fracture treatment and contains and isolates the produced fluids. This document also addresses the design and execution of hydraulic fracturing treatments to contain the resulting fracture within a prescribed geologic interval. Fracture containment combines those parameters that are existing, those that can be established at installation, and those that can be controlled during execution. Pages: 29

1st Edition | October 2015 | Product Number: G100101 | Price: $93.00

RP 100-2
Managing Environmental Aspects Associated with Exploration and Production Operations Including Hydraulic Fracturing

Provides recommended practices applicable to the planning and operation of wells, and hydraulically fractured wells. Topics covered include recommendations for managing environmental aspects during planning; site selection; logistics; mobilization, rig-up, and demobilization; and stimulation operations. Also, this document includes guidance for managing environmental aspects during well construction; however, guidance for well construction and fracture stimulation design and execution for onshore wells that can be hydraulically fractured are described in RP 100-1. This document provides recommendations for the following topics:

- baseline groundwater sampling;
- source water management;
- material selection;
- transportation of materials and equipment;
- storage and management of fluids and chemicals;
- management of solid and liquid wastes;
- air emissions. Pages: 53

1st Edition | August 2015 | Product Number: G100201 | Price: $93.00

Bull 100-3
Community Engagement Guidelines

These guidelines outline what local communities and other key stakeholders can expect from operators. Oil and gas operators acknowledge the challenges associated with industry activities, which can include challenges important to a community. Principles of integrity, transparency and consideration for community concerns underpin responsible operations. Conscientious operators are committed to helping communities achieve positive and long-lasting benefits.

Both local stakeholders and operators can use this guidance. It is designed to acknowledge challenges and impacts that occur during the industry's presence in a given region. It provides flexible and adaptable strategies, recognizing that application will vary from operator to operator and community to community. Many operators already apply similar guidelines or processes within their operations. These suggested guidelines are typical and reasonable and generally apply under normal operating circumstances. The use of these guidelines is at each individual operator's discretion.

Operators recognize that stakeholders within the community can have different interests, issues and levels of concern. Some of these interests can be in direct conflict with one another. Working together with stakeholders to seek mutually agreeable solutions is an important aspect of community engagement. Operators can have different approaches to addressing the concerns and issues.

These guidelines are intended primarily to support onshore oil and gas projects in the United States for shale developments; however, they can be adapted to any oil and gas projects in the United States.

This document provides non-technical guidance only, and practices included herein cannot be applicable in all regions and/or circumstances. This document does not constitute legal advice regarding compliance with legal or contractual requirements or risk mitigation. It is not intended to be all-inclusive. The operator is responsible for determining compliance with applicable legal and regulatory requirements.

DRILLING AND PRODUCTION OPERATIONS: TRAINING

Gas Lift
(Book 6 in the Vocational Training Series)

Familiarizes field personnel with basic gas lift principles; operating procedures for adjusting, regulating, operating, and troubleshooting gas-lift equipment; and well conditions. Covers conventional practices and concepts. Illustrated with drawings of typical gas-lift installations and related equipment, as well as actual charts illustrating operation of and problems encountered in gas-lift wells. Pages: 143

Product Number: GVT063 | Price: $161.00

Introduction to Oil and Gas Production
(Book 1 in the Vocational Training Series)

Serves as a primer for oil and gas operations. It covers the origins and accumulation of oil and gas, the well, well treatment and wellhead, artificial lift, well testing, separation, treatment and storage, gauging and metering, production, offshore production and structures, corrosion, enhanced recovery, production personnel, tools and equipment, pipe, valves and fittings, reports and records, state and federal regulations, environmental, health, and safety concerns, economic considerations, and future trends. Pages: 120

Product Number: GVT015 | Price: $161.00
Subsurface Salt Water Injection and Disposal
(Book 3 in the Vocational Training Series)
A handbook for the planning, installation, operation, and maintenance of subsurface disposal systems. Design criteria and formulas are given for gathering systems, treating plants, and injection facilities. Alternative equipment and methods are discussed and illustrated. Economic considerations are presented. Pages: 47

Product Number: GVT033 | Price: $100.00

Wireline Operations and Procedures
(Book 5 in the Vocational Training Series)
A handbook outlining to operators of oil and gas wells what applications are possible with wireline tools and equipment. Also a guide for field personnel. Surface equipment, service tools (standard and special), and subsurface equipment (both permanent and removable) are described and illustrated. Their various applications are included. Also presented is a general discussion of special problems that wireline operations and procedures may serve to eliminate, minimize, or control, and methods by which this may be accomplished. Pages: 60

Product Number: GVT053 | Price: $126.00

RP T-1
Creating Orientation Programs for Personnel Going Offshore
Serves as a guide to develop orientation materials for personnel and visitors prior to their first trip offshore. The scope and applicability of this document concludes after check-in at the offshore facility and receipt of the facility-specific orientation. Pages: 18

RP T-2 ◆
Recommended Practice for Qualification Programs for Offshore Production Personnel Who Work with Safety Devices
Provides guidelines for the qualification of personnel engaged in installing, inspecting, testing, and routinely maintaining surface and subsurface devices that are used to insure safety and to prevent pollution during the production of oil and gas on offshore platforms. The guidelines provide expected candidate performance levels, instructional content, and recommendations for testing. The guidelines are divided into instructional and testing phases. Pages: 3

2nd Edition | December 2001 | Reaffirmed: January 2013
Product Number: GT2002 | Price: $61.00

RP T-4
Training of Offshore Personnel in Nonoperating Emergencies
Represents an industry guide for the training of workers who work offshore. It presents recommendations for training these personnel in handling nonoperating emergencies, such as fires, transportation emergencies, platform abandonment procedures, use of survival crafts, and water survival guidelines. Pages: 3

2nd Edition | October 1995 | Reaffirmed: June 2010
Product Number: GT4002 | Price: $61.00

RP T-6
Recommended Practice for Training and Qualification of Personnel in Well Control Equipment and Techniques for Wireline Operations on Offshore Locations
Provides criteria for the qualification of wireline personnel in well control equipment operations and techniques. Although it does include recommendations for training wireline personnel on general rig well control equipment and theory, it should be noted that the main focus for training should be those operations using a lubricator as the primary well control mechanism. Wireline personnel classifications to which this RP is applicable are the Helper/Assistant and Operator/Supervisor. Pages: 2

1st Edition | October 2002 | Reaffirmed: January 2013
Product Number: GT0601 | Price: $61.00

RP T-7
Training of Personnel in Rescue of Persons in Water
Applies to personnel who work offshore. It represents an industry guide for training personnel in techniques for rescuing persons from the water and using survival devices. It broadly identifies rescue devices, describes their operations, and presents recommendations for training personnel. Training recommendations are designed to develop personnel rescue proficiency while minimizing an individual’s exposure to injury or loss of life. Pages: 8

Product Number: GT7002 | Price: $59.00

COMMUNITY ENGAGEMENT

Community Matters: Community Outreach Guidance Manual for Exploration and Production Facilities
This manual provides a model community outreach program to help oil and natural gas industry E&P facilities improve their ties to their local communities. Community Matters offers a step-by-step guide for implementing a community outreach program and provides information on how to tailor outreach efforts to meet the needs of the facility and local community. Pages: 111

1st Edition | November 2000 | Product Number: G13660 | Price: $85.00

Bull 100-3
Community Engagement Guidelines
These guidelines outline what local communities and other key stakeholders can expect from operators. Oil and gas operators acknowledge the challenges associated with industry activities, which can include challenges important to a community. Principles of integrity, transparency and consideration for community concerns underpin responsible operations. Conscientious operators are committed to helping communities achieve positive and long-lasting benefits.

Both local stakeholders and operators can use this guidance. It is designed to acknowledge challenges and impacts that occur during the industry’s presence in a given region. It provides flexible and adaptable strategies, recognizing that application will vary from operator to operator and community to community. Many operators already apply similar guidelines or processes within their operations. These suggested guidelines are typical and reasonable and generally apply under normal operating circumstances. The use of these guidelines is at each individual operator’s discretion. Operators recognize that stakeholders within the community can have different interests, issues and levels of concern. Some of these interests can be in direct conflict with one another. Working together with stakeholders to seek mutually agreeable solutions is an important aspect of community engagement. Operators can have different approaches to addressing the concerns and issues.

These guidelines are intended primarily to support onshore oil and gas projects in the United States; however, they can be adapted to any oil and gas projects in the United States. This document provides non-technical guidance only, and practices included herein cannot be applicable in all regions and/or circumstances. This document does not constitute legal advice regarding compliance with legal or contractual requirements or risk mitigation. It is not intended to be all-inclusive. The operator is responsible for determining compliance with applicable legal and regulatory requirements.

HEALTH, ENVIRONMENT, AND SAFETY: EXPLORATION AND PRODUCTION SAFETY STANDARDS

RP 49
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide

Provides recommendations that apply to oil and gas well drilling and servicing operations involving hydrogen sulfide. These operations include well drilling, completion, servicing, workover, downhole maintenance, and plug and abandonment procedures conducted with hydrogen sulfide present in the fluids being handled. Coverage of this publication is applicable to operations confined to the original wellbore or original total depth and applies to the selection of materials for installation or use in the well and in the well drilling or servicing operation(s). The presence of hydrogen sulfide in these operations also presents the possibility of exposure to sulfur dioxide from the combustion of hydrogen sulfide. Pages: 29

3rd Edition | May 2001 | Reaffirmed: January 2013
Product Number: G49003 | Price: $91.00

RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh

Kazakh translation of RP 49.

3rd Edition | May 2001 | Product Number: G4903K | Price: $73.00

RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian

Russian translation of RP 49.

3rd Edition | May 2001 | Product Number: G04903R | Price: $70.00

RP 51R
Environmental Protection for Onshore Oil and Gas Production Operations and Leases

Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Gas compression for transmission purposes or production operations, such as gas lift, pressure maintenance, or enhanced oil recovery (EOR), is included. Annex A provides guidance for a company to consider as a “good neighbor.” Pages: 35

Product Number: G51R01 | Price: $78.00

RP 54
Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations

Includes procedures for promotion and maintenance of safe working conditions for employees engaged in rotary drilling operations and well servicing operations, including special services. Applies to rotary drilling rigs, well servicing rigs, and special services as they relate to operations on locations. Pages: 35

3rd Edition | August 1999 | Reaffirmed: January 2013
Product Number: G54003 | Price: $129.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)
RP 75
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities

Provides guidance for use in preparing safety and environmental management programs (SEMP) for oil, gas, and sulphur operations and facilities located on the outer continental shelf (OCS). These guidelines are applicable to well drilling, servicing, and production; and pipeline facilities and operations that have the potential for creating a safety or environmental hazard at OCS platform sites. Eleven major program elements are included for application to these facilities and operations. Identification and management of safety and environmental hazards are addressed in design, construction, startup, operation, inspection, and maintenance of new, existing, and modified facilities. Pages: 41

Product Number: G07503 | Price: $92.00

RP 75 *
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities—Chinese

Chinese translation of RP 75.

3rd Edition | May 2004 | Product Number: G07503C | Price: $65.00

Bull 75L
Guidance Document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operations and Associated Activities

Provides general information and guidance for the development of a safety and environmental management system (SEMS) for onshore oil and natural gas operations, including drilling, production, and well servicing activities. Although there is an extensive amount of information that has been developed on the topic of safety and environmental management systems, this document focuses on this industry sector to help foster continuous improvement in our industry's safety and environmental performance. It is recognized that many onshore oil and natural gas companies have effective SEMS in place; however, the intent of this document is to provide an additional tool that can assist the operators and/or contractor in taking the next step toward implementing a complete system at a pace that complements their business plan. For those who already have a mature SEMS in place, this document can be used for continuous improvement of the system. Pages: 12

1st Edition | November 2007 | Product Number: G75L01 | Price: $35.00

RP 76
Contractor Safety Management for Oil and Gas Drilling and Production Operations

Intended to assist operators, contractors, and subcontractors (third parties) in the implementation of a contractor safety program and improve the overall safety performance while preserving the independent contractor relationship. It is intended for the Upstream Segment of the petroleum industry; however, since the operator requirements and the contracted work are diverse, this publication may not be applicable to all operations at each company or to all contract work performed in those operations. Many oil and gas exploration and production companies contract for equipment and personnel services for a wide range of activities, including drilling production, well servicing, equipment repair, maintenance, and construction. Certain activities of contractors have the potential to take place either contractor and/or operator personnel and/or equipment at risk. It is important that operations are carried out in a safe manner. Operators and contractors need to provide safe work places and to protect the safety of their workforces and the general public. When they work together to improve safety, both benefit. Pages: 60

2nd Edition | November 2007 | Reaffirmed: January 2013
Product Number: G07602 | Price: $59.00

RP 77
Risk-Based Approach for Managing Hydrocarbon Vapor Exposure During Tank Gauging, Sampling, and Maintenance of Onshore Production Facilities

Covers recommended risk assessment and risk management practices to reduce the potential for acute worker hydrocarbon exposures and related atmospheric risks (i.e., potential oxygen deficiency). Specifically, this recommended practice is limited to onshore production tanks (including flowback tanks) during gauging and sampling, open-top tank sampling, and select tank maintenance activities involving removal or opening of tank appurtenances. While the tools and practices recommended in this document can be useful in other operations, this recommended practice does not specifically apply to downstream, refining, or offshore tank applications. Pages: 30

1st Edition | June 2018 | Product Number: G07701 | Price: $88.00

Bull D16
Suggested Procedure for Development of a Spill Prevention Control and Countermeasure Plan

Assists the petroleum industry in understanding the SPCC regulation in light of the latest rule (40 CFR Part 112) and to offer guidance for developing SPCC Plans wherever they are needed. Included is a template for developing SPCC plans (i.e., onshore excluding production; onshore oil production, oil drilling or workover; or offshore oil drilling, production, or workover) in accordance with the regulation and guidance, instruction, and clarification for completing each section of the template. The purpose of this rulemaking was to establish procedures, methods, and equipment to prevent and contain discharges of oil from non-transportation-related onshore and offshore facilities, thus preventing pollution of navigable waters of the United States. The development of this bulletin was commissioned by API and performed by O'Brien's Response Management Inc. The purchase of D16 includes Bull D16, the Plan Template, and a CD-ROM with the Microsoft® Word version of the Plan Template.

5th Edition | April 2011 | Product Number: GD1605
Price: $266.00 | Template Only: Price: $98.00

HEALTH, ENVIRONMENT, AND SAFETY:

GENERAL

Achieving Common Sense Environmental Regulation: Oil and Gas Exploration & Production

Discusses proposals to achieve a balanced approach to environmental regulation of the oil and gas exploration and production industry that protects the environment as well or better than the current system and does the job more efficiently. Pages: 36

May 1996 | Product Number: G13715 | Price: Free*

Exploration and Production: Protecting the Environment

Discusses work the E&P industry does to protect the environment while exploring for and producing oil and natural gas. Describes a number of innovative and socially responsible actions taken by exploration and production companies to minimize impacts to air, water, land, and wildlife. This document is only available in a PDF format. Pages: 24

September 1997 | Product Number: G13650 | Price: Free*

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Although plans prepared or modified using this RP can be used to replace company, organization, or public agency that oversees or responds to oil spills. Stakeholders, and the general public. This RP may be informative for any expectations of plan holders, responders, regulators, response officials, guidance for effective and functional Oil Spill Response Plans that fulfill the regulatory compliance guideline or to supersede current regulations.

This RP is intended to provide plan developers and writers with information and content recommended in this document are also applicable to other types of transportation (pipeline) industry. The general plan concepts, layout, and work very closely with that office on all NORM issues. Pages: 50

Product Number: G11000 | Price: $146.00

Bull E4

Environmental Guidance Document: Release Reporting for the Oil and Gas Exploration and Production Industry as Required by the Clean Water Act, the Comprehensive Environmental Response, Compensation and Liability Act, and the Emergency Planning and Community

Developed to provide the oil and gas production industry guidance on reporting releases of hazardous substances and petroleum to water as required by the Clean Water Act (CWA) and reporting releases of hazardous substances into the environment as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA). Also covers the reporting of what most in the industry consider “emergency” releases, which are unplanned and typically are not covered under a permit issued by a government agency. Pages: 106

2nd Edition | May 2003 | Product Number: GE4002 | Price: $174.00

RP 1145

Preparation of Response Plans for Oil Spills from Offshore Facilities

Provides information and guidance for the development of Oil Spill Response Plans for the offshore U.S. oil and gas exploration, production, and transportation (pipeline) industry. The general plan concepts, layout, and content recommended in this document are also applicable to other types of coastal/marine assets, both in the U.S. and international locations.

This RP is intended to provide plan developers and writers with information and guidance for effective and functional Oil Spill Response Plans that fulfill the expectations of plan holders, responders, regulators, response officials, stakeholders, and the general public. This RP may be informative for any company, organization, or public agency that oversees or responds to oil spills. Although plans prepared or modified using this RP can be used to replace existing response plans required by regulation, the RP is not intended to be a regulatory compliance guideline or to supersede current regulations. Pages: 140

2nd Edition | February 2018 | Product Number: D11452 | Price: $120.00

Publ 4702

Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal

Technologies to reduce oil and grease content of well treatment, well completion, and workover fluids for overboard disposal. Pages: 54

March 2001 | Product Number: I47020 | Price: $126.00

HEALTH, ENVIRONMENT, AND SAFETY: NATURALLY OCCURRING RADIOACTIVE MATERIALS

Bull E2

Management of Naturally Occurring Radioactive Materials (NORM) in Oil and Gas Production

Naturally occurring radioactive materials (NORM) are present in oil and gas operations at some locations and can deposit in well tubulars, surface piping, vessels, pumps, and other producing and processing equipment. The purpose of this document is to inform oil and gas operators of the possible presence of NORM and to provide relevant information on protecting workers, the public, and the environment. The objective of this document is to provide general information to users so that they have an understanding of the fundamental radiation issues associated with the management of NORM. Issues where the advice of a professional health physicist, industrial hygienist, or other technical expert may be useful are identified and guidance provided. Readers are advised to contact their state regulatory office and work very closely with that office on all NORM issues. Pages: 50

2nd Edition | March 2006 | Product Number: GE2002 | Price: $126.00

Publ 7100

A Naturally Occurring Radioactive Material (NORM) Disposal Cost Study

Details the reported quantities of NORM that have accumulated over the years and the annual rate of NORM production for 1993 from U.S. oil and gas condensate production. The document also determines the 1992 cost of available NORM disposal options and the annual costs of complying with existing and proposed NORM regulations. Pages: 59

1st Edition | November 1996 | Product Number: G71001 | Price: $118.00

Publ 7101

A National Survey on Naturally Occurring Radioactive Material (NORM) in Petroleum Producing and Gas Processing Facilities

Defines the general occurrence of NORM in the United States based on statistical analysis of gamma measurements taken external to certain petroleum producing and gas processing equipment. Pages: 265

October 1997 | Product Number: G71011 | Price: $118.00

Publ 7102

Methods for Measuring Naturally Occurring Radioactive Materials (NORM) in Petroleum Production Equipment

The use and capabilities of common field-survey equipment are characterized for measuring NORM in sludges and scales accumulated in oil and gas production equipment. A correlation between radium concentrations in accumulated scales and sludges and measured external radiation is presented. Pages: 85

October 1997 | Product Number: G71021 | Price: $118.00

Publ 7103

Management and Disposal Alternatives for Naturally Occurring Radioactive Material (NORM) Wastes in Oil Production and Gas Plant Equipment

Presents radiological analyses of disposal alternatives that will protect against elevated radiation exposures and facilitate cost-effective precautions that are proportionate to any hazards posed by the NORM. Four waste forms and 12 waste disposal alternatives were analyzed. Pages: 65

October 1997 | Product Number: G71031 | Price: $118.00
Publ 7104
Proceedings of the 1995 API and GRI Naturally Occurring Radioactive Material (NORM) Conference
A compilation of 17 papers presented at the 1995 API/GRI NORM Conference. Subjects include measurement and survey; regulatory issues and activities; management and disposal; and scale prediction and control.
Pages: 225
October 1997 | Product Number: G71041 | Price: $118.00

Publ 7105
Probabilistic Estimates of Dose and Indoor Radon Concentrations Attributable to Remediated Oilfield Naturally Occurring Radioactive Material (NORM)
Evaluates the concentration limit of 30 pCi/g Ra-226 in pipe scale and sludge left near the surface of remediated oilfield sites and returned to unrestricted public use. Includes an extensive bibliography of NORM research.
Pages: 97
October 1997 | Product Number: G71051 | Price: $118.00

HEALTH, ENVIRONMENT, AND SAFETY:

WASTE

Guidelines for Commercial Exploration and Production Waste Management Facilities
Provides guidelines for the design and operations of commercial E&P waste management facilities to allow operators to identify areas where their facility could have impacts on the surrounding community and environment, and gives options for preventing/reducing those impacts. The guidelines are not meant to supersede any applicable local, state, or federal requirements.
Pages: 80

Protecting Livestock: Answers to Frequently Asked Questions about Livestock Exposure to Crude Oil in Oilfield Operations
Describes ways livestock might be significantly exposed to petroleum hydrocarbons via a conceptual site model and outlines how to make a screening level determination of whether or not livestock are at risk from the exposure.
2006 | Product Number: IOPL06 | For a free copy, please visit http://www.api.org/~/media/Files/EHS/Environmental_Performance/LIVESTOCK_EXPOSURE_BROCHURE_FINAL.pdf

API E5
Environmental Guidance Document: Waste Management in Exploration and Production Operations
Includes recommendations for the environmentally sound management of solid waste resulting from the exploration and production of oil and gas. Guidance is provided for the management of drilling fluids, produced waters, and other wastes associated with the operation of gas plants, field facilities, drilling, and workover.
Pages: 84
2nd Edition | February 1997 | Product Number: GE5002 | Price: $129.00

SECURITY

RP 70
Security for Offshore Oil and Natural Gas Operations
Intended to assist the offshore oil and natural gas drilling and producing operators and contractors in assessing security needs during the performance of oil and natural gas operations. It includes information on security awareness, conducting security vulnerability assessments when warranted, and developing security plans for offshore facilities.
Pages: 16
1st Edition | March 2003 | Reaffirmed: September 2010
Product Number: G07001 | Price: $59.00

RP 70I
Security for Worldwide Offshore Oil and Natural Gas Operations
Intended to assist the offshore oil and natural gas drilling and producing operators and contractors in assessing security needs during the performance of oil and natural gas operations worldwide.
Pages: 14
1st Edition | April 2004 | Reaffirmed: January 2012
Product Number: G70I03 | Price: $63.00
Chapter 2.2A
Measurement and Calibration of Upright Cylindrical Tanks by the Manual Tank Strapping Method
Procedures for calibrating upright cylindrical tanks used primarily for the storage of petroleum liquids. Ch. 2.2A addresses necessary measurement procedures to determine total and incremental tank volumes and procedures for computing volumes. Both metric and customary units are included. The metric units reflect what is available in commercial equipment. The standard also provides guidelines for recalibration and computerization of capacity tables. Ch. 2.2A should be used in conjunction with Ch. 2.2B. These two standards combined supersede the previous Std 2550. Pages: 58
1st Edition | February 1995 | Reaffirmed: August 2017
Product Number: H022A1 | Price: $129.00

Chapter 2.2B
Calibration of Upright Cylindrical Tanks Using the Optical Line Method
Describes measurement and calculation procedures for determining the diameters of upright, welded (lap/butt) cylindrical tanks, or vertical cylindrical tanks, with a smooth outside surface and either floating or fixed roofs. The optical line method is an alternative to the manual tank strapping method for determining tank diameter. Ch. 2.2B should be used in conjunction with Ch. 2.2A. Pages: 8
Product Number: H30023 | Price: $85.00

Chapter 2.2C/ISO 7507-3:1993
Calibration of Upright Cylindrical Tanks Using the Triangulation Method
(ANSI/API MPMS Ch. 2.2C-2002)
Describes the calibration of vertical cylindrical tanks by means of optical triangulation using theodolites. The method is an alternative to other methods such as strapping (Ch. 2.2A) and the optical-reference-line method (Ch. 2.2B).
This edition of Ch. 2.2C is the modified national adoption of ISO 7507-3:1993. Pages: 19
1st Edition | January 2002 | Reaffirmed: September 2018
Product Number: H022C1 | Price: $85.00

Chapter 2.2D/ISO 7507-4:1995
Calibration of Upright Cylindrical Tanks Using the Internal Electro-Optical Distance Ranging Method
(ANSI/API MPMS Ch. 2.2D-2003)
Specifies a method for the calibration of upright cylindrical tanks having diameters greater than 5 m by means of internal measurements using an electro-optical distance-ranging instrument, and for the subsequent compilation of tank capacity tables.
This edition of Ch. 2.2D is the modified national adoption of ISO 7507-4:1995. Pages: 13
Product Number: H022D1 | Price: $85.00

Chapter 2.2E/ISO 12917-1:2002
(Includes Errata 1 dated November 2009) (ANSI/API MPMS Ch. 2.2E)
Specifies manual methods for the calibration of nominally horizontal cylindrical tanks, installed at a fixed location. It is applicable to horizontal tanks up to 4 m (13 ft) in diameter and 30 m (100 ft) in length. The methods are applicable to insulated and non-insulated tanks, either when they are above-ground or underground. The methods are applicable to pressurized tanks, and to both knuckle-dish-end and flat-end cylindrical tanks as well as elliptical and spherical head tanks. This chapter is applicable to tanks inclined by up to 10% from the horizontal provided a correction is applied for the measured tilt. For tanks over and above these dimensions and angle of tilt, appropriate corrections for tilt and appropriate volume computations should be based on the “Costs” equation. This edition of Ch. 2.2E is the national adoption of ISO 12917-1:2002. Pages: 18
Product Number: HX202E01 | Price: $91.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 2.2F/ISO 12917-2:2002
Petroleum and Liquid Petroleum Products—Calibration of Horizontal Cylindrical Tanks—Part 2: Internal Electro-Optical Distance-Ranging Method
(ANSI/API MPMS Ch. 2.2F)

This publication is related to an API licensing, certification, or accreditation program.

Chapter 2.7
Calibration of Barge Tanks
Describes three methods for determining the total incremental volumes of liquids in barge tanks for coastal and inland waterway service that have integral hull tanks. The three methods are as follows.
• Liquids calibration.
• Calibration by linear measurement.
• Calibration from vessel drawings.

This publication is related to an API licensing, certification, or accreditation program.

Chapter 2.8A
Calibration of Tanks on Ships and Oceangoing Barges
Three methods for determining the total and incremental volumes of liquids in tanks, oceangoing barges, and integrated tug barge units that have integral hull tanks. The three methods include liquid calibration, calibration by linear measurement, and calibration from vessel drawings.

This publication is related to an API licensing, certification, or accreditation program.

Chapter 2.8B
Recommended Practice for the Establishment of the Location of the Reference Gauge Point and the Gauge Height of Tanks on Marine Tank Vessels
Recommended practice, for use in conjunction with Ch. 2.7 and Ch. 2.8A. Establishes reference gauge heights during calibration of marine tank vessels. A reference gauge point is necessary for converting ullage to innage, and when determining the volume of the quantities remaining on board. A reference gauge point is also used for wedge formulas and establishing wedge tables.

This publication is related to an API licensing, certification, or accreditation program.

Chapter 3
Tank Gauging
Standardized procedures for gauging liquid hydrocarbons in various types of tanks, containers, and carriers.

This publication is related to an API licensing, certification, or accreditation program.

Chapter 3.1A
Standard Practice for the Manual Gauging of Petroleum and Petroleum Products
Describes the following:
• the procedures for manually gauging the liquid level of petroleum and petroleum products in non-pressure fixed-roof, floating-roof tanks and marine tank vessels,
• procedures for manually gauging the level of free water that may be found with the petroleum or petroleum products,
• methods used to verify the length of gauge tapes under field conditions and the influence of bob weights and temperature on the gauge tape length,
• the influences that may affect the position of gauging reference point (either the datum plate or the reference gauge point).

This publication is related to an API licensing, certification, or accreditation program.

Two tables are given in this recommended practice show the percent of error of measurement caused by varying thicknesses of uniform incrustation in tanks of various sizes. Pages: 3

This publication is a new entry in this catalog.
hydrocarbons having a Reid vapor pressure less than 15 psia (103 kPa),
verification of automatic tank gauges for measuring the level of liquid
Provides guidance on the selection, installation, calibration, and
verification of automatic tank gauges for measuring the level of liquid hydrocarbons having a Reid vapor pressure less than 15 psia (103 kPa),

Chapter 3.1A *
Standard Practice for the Manual Gauging of Petroleum and
Petroleum Products—Spanish
Spanish translation of Ch. 3.1A.
3rd Edition | August 2013 | Product Number: H301A03S | Price: $103.00

Chapter 3.1B ■
Standard Practice for Level Measurement of Liquid Hydrocarbons in
Stationary Tanks by Automatic Tank Gauging
Covers level measurement of liquid hydrocarbons in stationary, aboveground, atmospheric storage tanks using automatic tank gauges (ATGs). The standard discusses automatic tank gauging in general, accuracy, installation, commissioning, calibration, and verification of ATGs that measure either innage or ullage. It covers both intrusive and nonintrusive ATGs used for either custody transfer or inventory control. The standard also covers the requirements for data collection, transmission, and receiving. Pages: 28
3rd Edition | April 2018 | Product Number: H301B3 | Price: $107.00

Chapter 3.2
Standard Practice for Gauging Petroleum and Petroleum Products in
Tank Cars
Provides method for measuring liquids and liquefied gases in tank cars by liquid level measurement. Measurement of both vapor space and liquid level are covered. Gauging and temperature measurement equipment used in both open and closed measurement systems are described in this standard. These procedures reduce variability in the results of measurement and sampling operations when comparing loading terminal data to unloading terminal data. Pages: 20
1st Edition | August 1995 | Reaffirmed: May 2013
Product Number: H30201 | Price: $100.00

Chapter 3.2 *
Standard Practice for Gauging Petroleum and Petroleum Products in
Tank Cars—Spanish
Spanish translation of Ch. 3.2.
1st Edition | August 1995 | Product Number: H30201S | Price: $100.00

Chapter 3.3
Standard Practice for Level Measurement of Liquid Hydrocarbons in
Stationary Pressurized Storage Tanks by Automatic Tank Gauging
Provides guidance on the installation, calibration, and verification of automatic tank gauges used in custody transfer for measuring the level of liquid hydrocarbons having a Reid vapor pressure of 15 psi (103 kPa) or greater, stored in stationary, pressurized storage tanks. This standard also provides guidance on the requirements for data collection, transmission, and receiving. Pages: 10
1st Edition | June 1996 | Reaffirmed: March 2017
Product Number: H30301 | Price: $85.00

Chapter 3.3 *
Standard Practice for Level Measurement of Liquid Hydrocarbons in
Stationary Pressurized Storage Tanks by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.3.
1st Edition | June 1996 | Product Number: H30301S | Price: $85.00

Chapter 3.4
Standard Practice for Level Measurement of Liquid Hydrocarbons on
Marine Vessels by Automatic Tank Gauging
Provides guidance on the selection, installation, calibration, and
verification of automatic tank gauges for measuring the level of liquid hydrocarbons having a Reid vapor pressure less than 15 psia (103 kPa),

Chapter 3.4 *
Standard Practice for Level Measurement of Liquid Hydrocarbons on
Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.4.
Product Number: H03041 | Price: $85.00

Chapter 3.5
Standard Practice for Level Measurement of Light Hydrocarbon
Liquids Onboard Marine Vessels by Automatic Tank Gauging
Covers the standard practice for level measurement of light hydrocarbon liquids onboard marine vessels by automatic tank gauges. This publication covers pressurized and refrigerated light hydrocarbon liquids. The light hydrocarbon liquids covered include: liquefied petroleum gas (LPG), natural gas liquid (NGL), and other petrochemical liquids where the storage and transportation requirements and the methods of measurement are similar to that for LPG and NGL gauging. This standard also covers the requirements for data collection, transmission, and receiving. Pages: 8
Product Number: H03051 | Price: $85.00

Chapter 3.5 *
Standard Practice for Level Measurement of Light Hydrocarbon
Liquids Onboard Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.5.
1st Edition | March 1997 | Product Number: H03051S | Price: $85.00

Chapter 3.6
Measurement of Liquid Hydrocarbons by Hybrid Tank Measurement
Systems
(Includes Errata 1 dated September 2005)
Covers selection, installation, commissioning, calibration, and verification of hybrid tank measurement systems for the measurement of level, static mass, observed and standard volume, and observed and reference density in tanks storing petroleum and petroleum products for custody transfer and/or inventory control purposes. Pages: 26
1st Edition | February 2001 | Reaffirmed: January 2017
Product Number: H03061 | Price: $99.00

Chapter 4
Proving Systems
Serves as a guide for the design, installation, calibration, and operation of meter proving systems.

Chapter 4.1
Introduction
General introduction to the subject of proving. The requirements in Ch. 4 are based on customary practices that evolved for crude oils and products covered by Ch. 11.1. The prover and meter uncertainties should be appropriate for the measured fluids and should be agreeable to the parties involved. Pages: 4
3rd Edition | February 2005 | Reaffirmed: June 2014
Product Number: H04013 | Price: $84.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Chapter 4.1 *
Introduction—Spanish
3rd Edition | February 2005 | Product Number: H40101S | Price: $84.00

Chapter 4.2
Displacement Provers
(includes Addendum 1 dated February 2015)
Outlines the essential elements of provers that accumulate meter pulses as a displacing element within the prover travels between detector switches. It provides design and installation details for the types of displacement provers that are currently in use. The provers discussed are designed for proving measurement devices under dynamic operating conditions with single-phase liquid hydrocarbons. Pages: 45
Product Number: H04023 | Price: $127.00

Chapter 4.4
Tank Provers
Specifies the characteristics of tank provers that are in general use and the procedures for their calibration. This standard does not apply to weir-type, vapor-condensing, dual-tank water-displacement, or gas-displacement provers. Pages: 11
Product Number: H04042 | Price: $85.00

Chapter 4.5
Master Meter Provers
Covers the use of displacement, turbine, Coriolis, and ultrasonic meters as master meters. The requirements in this standard are intended for single-phase liquid hydrocarbons. Master proving requirements for other fluids should be appropriate for the overall custody transfer accuracy and should be agreeable to the parties involved. This document does not cover master meters to be used for the calibration of provers. For information concerning master meter calibration of provers, see Ch. 4.9.3. Pages: 24
4th Edition | June 2016 | Product Number: H40504 | Price: $82.00

Chapter 4.6
Pulse Interpolation
(includes Errata 1 dated April 2007)
Describes how the double-chronometry method of pulse interpolation, including system operating requirements and equipment testing, is applied to meter proving. Pages: 8
Product Number: H04062 | Price: $67.00

Chapter 4.7
Field Standard Test Measures
Details the essential elements of field standard test measures by providing descriptions, construction requirements, as well as inspection, handling, and calibration methods. Bottom-neck scale test measures and prover tanks are not addressed in this document. The scope of this standard is limited to the certification of “delivered volumes” of test measures. Pages: 19
3rd Edition | April 2009 | Reaffirmed: June 2014
Product Number: H40703 | Price: $89.00

Chapter 4.8
Operation of Proving Systems
Provides information for operating meter provers on single-phase liquid hydrocarbons. It is intended for use as a reference manual for operating proving systems. The requirements of this chapter are based on customary practices for single-phase liquids. This standard is primarily written for hydrocarbons, but much of the information in this chapter may be applicable to other liquids. Specific requirements for other liquids should be agreeable to the parties involved. Pages: 40
2nd Edition | September 2013 | 2-Year Extension: October 2018
Product Number: H04082 | Price: $129.00

Chapter 4.9.1
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 1—Introduction to the Determination of the Volume of Displacement and Tank Provers
Provers are precision devices, defined as volumetric standards, which are used to verify the accuracy of liquid volumetric meters used for custody transfer measurement. Both displacement and tank provers are used to prove a meter in order to obtain its meter factor, which is then used to correct for meter error caused by differences between the metered volume and the true volume. The base volume of a displacement or tank prover, determined by calibration, is an essential requirement in the determination of these meter factors. The accuracy of a meter factor is limited by several considerations:
• equipment performance,
• observation errors,
• prover volume calibration errors,
• calculation errors. Pages: 28
Product Number: H409011 | Price: $78.00

Chapter 4.9.2
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 2—Determination of the Volume of Displacement and Tank Provers by the Waterdraw Method of Calibration
All prover volumes used to calibrate meters shall be determined by calibration and not by theoretical calculation. Volumetric provers have an exact reference volume, which has been determined by a recognized method of calibration. Techniques for the determination of this reference volume include the waterdraw, master meter, and gravimetric methods of calibration. This standard describes only the waterdraw method of calibration, which is used to accurately determine the calibrated volume of both displacement and tank provers. Pages: 92
Product Number: H409021 | Price: $187.00

Chapter 4.9.3
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 3—Determination of the Volume of Displacement Provers by the Master Meter Method of Calibration
Covers the procedures required to determine the field data necessary to calculate a base proving volume (BPV) of a field displacement prover by the master meter method for calibration. This standard applies to liquids that for all practical purposes are considered to be clean, single-phase, homogeneous, and Newtonian at metering conditions. Detailed calculation procedures are not included in this standard: see Ch. 12.2.5. Pages: 19
1st Edition | April 2010 | Reaffirmed: March 2015
Product Number: H409031 | Price: $76.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Petroleum Measurement

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Chapter 4.9.4
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 4—Determination of the Volume of Displacement and Tank Provers by the Gravimetric Method of Calibration (includes Errata 1 dated August 2016)

Covers the specific procedures, equipment, and calculations required to determine the base prover volume of both tank and displacement provers by the gravimetric method of calibration. This standard presents both USC and SI units and may be implemented in either system of units. The presentation of both units is for the convenience of the user and is not necessarily the exact conversions. The system of units to be used is typically determined by contract, regulatory requirement, the manufacturer, or the user's calibration program. Throughout this document issues of traceability are addressed by references to National Institute of Standards and Technology (NIST). However, other appropriate national metrology institutes can be referenced. There is no intent to cover safety aspects of conducting the work described in this standard, and it is the duty of the user to be familiar with all applicable safe work practices. It is also the duty of the user to comply with all existing federal, state, or local regulations [e.g. the Occupational Safety and Health Administration (OSHA)] that govern the types of activities described in this standard, and to be familiar with all such safety and health regulations. Pages: 38

1st Edition | October 2010 | Reaffirmed: December 2015
Product Number: H4090401 | Price: $85.00

Chapter 5
Metering

Covers the dynamic measurement of liquid hydrocarbons, by means of meters and accessory equipment.

Chapter 5.1
General Considerations for Measurement by Meters (includes Errata 1 dated June 2008 and Errata 2 dated June 2011)

Intended to be a guide for the proper specification, installation, and operation of meter runs designed to dynamically measure liquid hydrocarbons so that acceptable accuracy, service life, safety, reliability, and quality control can be achieved. Ch. 5 also includes information that will assist in troubleshooting and improving the performance of meters. Pages: 8

Product Number: H05014 | Price: $97.00

Chapter 5.1 *
General Considerations for Measurement by Meters—Spanish

Spanish translation of Ch. 5.1.

Chapter 5.2
Measurement of Liquid Hydrocarbons by Displacement Meters

Ch. 5.2, together with the general considerations for measurement by meters found in Ch. 5.1, describes methods for obtaining accurate quantity measurement with displacement meters in liquid hydrocarbon service. It covers the unique performance characteristics of displacement meters in liquid hydrocarbon service. It does not apply to the measurement of two-phase fluids. Pages: 3

Product Number: H05023 | Price: $90.00

Chapter 5.2 *
Measurement of Liquid Hydrocarbons by Displacement Meters—Spanish

Spanish translation of Ch. 5.2.

3rd Edition | October 2005 | Product Number: H50203SP | Price: $90.00

Chapter 5.3
Measurement of Liquid Hydrocarbons by Turbine Meters (includes Addendum 1 dated July 2009)

Defines the application criteria for turbine meters and discusses appropriate considerations regarding the liquids to be measured. Discusses the installation of a turbine metering system and the performance, operation, and maintenance of turbine meters in liquid hydrocarbon service. Includes “Selecting a Meter and Accessory Equipment” and information on the recommended location for prover connections. Pages: 11

Product Number: H05035 | Price: $109.00

Chapter 5.3 *
Measurement of Liquid Hydrocarbons by Turbine Meters—Spanish

Spanish translation of Ch. 5.3, including Addendum 1 dated July 2009.

Chapter 5.4
Accessory Equipment for Liquid Meters (includes Errata 1 dated May 2015)

Describes the characteristics of accessory equipment used with displacement and turbine meters in liquid hydrocarbon service. Includes guidance on the use of electronic flow computers. Pages: 8

Product Number: H05044 | Price: $97.00

Chapter 5.4 *
Accessory Equipment for Liquid Meters—Spanish

Spanish translation of Ch. 5.4.

Chapter 5.5
Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems

Serves as a guide for the selection, operation, and maintenance of various types of pulsed-data, cabled transmission systems for fluid metering systems to provide the desired level of fidelity and security of transmitted flow pulse data. This publication does not endorse or advocate the preferential use of any specific type of equipment or systems, nor is it intended to restrict future development of such equipment. Pages: 8

Product Number: H50502 | Price: $72.00

Chapter 5.5 *
Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish

Spanish translation of Ch. 5.5.

2nd Edition | July 2005 | Product Number: H50502SP | Price: $72.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 5.6
Measurement of Liquid Hydrocarbons by Coriolis Meters
(ANSI/API MPMS Ch. 5.6-2002)
Describes methods for achieving custody transfer levels of accuracy when a Coriolis meter is used to measure liquid hydrocarbons. Topics covered include: applicable API standards used in the operation of Coriolis meters; proving and verification using both mass- and volume-based methods; and installation, operation, and maintenance. Both mass and volume-based calculation procedures for proving and quantity determination are included in Appendix E. Pages: 48
Product Number: H05061 | Price: $143.00

Chapter 5.6 *
Measurement of Liquid Hydrocarbons by Coriolis Meters—Spanish
Spanish translation of Ch. 5.6.
1st Edition | October 2002 | Product Number: H05061S | Price: $143.00

Chapter 5.8
Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters
(includes Errata 1 dated February 2014)
(ANSI/API MPMS Ch. 5.8-2011)
Defines the application criteria for ultrasonic flowmeters (UFMs) and addresses the appropriate considerations regarding the liquids to be measured. This document addresses the installation, operation, and maintenance of UFMs in liquid hydrocarbon service. The field of application of this standard is the dynamic measurement of liquid hydrocarbons. While this document is specifically written for custody transfer measurement, other acceptable applications may include allocation measurement, check meter measurement, and leak detection measurement. This document only pertains to speed type, multi-path ultrasonic flow meters with permanently affixed acoustic transducer assemblies. Pages: 23
2nd Edition | November 2011 | Reaffirmed: May 2017
Product Number: H050802 | Price: $89.00

Chapter 5.8 *
Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish
Spanish translation of Ch. 5.8.
2nd Edition | November 2011 | Product Number: H050802SP | Price: $89.00

Chapter 6
Metering Assemblies
Discussion of the design, installation, and operation of metering systems for coping with special situations in hydrocarbon measurement.

Chapter 6.1
Lease Automatic Custody Transfer (LACT) Systems
Prepared as a guide for the design, installation, calibration, and operation of a lease automatic custody transfer (LACT) system. It applies to unattended and automatic measurement by meter of hydrocarbon liquids produced in the field and transferred to a pipeline in either a scheduled or nonscheduled operation. Pages: 6
2nd Edition | May 1991 | Reaffirmed: December 2017
Product Number: H30121 | Price: $62.00

Chapter 6.2
Loading Rack Metering Systems
Serves as a guide in the selection, installation, and operation of loading rack metering systems for petroleum products, including liquefied petroleum gas. This standard does not endorse or advocate the preferential use of any specific type of metering system or meter. Pages: 30
Product Number: H60203 | Price: $81.00

Chapter 6.2 *
Loading Rack Metering Systems—Spanish
Spanish translation of Ch. 6.2.

Chapter 6.5
Metering Systems for Loading and Unloading Marine Bulk Carriers
Deals with the operation and special arrangements of meters, provers, manifolding, instrumentation, and accessory equipment used for measurement during loading and unloading of marine bulk carriers. Pages: 6
2nd Edition | May 1991 | Reaffirmed: March 2018
Product Number: H30125 | Price: $67.00

Chapter 6.6
Pipeline Metering Systems
Provides guidelines for selection of the type and size of meters to be used to measure pipeline oil movements, as well as the relative advantages and disadvantages of the methods of proving meters by tank prover, conventional pipe prover, small volume prover, and master meter. It also includes discussion on obtaining the best operating results from a pipeline-meter station. Pages: 9
2nd Edition | May 1991 | Reaffirmed: December 2017
Product Number: H30126 | Price: $67.00

Chapter 6.7
Metering Viscous Hydrocarbons
Serves as a guide for the design, installation, operation, and proving of meters and auxiliary equipment used in metering viscous hydrocarbons. It defines viscous hydrocarbons and describes the difficulties that arise when viscous hydrocarbons are raised to high temperature. The effects of such temperatures on meters, auxiliary equipment, and fittings are discussed, and advice and warnings to overcome or mitigate difficulties are included. Pages: 6
2nd Edition | May 1991 | Reaffirmed: March 2018
2-Year Extension: December 2017
Product Number: H30127 | Price: $67.00

Chapter 6.8
Liquid-in-Glass Thermometers
Describes how to correctly use various types of liquid-in-glass thermometers to accurately determine the temperatures of hydrocarbon liquids. Other methods, equipment, and procedures for temperature determination are described in the other sub-sections of Ch. 7.
This chapter describes the methods, equipment, and procedures for manually determining the temperature of liquid petroleum and petroleum products with liquid-in-glass thermometers. This chapter discusses temperature measurement requirements in general for custody transfer, inventory control, and marine measurements. The actual method and equipment selected for temperature determination are left to the agreement of the parties involved. Pages: 37
2nd Edition | August 2017 | Product Number: H70102 | Price: $113.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 7.2 ■
Portable Electronic Thermometers

Describes the methods, equipment, and procedures for manually determining the temperature of liquid petroleum and petroleum products by use of a portable electronic thermometer (PET).

This chapter discusses temperature measurement requirements in general for custody transfer, inventory control, and marine measurements. The actual method and equipment selected for temperature determination are left to the agreement of the parties involved.

The manual method covers:
- nonpressurized tanks and nonpressurized marine vessels;
- gas-blanketed tanks and gas-blanketed marine vessels.

It does not cover hydrocarbons under pressures in excess of 21 kPa (3 psi gauge) or cryogenic temperature measurement, unless the tank is equipped with a thermowell. Pages: 30

Chapter 7.3
Fixed Automatic Tank Temperature Systems

Describes the methods, equipment, and procedures for determining the temperature of petroleum and petroleum products under static conditions by the use of an automatic method. Automatic temperature measurement is discussed for custody transfer and inventory control for both onshore and marine measurement applications.

Temperatures of hydrocarbon liquids under static conditions can be determined by measuring the temperature of the liquid at specific locations. Examples of where static temperature determination is required include storage tanks, ships, and barges.

The application of this standard is restricted to automatic methods for the determination of temperature using fixed automatic tank thermometer (ATT) systems for hydrocarbons having a Reid vapor pressure at or below 101.325 kPa (14.696 psia).

Although not included in the scope, requirements in this standard can be used for other fluids and other applications including petroleum liquids having Reid vapor pressures in excess of 101.325 kPa (14.696 psia) tanks with inert gas systems and cryogenic liquids. However, such applications can require different performance and installation specifications. Pages: 27

Chapter 7.4 ■
Dynamic Temperature Measurement

Describes methods, equipment, installation, and operating procedures for the proper determination of the temperature of hydrocarbon liquids under dynamic conditions in custody transfer applications. This standard describes the accuracy requirement and the calibration of the temperature measurement equipment.

This standard does not cover dynamic temperature measurement of refrigerated, light hydrocarbon fluids or cryogenic liquids. Pages: 34

Chapter 7.5/ISO 8310:2012
Automatic Tank Temperature Measurement Onboard Marine Vessels Carrying Refrigerated Hydrocarbon and Chemical Gas Fluids

(ANSI/API MPMS Ch. 7.5)

Specifies the essential requirements and verification procedures for automatic tank thermometers (ATTs) consisting of platinum resistance thermometers (PRT) and an indicating device used for custody transfer measurement of liquefied natural gas, liquefied petroleum, and chemical gases on board ships. Temperature detectors other than PRT are considered acceptable for use in the custody transfer service of liquefied gases if they meet the performance requirements of this document and are approved by national regulations. Pages: 12

Chapter 8
Sampling

Covers standardized procedures for sampling petroleum and petroleum products.

Chapter 8.1
Standard Practice for Manual Sampling of Petroleum and Petroleum Products

(ASM D4057)

Covers procedures and equipment for manually obtaining samples of liquid petroleum and petroleum products, crude oils, and intermediate products from the sample point into the primary container. Procedures are also included for the sampling of free water and other heavy components associated with petroleum and petroleum products. This practice also addresses the sampling of semi-liquid or solid-state petroleum products. This practice provides additional specific information about sample container selection, preparation, and sample handling. This practice does not cover sampling of electrical insulating oils and hydraulic fluids. The procedures described in this practice may also be applicable in sampling most non-corrosive liquid industrial chemicals provided that all safety precautions specific to these chemicals are followed (also, refer to ASTM Practice E300). The procedures described in this practice are also applicable to sampling liquefied petroleum gases and chemicals. Pages: 48

Chapter 8.2
Standard Practice for Automatic Sampling of Petroleum and Petroleum Products

(ASM D4177)

Describes general procedures and equipment for automatically obtaining samples of liquid petroleum and petroleum products, crude oils, and intermediate products from the sample point into the primary container. This practice also provides additional specific information about sample container selection, preparation, and sample handling. If sampling is for the precise determination of volatility, use Ch. 8.4 (ASM Practice D5842) in conjunction with this practice. For sample mixing and handling, refer to Ch. 8.3 (ASM Practice D5854). This practice does not cover sampling of electrical insulating oils and hydraulic fluids. Pages: 45

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 8.3
Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products
(includes Errata 1 dated March 1996)
(ASTM D5854)
Covers the handling, mixing, and conditioning procedures required to ensure that a representative sample of the liquid petroleum or petroleum product is delivered from the primary sample container/receiver into the analytical test apparatus or into intermediate containers. For sampling procedures, refer to Ch. 8.1 and Ch. 8.2. Refer to Ch. 8.4 for the mixing and handling of light fuels for volatility measurement. Pages: 27
1st Edition | October 1995 | Reaffirmed: June 2018
Product Number: H80301 | Price: $92.00

Chapter 8.3 *
Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products—Spanish
Spanish translation of Ch. 8.3.
1st Edition | October 1995 | Product Number: H80301SP | Price: $92.00

Chapter 8.4
Standard Practice for Sampling and Handling of Fuels for Volatility Measurement
(ASTM D5842)
Covers procedures and equipment for obtaining, mixing, and handling representative samples of volatile fuels for the purpose of testing for compliance with the standards set forth for volatility related measurements applicable to light fuels. The applicable dry vapor pressure equivalent range of this practice is 13 to 110 kPa (2 to 16 psia). This practice is applicable to the sampling, mixing, and handling of reformulated fuels including those containing oxygenates. This practice is not applicable to crude oil. For the sampling of crude oil, refer to Ch. 8.1, Ch. 8.2, and Ch. 8.5. Pages: 16
4th Edition | December 2017 | Product Number: H80404 | Price: $47.00

Chapter 8.5
(ASTM D8009)
Includes the equipment and procedures for obtaining a representative sample of “live” or high vapor pressure crude oils, condensates, and/or liquid petroleum products from low pressure sample points, where there is insufficient sample point pressure to use a floating piston cylinder (FPC) as described in ASTM D3700. Pages: 20
1st Edition | December 2015 | Product Number: H80501 | Price: $52.00

Chapter 8.5 *
Spanish translation of Ch. 8.5.
1st Edition | December 2015 | Product Number: H80501S | Price: $52.00

Chapter 9
Density Determination
Describes the standard methods and apparatus used to determine the specific gravity of crude oil and petroleum products normally handled as liquids.

Chapter 9.1
Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
(ASTM D1298)
Covers the laboratory determination, using a glass hydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids and having a Reid vapor pressure of 101.325 kPa (14.696 psi) or less. Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables. The initial hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of volume correction factors; values obtained at other than the reference temperature being hydrometer readings and not density measurements. Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternate reference temperatures by means of Interconversion Procedures (Ch. 11.5) or volume correction factors (Ch. 11.1), or both, or tables, as applicable. Pages: 8
3rd Edition | December 2012 | Reaffirmed: May 2017
Product Number: H90103 | Price: $42.00

Chapter 9.2
Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure Hydrometer
(ASTM D1657)
Covers the determination of the density or relative density of light hydrocarbons including liquefied petroleum gases (LPG) having Reid vapor pressures exceeding 101.325 kPa (14.696 psi). The prescribed apparatus should not be used for materials having vapor pressures higher than 1.4 MPa (200 psi) at the test temperature. This pressure limit is dictated by the type of equipment. Higher pressures can apply to other equipment designs. The initial pressure hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of calculations and volume correction factors (Ch. 11.1) or Ch. 11.2.4 (GPA TP-27), as applicable. Pages: 6
3rd Edition | December 2012 | Reaffirmed: May 2017
Product Number: H90203 | Price: $42.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 9.3

(Covers the determination, using a glass thermohydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids and having a Reid vapor pressures of 101.325 kPa (14.696 psi) or less.

Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables.

The initial thermohydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a thermohydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of calculations and volume correction factors (Ch. 11.1).

Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternate reference temperatures by means of Interconversion Procedures (Ch. 11.5) or volume correction factors (Ch. 11.1), or both, or tables, as applicable. Pages: 10

Chapter 9.4

Continuous Density Measurement Under Dynamic (Flowing) Conditions

(supersedes Ch. 14.6)

Covers the continuous on-line determination and application of flowing liquid densities for custody transfer. This standard covers liquid and dense phase fluids, including: natural gas liquids, refined products, chemicals, crude oil, and other liquid products commonly encountered in the petroleum industry.

This document does not apply to the density measurement of natural gas, LNG, multiphase mixtures, semi-solid liquids such as asphalt, and solids such as coke and slurries. This standard also provides criteria and procedures for designing, installing, operating, and proving continuous on-line density measurement systems for custody transfer. This standard also discusses the different levels and requirements of accuracy for various applications. Pages: 135

Chapter 10

Sediment and Water

Describes methods for determining the amount of sediment and water, either together or separately in petroleum products. Laboratory and field methods are covered.

Chapter 10.1

(ANSI/ASTM D473)

Covers the determination of sediment in crude oils and fuel oils by extraction with toluene. The precision applies to a range of sediment levels from 0.01 to 0.40 % mass, although higher levels may be determined. Pages: 6

Chapter 10.2

Standard Test Method of Water in Crude Oil by Distillation

(Ch. 11.1)

Covers the determination of water in crude oil by distillation. Pages: 11

Chapter 10.3

Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure)

(Ch. 10.2. Pages: 6

Covers the determination of water and sediment in crude oils by means of the centrifuge procedure. This centrifuge method for determining water and sediment in crude oils is not entirely satisfactory. The amount of water detected is almost always lower than the actual water content. When a highly accurate value is required, the revised procedures for water by distillation, Ch. 10.2, and sediment by extraction, Ch. 10.1, shall be used. Pages: 13

Chapter 10.4

Determination of Water and/or Sediment in Crude Oil by the Centrifuge Method (Field Procedure)

(includes Errata 1 dated March 2015)

Describes the field centrifuge method for determining both water and sediment or sediment only in crude oil. This method may not always produce the most accurate results, but it is considered the most practical method for field determination of water and sediment. This method may also be used for field determination of sediment. Pages: 23

Chapter 10.5

Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation

(Ch. 10.5 or Ch. 10.1 may be used. Pages: 7

Covers the determination of water in the range from 0 to 25 % volume in petroleum products, tar, and other bituminous materials by the distillation method. Volatile water-soluble material, if present, may be measured as water. The specific products considered during the development of this test method were asphalt, bitumen, tar, fuel oil, lubricating oil, lubricating oil additives, and greases. For bituminous emulsions refer to ASTM Test Method D244. For crude oils, refer to Ch. 10.2. Pages: 6

Chapter 10.6

Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)

(Ch. 10.5 or Ch. 10.1 may be used. Pages: 7

Covers the laboratory determination of water and sediment in fuel oils in the range from 0 to 30 % volume by means of the centrifuge procedure. Note that with some types of fuel oils such as residual fuel oils or distillate fuel oils containing residual components, it is difficult to obtain water or sediment contents with this test method. When this situation is encountered, Ch. 10.5 or Ch. 10.1 may be used. Pages: 7

Chapter 10.7

Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration

(Ch. 10.7)

Describes the procedure for the determination of water in crude oils by Karl Fischer titration (potentiometric). This test method covers the determination of water in the range from 0.02 to 2 mass percent in crude oils. Mercaptan and sulfide (S– or H2S) sulfur are known to interfere with the method. Pages: 6

2-Year Extension: October 2017 | Product Number: H10072 | Price: $40.00

This document does not apply to the density measurement of natural gas, gases, and other liquid products commonly encountered in the petroleum industry.
Chapter 10.8
Standard Test Method for Sediment in Crude Oil by Membrane Filtration
(ASTM D4807)

Covers the determination of sediment in crude oils by membrane filtration. This test method has been validated for crude oils with sediments up to approximately 0.15 mass %. The accepted unit of measure for this test method is mass %, but an equation to convert to volume % is provided. Pages: 5

Product Number: H100802 | Price: $40.00

Chapter 10.9
Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration

Covers the determination of water in the range from 0.02 to 5.00 mass or volume % in crude oils. Mercaptan (RSH) and sulfide (S⁻ or H₂S) as sulfur are known to interfere with this test method, but at levels of less than 500 μg/g (ppm/m), the interference from these compounds is insignificant. This test method can be used to determine water in the range 0.005 to 0.02 mass %, but the effects of the mercaptan and sulfide interference at these levels has not been determined. For the range 0.005 to 0.02 mass %, there is no precision or bias statement. This test method is intended for use with standard commercially available coulometric Karl Fischer reagent. Pages: 6

3rd Edition | May 2013 | Reaffirmed: June 2018
Product Number: H100903 | Price: $42.00

Chapter 10.9 *
Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration—Spanish

Spanish translation of Ch. 10.9.

3rd Edition | May 2013 | Product Number: H100903SP | Price: $42.00

TR 2570
Continuous On-Line Measurement of Water Content in Petroleum
(Crude Oil and Condensate)

Provides guidance for the application, installation, operation, verification, and proving of on-line water devices (OWDs) for use in the non-custody transfer measurement of water in crude oil and condensate. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HM56. Pages: 17

1st Edition | October 2010 | Reaffirmed: January 2016
Product Number: H25701 | Price: $75.00

TR 2573
Standard Guide for Sediment and Water Determination in Crude Oil
(ASTM D7829)

Covers a summary of the water and sediment determination methods from Ch. 10 for crude oils. The purpose of this guide is to provide a quick reference to these methodologies such that the reader can make the appropriate decision regarding which method to use based on the associated benefits, uses, drawbacks, and limitations. Pages: 7

1st Edition | September 2013 | Reaffirmed: September 2018
Product Number: H257301 | Price: $42.00

Chapter 11
Physical Properties Data (Volume Correction Factors)

Ch. 11 is the physical data that has direct application to volumetric measurement of liquid hydrocarbons. It is presented in equations relating volume to temperature and pressure, and computer subroutines. The subroutines for Ch. 11.1 are available in electronic form. These standards are not included in the complete set of measurement standards. Each element of Ch. 11 must be ordered separately.

Chapter 11.1
Standard Document and API 11.1 VCF Application
Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils

Includes Addendum 1 dated September 2007

The 2004 edition of this standard also supersedes Ch. 11.2.1 and Ch. 11.2.1M

Provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons that fall within the categories of crude oil, refined products, or lubricating oils. Natural gas liquids and liquefied petroleum gases are excluded from consideration in this standard. This document is distributed electronically in Portable Document Format (PDF) or as a hard copy, printed document.

An API 11.1 VCF Application for calculating VCF is also available. This Windows-based standalone application allows users to calculate volumes and densities at observed (RhoObs), base (RhoB), and alternate (RhoAlt) conditions, combined (CPI) and independent correction factors for temperature (CTP) and pressure (CPP). The application supports both U.S. Customary (API, °F and psig) and SI (kg/m³, °C, kPag and Bar) units of measure, Thermal Expansion Factor (alpha) regression calculator and a Table Generator. The API 11.1 VCF Application is distributed on flash drive or can be electronically downloaded.

The PDF or hard copy printed document are sold without the VCF application through the API websites.

The API 11.1 VCF windows based standalone application and the standard in PDF or print are available to purchase online via the Flow-Cal website (flowcal.com/api-standards/). You may also contact Flow-Cal, Inc. at +1 (281) 282-0865 or send an e-mail to APIstandards@flowcal.com.

May 2004 | Product Number: H11013 | Reaffirmed: August 2012
2-Year Extension: March 2017

11.1 Standard Document | $247.00 per document
11.1 VCF Application | $541.00 per single user license
11.1 Standard Document + 11.1 VCF Application | $670.00
(15% discount when purchased together)

See the listing for “Chapter 11.1-1980” on page 177 of this Catalog for more information on the previous edition of the standard(s).

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 11.1
Add-In Program for Microsoft® Excel

A Microsoft® Windows compatible 32-bit add-in for Microsoft® Excel that provides calliable functions for density, correction for temperature and pressure of a liquid (CTPL), and compressibility coefficient (Fp). These functions allow calculating density at base conditions or at alternate conditions, CTPL correction factor used to transform volume and density data to base or desired conditions, and the scaled compensation factor for transformation from alternate to base conditions or from observed to base conditions for generalized crude oils, refined products and lubricating oils. They support the following process variables: density (API gravity, relative density, and kg/m³), temperature (°F and °C), and pressure (psig, bar, and kPa).

To order the Add-In, contact Flow-Cal, Inc. at +1 (281) 282-0865 or send an e-mail to APIstandards@flowcal.com.

XL Add-In—runs on a single standalone computer with no network access Price: $773.00
XL Add-In—installed on less than 15 standalone computers or ran on a network with less than 15 nodes | Price: $5,150.00
XL Add-In—installed on less than 50 standalone computers or ran on a network with less than 50 nodes | Price: $7,725.00
XL Add-In—installed on an unlimited number of standalone computers or ran on a network with unlimited nodes | Price: $11,330.00

Chapter 11.1
Dynamic Link Library (DLL)

The DLL is compiled from source code written in the C programming language. The DLL provides subroutines that can be called from applications written in C or other programming languages. These subroutines are subdivided into three groups (density, volume correction factors, and scaled compressibility factor) for generalized crude oils, refined products, and lubricating oils.

• The density subroutines have two sets of density functions allowing calculations at base conditions or at alternate conditions.
• The volume correction factor subroutines calculate a correction for the effect of temperature and pressure on a liquid (CTPL), correction for the effect of temperature on liquid (CTL), and correction for the effect of pressure on liquid (CPL), which are used to transform volume and density data to base or desired conditions.
• The scaled compressibility factor subroutines will convert from alternate to base conditions or from observed to base conditions.

The DLL supports the following process units, densities in API gravity, relative density, and kg/m³; temperatures in °F and °C; and pressures in psig, bar, and kPa. This version is compatible with and can coexist with the 1980 version DLL.

To order the DLL, contact Flow-Cal, Inc. at +1 (281) 282-0865 or send an e-mail to APIstandards@flowcal.com.

DLL—installed on less than 50 standalone computers or ran on a network with less than 50 nodes | Price $15,450.00
DLL—installed on an unlimited number of standalone computers or ran on a network with unlimited nodes | Price $20,600.00
DLL—compiled as part of an application for distribution (software distributor) Price: $30,900.00

Chapter 11.1
Source Code

ANSI C-Code used to compile the dynamic link libraries (DLLs). The source code may be compiled into user programs to calculate temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils.

NOTE An experienced C programmer will be needed to implement the C-Code subroutines. API does not directly provide technical support for the C-Code; however, a support program is available from Flow-Cal, Inc.

To order the C-Code Subroutines, contact Flow-Cal, Inc. at +1 (281) 282-0865 or send an e-mail to APIstandards@flowcal.com.

C-Code—compiled to run on a network with less than 50 nodes | Price: $23,175.00
C-Code—compiled to run on a network with unlimited nodes | Price: $30,900.00
C-Code—compiled as part of an application for distribution (software distributor) | Price: $46,350.00

Chapter 11.1
Data File of Chapters 11.2.2 and 11.2.2M

This package includes a data file of tables found in Ch. 11.2.2 and Ch. 11.2.2M. The tables, presented in both U.S. customary (USC) and metric (SI) units, cover compressibility factors for light hydrocarbons.

1st Edition | August 1984 | Product Number: H27320 | Price: $305.00

Chapter 11.2
Compressibility Factors for Hydrocarbons: 0.350–0.637 Relative Density (60 °F/60 °F) and -50 °F to 140 °F Metering Temperature

Provides tables to correct hydrocarbon volumes metered under pressure for the metered temperature. Contains compressibility factors related to the meter temperature and relative density (60 °F/60 °F) of the metered material. Pages: 246

2nd Edition | October 1986 | Reaffirmed: September 2017
Product Number: H27307 | Price: $176.00

Chapter 11.2.2M
Compressibility Factors for Hydrocarbons: 350–637 Kilograms per Cubic Meter Density (15 °C) and -46 °C to 60 °C Metering Temperature

Provides tables to correct hydrocarbon volumes metered under pressure to corresponding volumes at equilibrium pressure for the metered temperature. The standard contains compressibility factors related to the meter temperature and density (15 °C) of the metered material. Pages: 264

1st Edition | October 1986 | Reaffirmed: September 2017
Product Number: H27309 | Price: $176.00
Chapter 11.2.5
A Simplified Vapor Pressure Correlation for Commercial NGLs
(supersedes the Addendum to Ch. 11.2.2–1994)
Methods used for calculation of the correction factor for pressure effects such as Ch. 11.2.1–1984 (now superseded by Ch. 11.1–2004) and Ch. 11.2.2–1986 require knowledge of the equilibrium bubble point pressure (vapor pressure) at the measured conditions. However, the vapor pressure of the process liquid is generally not measured. The vapor pressure can also be calculated from compositional information, but the composition is not always measured for natural gas liquids (NGLs). Therefore, a correlation for the vapor pressure of NGLs is based upon normally measured properties and is required and is documented in this publication. Pages: 27

Chapter 11.3.2.1
Ethylene Density
Identifies an equation of state (EOS) suitable for use in custody transfer measurement of pure ethylene (>99 %) in the gaseous, liquid, and super critical phases. Given flowing temperature and pressure, an EOS is capable of calculating density and other thermodynamic properties used to calculate mass and volumetric flow of ethylene to custody transfer accuracy. All accuracy and uncertainty statements in this standard are limited to the EOS results and do not include the uncertainty added by the primary and secondary measuring equipment. Pages: 4

Chapter 11.3.3
Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol Density and Volume Correction Factors
Covers density and volume correction factors for denatured fuel ethanol. The actual standard consists of the explicit implementation procedures set forth in this document. Sample tables and other examples created from a computerized version of this implementation procedure are presented as examples only and do not represent the standard. This standard is applicable at any operating temperature to bulk (e.g., tank trucks, tank cargos, barges) denatured 95 % to 99 % fuel ethanol containing D4806 allowed denaturants (natural gasoline, gasoline blend stocks, and unleaded gasoline) and denatured, 99+ % fuel ethanol containing less than 1 % denaturant. This standard does not apply to undenatured ethanol of any purity. Pages: 16

Chapter 11.3.3.2
Propylene Compressibility
An electronic FORTRAN Source Code text file on CD-ROM that will produce a table of values applicable to liquid propylene in the following ranges: temperature, 30 °F to 165 °F, and saturation pressure to 1600 psia. It computes the following two values: density (pounds per cubic foot) at flowing temperature and pressure, and ratio of density at flowing conditions to density at 60 °F and saturation pressure. A documentation file is also included.

Chapter 11.4.1
Provides implementation procedures for conversion of API gravity at 60 °F to equivalent densities in both in vacuo and in air values. This standard gives the following equivalents for any value of API gravity at 60 °F:

- relative density at 60 °F (old Table 3);
- absolute density at 60 °F;
- absolute density at 15 °C (old Table 3);
- pounds per U.S. gallon at 60 °F in vacuo and in air (old Table 8);
- U.S. gallons per pound at 60 °F in vacuo and in air (old Table 8);
- short tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 9);
- U.S. gallons per short ton at 60 °F in vacuo and in air (old Table 10);
- short tons per barrel at 60 °F in vacuo and in air (old Table 9);
- barrels per short ton at 60 °F in vacuo and in air (old Table 10);
- long tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 10);
- U.S. gallons per long ton at 60 °F in vacuo and in air (old Table 12);
- long tons per barrel at 60 °F in vacuo and in air (old Table 11);
- barrels per long ton at 60 °F in vacuo and in air (old Table 12);
- metric tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 13);
- metric tons per barrel at 60 °F in vacuo and in air (old Table 13);
- cubic metres per short ton at 15 °C in vacuo and in air (old Table 14);
- cubic metres per long ton at 15 °C in vacuo and in air (old Table 14).

While not related to API gravity, the following are included for user convenience:

- U.S. gallons at 60 °F to litres at 15 °C (old Table 4);
- barrels at 60 °F to litres at 15 °C (old Table 4).
Chapter 11.5.2
Part 2—Conversions for Relative Density (60/60 °F)
Provides implementation procedures for conversion of relative density (60/ 60 °F) to equivalent densities in both in vacuo and in air values. This standard gives the following equivalents for any value of relative density (60/60 °F):
- API gravity at 60 °F (old Table 21);
- absolute density at 60 °F;
- absolute density at 15 °F (old Table 21);
- pounds per U.S. gallon at 60 °F in and in air (old Table 26);
- U.S. gallons per pound at 60 °F in vacuo and in air (old Table 26);
- short tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 27);
- U.S. gallons per short ton at 60 °F in vacuo and in air (old Table 28);
- short tons per barrel at 60 °F in vacuo and in air (old Table 27);
- barrels per short ton at 60 °F in vacuo and in air (old Table 28);
- long tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 29);
- U.S. gallons per long ton at 60 °F in vacuo and in air (old Table 30);
- long tons per barrel at 60 °F in vacuo and in air (old Table 29);
- barrels per long ton at 60 °F in vacuo and in air (old Table 30);
- metric tons per 1000 U.S. gallons at 60 °F in vacuo and in air;
- metric tons per barrel at 60 °F in vacuo and in air;
- barrels per metric ton at 60 °F in vacuo and in air;
- cubic metres per short ton at 15 °C in vacuo and in air (old Table 31);
- cubic metres per long ton at 15 °C in vacuo and in air (old Table 31).

While not related to relative density, the following are included for user convenience:
- U.S. gallons at 60 °F to litres at 15 °C (old Table 22);
- barrels at 60 °F to litres at 15 °C (old Table 22, Table 52).

Chapter 11.5.3
Part 3—Conversions for Absolute Density at 15 °C
Provides implementation procedures for conversion of absolute density at 15 °C to equivalent densities in both in vacuo and in air values. This standard gives the following equivalents for any value of absolute density at 15 °C:
- relative density at 15 °C;
- absolute density at 60 °F;
- relative density at 60 °F (old Table 51);
- API gravity at 60 °F (old Table 51);
- density at 15 °C (similar to old Table 56);
- conversion of apparent density at 15 °C to absolute density at 15 °C;
- cubic metres per metric ton at 15 °C in vacuo and in air (similar to old Table 56);
- cubic metres per short ton at 15 °C in vacuo and in air;
- cubic metres per long ton at 15 °C in vacuo and in air;
- pounds per U.S. gallon at 60 °F in vacuo and in air;
- U.S. gallons per pound at 60 °F in vacuo and in air;
- short tons per 1000 litres (cubic metres) at 15 °C in vacuo and in air (old Table 57);
- short tons per 1000 U.S. gallons at 60 °F in vacuo and in air;
- U.S. gallons per short ton at 60 °F in vacuo and in air;
- short tons per barrel at 60 °F in vacuo and in air;
- barrels per short ton at 60 °F in vacuo and in air;
- long tons per 1000 litres (cubic metres) at 15 °C in vacuo and in air (old Table 57);
- U.S. gallons per metric ton at 60 °F in vacuo and in air (old Table 58);
- barrels per metric ton at 60 °F in vacuo and in air (old Table 58).

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Petroleum Measurement

Chapter 12.2.1
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 1—Introduction
(includes Ch. 12 Addendum 1 dated August 2007 and Errata 1 dated July 2009)
Provides the general introduction of this standard, which is divided into five parts, each published separately. The base (reference or standard) volumetric determination of metered quantities is discussed along with the general terms required for solution of the various equations. General rules for rounding of numbers, including field data, intermediate calculations numbers, and discrimination levels, are specified. Pages: 23
Product Number: H12021 | Price: $112.00

Chapter 12.2.2
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 2—Measurement Tickets
(includes Ch. 12 Addendum 1 dated August 2007)
Provides standardized calculation methods for the quantification of liquids and the determination of base prover volumes under defined conditions, regardless of the point of origin or destination or the units of measure required by governmental customs or statute. The publication rigorously specifies the equations for computing correction factors, rules for rounding, calculational sequence, and discrimination levels to be employed in the calculations. Pages: 18
Product Number: H12223 | Price: $104.00

Chapter 12.2.3
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 3—Proving Reports
(includes Ch. 12 Addendum 1 dated August 2007)
Consolidates and standardizes calculations for metering petroleum liquids using turbine or displacement meters and clarifies terms and expressions by eliminating local variations among terms. This standard provides calculation methods for the determination of meter factors under defined conditions, regardless of the point of origin or destination or units of measure required by governmental customs or statute. This document specifies the equations for computing correction factors, including the calculation sequence, discrimination levels, and rules for rounding. Pages: 59
Product Number: H12023 | Price: $123.00

Chapter 12.2.4
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 4—Calculation of Base Prover Volumes by Waterdraw Method
(includes Ch. 12 Addendum 1 dated August 2007 and Errata 1 dated July 2009)
Provides a standardized calculation method to determine a base prover volume under defined conditions. Specifically, this standard discusses the calculation procedures for the waterdraw calibration method, which is one of several different procedures used to determine base prover volume (BPV) of a displacement prover. Pages: 58
1st Edition | December 1997 | Reaffirmed: September 2014
Product Number: H12024 | Price: $126.00

Chapter 12.2.5
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 5—Base Prover Volume Using Master Meter Method
(includes Ch. 12 Addendum 1 dated August 2007 and Errata 1 dated July 2009)
Provides standardized calculation methods for the quantification of liquids and the determination of base prover volumes under defined conditions, regardless of the point of origin or destination or units of measure required by governmental customs or statute. The criteria contained in this document allow different entities using various computer languages on different computer hardware (or manual calculations) to arrive at identical results using the same standardized input data. Pages: 108
Product Number: H12025 | Price: $175.00

Chapter 12.3
Calculation of Volumetric Shrinkage from Blending Light Hydrocarbons with Crude Oils
(includes Ch. 12 Addendum 1 dated August 2007)
Provides background, theory, calculation examples, and tables to correct for volumetric shrinkage resulting when blending volatile hydrocarbons with crude oil. The tables are entered with density differentials at standard conditions and percentage light hydrocarbon in total mix. This standard supersedes and replaces Bull 2509C, 2nd Edition, 1967. Pages: 110
Product Number: H12031 | Price: $92.00

Chapter 13
Statistical Aspects of Measuring and Sampling
The more accurate petroleum measurement becomes, the more oil practitioners stand in need of statistical methods to express residual uncertainties. This chapter covers the application of statistical methods to petroleum measurement and sampling.

Chapter 13.2
Methods of Evaluating Meter Proving Data
Establishes the basic concepts and procedures to estimate and report meter performance uncertainty in consistent and comparable ways. Pages: 40
2nd Edition | April 2018 | Product Number: H13022 | Price: $100.00

Ch. 13.3
Measurement Uncertainty
Establishes a methodology to develop uncertainty analyses for use in writing API Manual of Petroleum Measurement Standards (MPMS) documents that are consistent with the ISO GUM and NIST Technical Note 1297. This standard also supersedes Ch. 13.1, 1st Edition, 1985, which is withdrawn. Pages: 75
2nd Edition | December 2017 | Product Number: H130302 | Price: $116.00

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Chapter 14
Natural Gas Fluids Measurement
Standardizes practices for measuring, sampling, and testing natural gas fluids.

Chapter 14.1
Collecting and Handling of Natural Gas Samples for Custody Transfer
(includes Addendum 1 and Errata 1 dated August 2017)
Concentrates on proper sampling systems and procedures. It recognizes the critical impact of hydrocarbon dew point consideration to the overall accuracy and success of these practices and procedures. Analyses of gas samples are used for many purposes and are applied to various calculations, some of which have an impact on the accuracy of custody transfer calculations (quantity and quality). Pages: 76

Chapter 14.3.1
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric Square-Edged Orifice Meters, Part 1: General Equations and Uncertainty Guidelines
Provides a single reference for engineering equations, uncertainty estimations, construction and installation requirements, and standardized implementation recommendations for the calculation of flow rate through concentric, square-edged, flange-tapped orifice meters. Both U.S. customary (USC) and international system of units (SI) units are included. The mass flow rate and base (or standard) volumetric flow rate equations are discussed, along with the terms required for solution of the flow equation. The empirical equations for the coefficient of discharge and expansion factor are also presented. This revision includes a change to the empirical expansion factor calculation for flange-tapped orifice meters. Pages: 58
Product Number: H1403014 | Price: $186.00

Chapter 14.3.2
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric Square-Edged Orifice Meters, Part 2: Specification and Installation Requirements
(ANSI/API MPMS Ch. 14.3.2-2016) (AGA Report No. 3, Part 2) (includes Errata 1 dated March 2017)
Outlines the specification and installation requirements for the measurement of single-phase, homogeneous Newtonian fluids using concentric, square-edged, flange-tapped orifice meters. It provides specifications for the construction and installation of orifice plates, meter tubes, and associated fittings when designing metering facilities using orifice meters. Pages: 74
5th Edition | March 2016 | Product Number: H1403025 | Price: $194.00

Chapter 14.3.3
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 3: Natural Gas Applications
(ANSI/API MPMS Ch. 14.3.3-2013) (AGA Report No. 3, Part 3)
Developed as an application guide for the calculation of natural gas flow through a flange-tapped, concentric orifice meter, using the U.S. customary (USC) inch-pound system of units. It also provides practical guidelines for applying Ch. 14.3, Parts 1 and 2, to the measurement of natural gas. Pages: 54

Chapter 14.3.4
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 4: Background, Development, Implementation Procedures and Subroutine Documentation
(AGA Report No. 3, Part 4) (GPA 8185, Part 4)
Describes the background and development of the equation for the coefficient of discharge of flange-tapped square-edged concentric orifice meters and recommends a flow rate calculation procedure. The recommended procedures provide consistent computational results for the quantification of fluid flow under defined conditions, regardless of the point of origin or destination, or the units of measure required by governmental customs or statute. The procedures allow different users with different computer languages on different computing hardware to arrive at almost identical results using the same standardized input data. Pages: 138
2-Year Extension: March 2016 | Product Number: H30354 | Price: $169.00

Chapter 14.4
Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes
(GPA 8173-17)
Prescribes a method for calculating liquid volumes at equilibrium pressures and at temperatures of 60 °F, 15 °C, and 20 °C from the mass of a natural gas fluid (liquid or vapor) measured at operating conditions, in conjunction with a representative compositional analysis and published values for each component’s molar mass and absolute density. Pages: 24
2nd Edition | June 2017 | Product Number: H140402 | Price: $67.00

Chapter 14.5
Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer
(GPA 2172-09)
Presents procedures for calculating, at base conditions from composition, the following properties of natural gas mixtures: gross heating value, relative density (real and ideal), compressibility factor, and theoretical hydrocarbon liquid content, which in the U.S. is typically expressed as GPM, the abbreviation for gallons of liquid per thousand cubic feet of gas. Rigorous calculation of the effect of water upon these calculations is complicated. Because this document relates primarily to custody transfer, the water effect included is an acceptable contractual calculation. Annex A of this standard contains a detailed investigation of the effect of water and detailed derivations of the equations presented in the standard. Pages: 41
Product Number: H140503 | Price: $75.00

Chapter 14.7
Mass Measurement of Natural Gas Liquids and Other Hydrocarbons
(GPA 8182-18)
Serves as a reference for the selection, design, installation, operation, and maintenance of single-phase dynamic liquid mass measurement systems that operate in the 350 to 688 kg/m³ (0.350 to 0.689 relative density at 60 °F) density range. The mass measurement systems within the scope of this document include inferred mass measurement, where volume at flowing conditions is combined with density at similar conditions to result in measured mass, as well as Coriolis mass measurement. Liquids with density below 350 and above 688 kg/m³ (below 0.350 and above 0.689 relative density at 60 °F) and cryogenic fluids (colder than approximately –50 °F) are excluded from the scope of this document, but the principles described herein may apply to such streams. Sampling equipment and techniques are covered including standards for analytical methods used to determine the composition of the sampled product. Equations of state and correlations used to calculate the density of the product are discussed. The standard used to convert mass to equivalent liquid volumes of components is also discussed. Pages: 16
5th Edition | February 2018 | Product Number: H140705 | Price: $73.00
Chapter 14.9
Measurement of Natural Gas by Coriolis Meter
(AGA Report No. 11)
Developed to assist designers and users in operating, calibrating, installing, maintaining, and verifying Coriolis flow meters used for natural gas flow measurement.
2nd Edition | February 2013
Order from the American Gas Association, 500 N. Capitol Street NW, Washington, DC 20001 | 202-824-7000

Chapter 14.10
Measurement of Flow to Flares
Addresses measurement of flow to flares and includes:
- application considerations,
- selection criteria and other considerations for flare meters and related instrumentation,
- installation considerations,
- limitations of flare measurement technologies,
- calibration,
- operation,
- uncertainty and propagation of error,
- calculations.
The scope of this standard does not include analytical instrumentation. Pages: 54
1st Edition | July 2007 | Reaffirmed: June 2012
2-Year Extension: March 2017
Product Number: H140101 | Price: $110.00

Chapter 14.12
Measurement of Gas by Vortex Meters
Addresses the following: (a) provides generic information on full-bore vortex shedding flowmeters, including glossary, and sets of engineering equations useful in specifying performance; (b) describes vortex shedding flowmeters in which alternating vortices are shed from one or more bluff bodies installed in a closed conduit; (c) describes how the vortex shedding frequency is used to determine the velocity to infer the volume, mass, and/or energy flow rate and the total gas flow through the meter over a specific time interval; (d) applies only to single phase gas flows in closed conduit that are steady or vary slowly in time. For fiscal measurement, the output of the flow rate shall be within the acceptable limits of steady state flow rate; (e) describes the physical components of vortex shedding flowmeters and identifies need for inspection, certification, and material traceability; (f) addresses the effect of gas properties, installation, and process conditions that may affect the measurement uncertainty and describes guidelines for reducing or eliminating their influences; (g) defines the method for calculating uncertainty of the flow rate measurement; (h) defines the meter output requirements and necessary information pertaining to the meter output for the purpose of fiscal measurement of gas; and (i) provides calibration and/or performance verification guidance for the field application. Pages: 35
1st Edition | March 2017 | Product Number: H140121 | Price: $89.00

Chapter 15
Guidelines for the Use of the International System of Units (SI) in the Petroleum and Allied Industries
Specifies the API preferred units for quantities involved in petroleum industry measurements and indicates factors for conversion of quantities expressed in customary units to the API-preferred metric units. The quantities that comprise the tables are grouped into convenient categories related to their use. They were chosen to meet the needs of the many and varied aspects of the petroleum industry but also should be useful in similar process industries. Pages: 43
Product Number: H15003 | Price: $118.00

Chapter 16
Measurement of Hydrocarbon Fluids by Weight or Mass
Covers the static and dynamic measurement of hydrocarbon fluids by weight or mass.

Chapter 16.2
Mass Measurement of Liquid Hydrocarbons in Vertical Cylindrical Storage Tanks by Hydrostatic Tank Gauging
Provides guidance on the installation, commissioning, maintenance, validation, and calibration of hydrostatic tank gauging systems for the direct measurement of static mass of liquid hydrocarbons in storage tanks. This edition is applicable to hydrostatic tank gauging systems that use pressure sensors with one port open to the atmosphere. It is also applicable for use on vertical cylindrical atmospheric storage tanks with either fixed or floating roofs. Pages: 20
1st Edition | November 1994 | Reaffirmed: September 2017
Product Number: H16021 | Price: $100.00

Chapter 17
Marine Measurement
Provides guidelines for the measurement and reporting of hydrocarbons including but not limited to crude oil or petroleum product for transfers by shore terminal operators, vessel personnel, and other parties involved in cargo transfer measurement and accountability operations.

Chapter 17.1
Guidelines for Marine Inspection
Specifies the policy and minimum recommended practices for the manual and automatic measurement, sampling, and accounting for bulk quantities of crude oil (including spiked, blended, and reconstituted crude oil), petroleum products and chemicals that are transported on marine vessels. The activities described in these guidelines include actions by producers, buyers, sellers, terminal operators, vessel owners, and their crews, customs authorities, independent inspectors, and other parties with an interest in measurements. Certain vessel or terminal configurations and cargo characteristics, particularly chemicals, may require extensive procedures and calculation methods not covered in this chapter. These procedures are equally valid and applicable for either metric or customary units of measurement, provided that the same types of units are used consistently.
The purchase of this document includes Excel® spreadsheets of the Sample Forms in Annex A (excluding "Voyage Analysis Report," which is available in Ch. 17.5). The sample forms are designed to provide a guideline for recording and reporting essential data obtained during the marine cargo inspection procedure. Pages: 45

Chapter 17.1 *
Guidelines for Marine Inspection—Spanish
Spanish translation of Ch. 17.1.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 17.2
Measurement of Cargoes On Board Tank Vessels
(includes Errata 1 dated April 2000)
Covers manual portable measurement units through deck-fitted vapor control valves and fixed automatic tank gauge systems for use when a marine vessel's cargo tanks may not be open to the atmosphere. It establishes the procedures for obtaining the level measurements of cargo, free water, and onboard quantity/remaining onboard (OBQ/ROB), as well as taking the temperatures and samples required for the marine custody transfer of bulk liquid petroleum cargoes under closed or restricted system measurement conditions. This standard is not intended for use with pressurized or refrigerated cargoes such as LPG and LNG. Pages: 29
2nd Edition | May 1999 | Reaffirmed: September 2011
2-Year Extension: May 2016 | Product Number: H17022 | Price: $136.00

Chapter 17.5
Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities
Covers guidelines for the reconciliation of marine cargo quantities. These guidelines are intended to provide a basis for analyzing and reconciling the quantity differences (gains/losses) resulting from marine custody transfer movement(s) of petroleum and petroleum product cargoes. As such, the guidelines are complementary to, but do not replace, normal inspection procedures. The purchase of this document includes an Excel® spreadsheet for determining voyage analysis and reconciliation of cargo quantities. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HME4. Pages: 39
3rd Edition | April 2012 | Reaffirmed: May 2017
Product Number: H170503 | Price: $149.00

Chapter 17.6
Guidelines for Determining Fullness of Pipelines Between Vessels and Shore Tanks
Describes procedures for determining or confirming the fill condition of pipeline systems used for the transfer of liquid cargoes before and/or after the liquid is loaded onto or discharged from marine vessels. It includes descriptions of methods and procedures that apply to crude oil and petroleum products. While this document includes descriptions of common line fill verification methods, it does not recommend any particular method. The responsibility for selecting a method appropriate for a given terminal, and documenting its effectiveness, rests with those responsible for operating the terminal where it is applied. Pages: 10
2nd Edition | June 2014 | Product Number: H170602 | Price: $113.00

Chapter 17.7
Guidelines for Determining Volume of Transfer Pipelines
Describes procedures for determining or confirming the fill condition of pipeline systems used for the transfer of liquid cargoes before and/or after the liquid is loaded onto or discharged from marine vessels. It includes descriptions of methods and procedures that apply to crude oil and petroleum products. While this document includes descriptions of common line fill verification methods, it does not recommend any particular method. The responsibility for selecting a method appropriate for a given terminal, and documenting its effectiveness, rests with those responsible for operating the terminal where it is applied. Pages: 18
2nd Edition | August 2016 | Product Number: H170802 | Price: $111.00

Chapter 17.8
Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems
Specifies procedures for determining that the cargo tanks and associated cargo-handling system of marine vessels are in a suitably clean condition to receive the intended cargo. This applies to the loading of crude oil, petroleum products, and petrochemical cargoes. The extent of pre-loading inspection will vary depending on the nature of the cargo to be loaded. These guidelines recommend the extent of inspection that should be instituted for certain general types of cargoes and an example of a format that may be used for reporting the findings of tank inspections. Because of the wide variety of conditions that may exist when performing pre-loading tank inspections, this guideline is not intended to restrict the judgment of the person performing the inspection. Pages: 18
2nd Edition | August 2016 | Product Number: H170802 | Price: $111.00

Chapter 17.9
Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems—Spanish
Spanish translation of Ch. 17.8.
2nd Edition | August 2016 | Product Number: H170802S | Price: $111.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program.
Chapter 17.9
Vessel Experience Factor (VEF)
(Includes Addendum 1 dated January 2014 and Errata 1 dated April 2018)
Provides a recommended practice for the calculation and application of a VEF and provides guidelines for data compilation, data validation, and recommendations on the appropriate use of VEF during custody transfer involving marine tank vessels. It also provides clear guidance on maintenance of quantity data on board the vessel, calculation of VEFs, and application of VEFs. The key aim is to provide a single unambiguous figure for VEF or VEFD and to remove the possibility of any arbitrary inclusion or exclusion of data on the part of the individual(s) performing the final calculation. Also provides instruction for parcel tankers, part cargoes, compartmental VEFs, and vessel-to-vessel transfers. The methods are applicable to bulk cargoes including crude oil, petroleum products, chemicals, and liquefied petroleum gas. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HMS49. Pages: 22
2nd Edition | May 2012 | Product Number: H170902 | Price: $170.00

Chapter 17.9 *
Vessel Experience Factor (VEF)—Spanish
Spanish translation of Ch. 17.9, including Addendum 1 dated January 2014.
2nd Edition | May 2012 | Product Number: H170902SP | Price: $170.00

Chapter 17.10.1/ISO 10976:2012
Measurement of Cargoes On Board Marine Gas Carriers, Part 1—Liquefied Natural Gas
(ANSI/API MPMS Ch. 17.10.1)
Establishes all of the steps needed to properly measure and account for the quantities of cargoes on liquefied natural gas (LNG) carriers. This includes, but is not limited to, the measurement of liquid volume, vapour volume, temperature and pressure, and accounting for the total quantity of the cargo on board. This document describes the use of common measurement systems used on board LNG carriers, the aim of which is to improve the general knowledge and processes in the measurement of LNG for all parties concerned. This document provides general requirements for those involved in the LNG trade on ships and onshore. Pages: 65
1st Edition | April 2014 | Product Number: HH171011 | Price: $155.00

Chapter 17.10.2
Measurement of Cargoes On Board Marine Gas Carriers, Part 2—Liquefied Petroleum and Chemical Gases
Provides guidance to vessel and shore personnel regarding accepted methods for determining quantities of liquefied petroleum and chemical gas cargoes (excluding LNG) on board refrigerated and/or pressurized carriers. This standard covers all measurement systems commonly used on refrigerated and/or pressurized gas carriers designed to carry those types of cargoes and includes recommended methods for measuring, sampling, documenting, and reporting quantities on board these vessels. Pages: 80
2nd Edition | March 2016 | Product Number: H171022 | Price: $155.00

Chapter 17.11
Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment
(Includes Errata 1 dated March 2017)
Provides guidance on the use, maintenance, and calibration of restricted and closed measurement and sampling equipment. It also provides guidance on preferred size and positioning for gauging and sampling fittings on vessels. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HMS52. Pages: 19
2nd Edition | August 2016 | Product Number: H170112 | Price: $111.00

Chapter 18
Custody Transfer
Covers application of other measurement standards to unique custody transfer situations.

Chapter 18.1
Measurement Procedures for Crude Oil Gathered from Lease Tanks by Truck
Contains procedures that are organized into a recommended sequence of steps for manually gauging and determining the quantity and quality of crude oil being gathered from lease tanks by truck. These measurements and tests are performed by crude oil truck drivers (COTDs) and other parties who are responsible for the custody transfer and for recording the results of the measurements and tests on the run tickets. These procedures apply to the custody transfer from lease storage tanks to the transporting truck. Pages: 24
3rd Edition | May 2018 | Product Number: H18013 | Price: $125.00

Chapter 18.2
Custody Transfer of Crude Oil from Lease Tanks Using Alternative Measurement Methods
Defines the minimum equipment and methods used to determine the quantity and quality of crude oil being loaded from a lease tank to a truck trailer without requiring direct access to a lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment used for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.
This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a tank truck without requiring direct access to the tank thief gauge hatch. Many of the individual standards have guidelines defining the frequency and tolerances for installation, verification, and calibration of the specified equipment under controlled or ideal conditions allowing for uncertainty within custody transfer requirements. However, with the conditions encountered in many of today’s applications, the installation, verification, and calibration of measurement devices may have higher uncertainties due to the operational characteristics and limited access available at the

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Chapter 19

Evaporative Loss Measurement

Covers methods for estimating hydrocarbon evaporation losses from various types of tanks.

NOTE Chapter 19 is not included in the complete set of measurement standards.

Chapter 19.1

Evaporative Loss from Fixed-Roof Tanks

(Previously Publ 2518)

Contains methodologies for estimating the total evaporative losses of hydrocarbons from fixed-roof tanks. The methodologies provide loss estimates for general equipment types based on laboratory, test-tank, and field-tank data.

Types of fixed-roof tanks and roof fittings described are for information only. The equations estimate average annual losses from uninsulated fixed-roof tanks for various liquid stocks, stock vapor pressures, tank sizes, meteorological conditions, and operating conditions. The following special cases are addressed:

- Horizontal tanks.
- Higher volatility stocks (true vapor pressure greater than 0.1 psia).
- Vent settings higher than 0.03 pounds (0.5 oz) per square inch.

The estimation may be improved by using detailed field information, including climatic data and operational data for the appropriate time period.

The equations are not intended to be used in the following applications.

- To estimate losses from unstable or boiling stocks (i.e., stocks with a true vapor pressure greater than the atmospheric pressure at the tank location) or from petroleum liquids or petrochemicals for which the vapor pressure is not known or cannot readily be predicted.
- To estimate losses from tanks in which the materials used in the rim seal, deck fittings, or deck seams have either deteriorated or been significantly permeated by the stored stock.
- To estimate losses from storage tanks that do not have a floating roof.
- To estimate losses from landing floating roofs.
- To estimate losses from cleaning storage tanks.

The 3rd Edition of Ch. 19.4 was published following a revision that was carried out concurrently with revisions to Ch. 19.1, published as the 4th Edition, and Ch. 19.2, published as the 3rd Edition. Primary changes are as follows.

- Consolidation of common material in Ch. 19.4. Material that had previously been included in both Ch. 19.1 and Ch. 19.2 has been moved to Ch. 19.4.
- Ch. 19.4, which was previously Recommended Practice for Specification of Evaporative Losses, now has the title Evaporative Loss Reference Information and Speciation Methodology. This chapter had already contained reference information on the properties of chemicals and typical petroleum liquids, and this information has now been removed from Ch. 19.1 and Ch. 19.2. In addition, meteorological data have been moved from Ch. 19.1 and Ch. 19.2 to Ch. 19.4. In the revised documents:
 - meteorological data are found in Ch. 19.4;
 - calculation of storage tank temperatures is found in Ch. 19.1 and Ch. 19.2 (in that fixed-roof tanks involve calculation of the vapor space temperature in order to determine vapor density, whereas this step is not involved in estimating emissions from floating-roof tanks); and
 - calculation of true vapor pressure is found in Ch. 19.4 (in that this is now calculated in the same manner for both fixed- and floating-roof tanks).
Chapter 19.3, Part A
Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss Factors for External Floating-Roof Tanks
Describes the procedures to establish evaporative loss factors for deck fittings on external floating-roof tanks. The test method involves measuring the weight loss of a test assembly over time. The standard specifies the test apparatus, instruments, test procedures, and calculation procedures to be used. It also addresses the variables to be measured, format for reporting the test values, and their associated uncertainty. Pages: 27
1st Edition | July 1997 | Reaffirmed: September 2017
Product Number: H1903A | Price: $126.00

Chapter 19.3, Part B
Air Concentration Test Method—Rim-Seal Loss Factors for Floating-Roof Tanks
Describes the procedures to establish evaporative rim-seal loss factors for rim seals used on external floating-roof tanks. The test method involves passing a controlled flow rate of air through a test chamber that contains a test liquid and a test rim seal, and measuring the concentration of the test liquid vapor in the air streams entering and leaving the test chamber. The standard specifies the test apparatus, instruments, test procedures, and calculation procedures to be used. It also addresses the variables to be measured, format for reporting the test values, and their associated uncertainty. Pages: 30
1st Edition | August 1997 | Reaffirmed: September 2017
Product Number: H1903B | Price: $126.00

Chapter 19.3, Part C
Weight Loss Test Method for the Measurement of Rim-Seal Loss Factors for Internal Floating-Roof Tanks
Provides a uniform method for measuring evaporative loss from rim seals used on internal floating-roof tanks. This information can be utilized to establish product specific loss factors in terms of loss rate and seal gap area. Pages: 29
1st Edition | July 1998 | Reaffirmed: January 2018
Product Number: H1903C | Price: $126.00

Chapter 19.3, Part D
Fugitive Emission Test Method for the Measurement of Deck-Seam Loss Factors for Internal Floating-Roof Tanks
Establishes a uniform method for measuring evaporative deck-seam loss factors and deck-joint loss factors of mechanically joined deck seams that are used on internal floating-roof tanks. These deck-seam loss factors and deck-joint loss factors are to be determined in terms of their loss rate at specified pressure differences across the deck seam or deck joint for certification purposes. Pages: 31
1st Edition | June 2001 | Reaffirmed: March 2018
Product Number: H1903D | Price: $126.00

Chapter 19.3, Part E
Weight Loss Test Method for the Measurement of Deck-Fitting Loss Factors for Internal Floating-Roof Tanks
Describes the test methods to be used to establish evaporative loss factors for deck fittings on internal floating-roof tanks. This chapter specifies the test apparatus, instruments, test procedures, and calculation procedures to be used. The standard also addresses the requirements for reporting test report values. Pages: 30
1st Edition | May 1997 | Reaffirmed: October 2017
Product Number: H1903E | Price: $126.00

Chapter 19.4
Evaporative Loss Reference Information and Speciation Methodology
This chapter had already consolidated common material in Ch. 19.4. Material that had previously been included in both Ch. 19.1 and Ch. 19.2 has been moved to Ch. 19.4. Ch. 19.4, which was previously Recommended Practice for Speciation of Evaporative Losses, now has the title Evaporative Loss Reference Information and Speciation Methodology. This chapter had already contained reference information on the properties of chemicals and typical petroleum liquids, and this information has now been removed from Ch. 19.1 and Ch. 19.2. In addition, meteorological data have been moved from Ch. 19.1 and Ch. 19.2 to Ch. 19.4. In the revised documents:
- meteorological data are found in Ch. 19.4;
- calculation of storage tank temperatures is found in Ch. 19.1 and Ch. 19.2 (in that fixed-roof tanks involve calculation of the vapor space temperature in order to determine vapor density, whereas this step is not involved in estimating emissions from floating-roof tanks); and
- calculation of true vapor pressure is found in Ch. 19.4 (in that this is now calculated in the same manner for both fixed- and floating-roof tanks). Pages: 136

Phone Orders: +1 303 397 7956 (Local and International)
occurs, however, if the tank is emptied such that the floating roof is no longer continuously floating on the stored stock liquid. Additional emissions may appear to apply to crude oil loading of tankers in Valdez, Alaska, because of unique local operating conditions. However, no known test data invalidates the model for predicting crude oil loading emissions from carriers smaller than very large crude carriers in the lower-48 states. Pages: 194

Chapter 19.5
Atmospheric Hydrocarbon Emissions from Marine Vessel Transfer Operations
(formerly Publ 2514A)
Provides methods for estimating evaporative loss from marine vessel transfer operations. Specifically, this standard addresses:
- loading stock into:
 - ship or ocean barges, or
 - shallow draft barges; and
- loading ballast water into ship or ocean barges from which crude oil has been unloaded.

The emission estimates are for uncontrolled loading operations and do not apply to operations using vapor balance or vapor control systems or ballasting of ships with segregated ballast tanks. This standard does not address evaporative loss for:
- very large crude carriers (VLCCs) or ultra large crude carriers (ULCCs) (unless the saturation factor KS is determined);
- marine vessels employing crude oil washing;
- marine vessel transit loss;
- loading ballast water into marine vessels that, prior to dockside unloading, held anything other than crude oil (unless the saturation factor KS is determined); or
- unloading marine vessels.

This standard supersedes Publ 2514A, 2nd Edition, September 1981, which is withdrawn. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HM65. Pages: 31
Product Number: H19051 | Price: $128.00

Chapter 19.6.1
Evaporative Loss from Storage Tank Floating-Roof Landings
(formerly TR 2567)
Investigates storage tank emissions that may result from landing and subsequently refloating a floating roof. The existing emission factors for floating-roof tanks are based on the assumption that the floating roof is continuously floating on the stored stock liquid. Additional emissions may occur, however, if the tank is emptied such that the floating roof is no longer floating. This study sought to quantify these floating-roof landing loss emissions. Pages: 38
1st Edition | February 2017 | Product Number: H1906011 | Price: $129.00

Publ 2524
Impact Assessment of New Data on the Validity of American Petroleum Institute Marine Transfer Operation Emission Factors
Consultant CH2M Hill confirmed the validity of the model used in Publ 2514A by comparing emission test data with predictive emission models developed by API, ARCO, and Exxon. The study found that the API model adequately predicts emissions for tanks ranging in size from 17,000 to 35,000 dead weight tons and for tanks being loaded within the lower-48 states. The model does not appear to apply to crude oil loading of tankers in Valdez, Alaska, because of unique local operating conditions. However, no known test data invalidates the model for predicting crude oil loading emissions from carriers smaller than very large crude carriers in the lower-48 states. Pages: 194
July 1992 | Product Number: H25240 | Price: $162.00

Publ 2558
Wind Tunnel Testing of External Floating-Roof Storage Tanks
Presents the results of a wind tunnel study to determine the local wind velocities, wind directions, and roof pressures on external floating roof tanks. Pages: 13
1st Edition | June 1993 | Product Number: H25580 | Price: $201.00

TR 2568
Evaporative Loss from the Cleaning of Storage Tanks
Provides guidance for estimating emissions that result from removing the liquid heel (free-standing stock liquid) and cleaning the remaining deposits of stock liquid mixed with residue and water (sludge) from the bottoms of aboveground storage tanks. The emissions addressed in this report are those that leave the tank during the tank cleaning process. This report does not address:
- the fate of vapors after the have left the tank (other accounting for the efficiency of the control device),
- the fate of sludge after it has left the tank (or emissions that may occur during sludge treatment or disposal), or
- emissions that may be expelled by the vacuum pump of a vacuum truck suction pump, if such devices are used in the tank cleaning process.

In other words, this report addresses the estimation of the mass of volatile organic compounds that leave the tank as vapor during the tank cleaning process. It does not address emissions that may result from the handling of liquids or sludge after such materials have been removed from the tank. This report is intended to reduce the effort required to generate a good faith estimate of tank cleaning emissions, and to result in more uniformity in the resulting emissions estimates. Pages: 47
1st Edition | November 2007 | Product Number: H25680 | Price: $110.00

TR 2569
Evaporative Loss from Closed-Vent Internal Floating-Roof Storage Tanks
Addresses evaporative loss from internal floating-roof tanks (IFRTs) with closed vents. When the vents in the fixed roof of an IFRT are closed, rather than open, estimation of emissions is shown to be highly complex. This subject is not covered in other API standards such as Ch. 19.1, which specifically excludes fixed-roof tanks that have an internal floating roof, and Ch. 19.2, which specifically excludes closed internal floating-roof tanks (that is, tanks vented only through a pressure-vacuum relief vent, blanketed with an inert gas, vented to a vapor processing unit, or otherwise restricted from being freely vented). Pages: 26
1st Edition | August 2008 | Product Number: H25690 | Price: $110.00

TR 2574
Field Testing Protocol for Characterization of Total Gaseous Nonmethane Organics (TGNMO), Methane, and Ethane in Air-Vapor Mixture During Filling of a Cargo Vessel with Crude Oil
Provides a standardized testing methodology for quantifying total gaseous nonmethane organics (TGNMO), methane, and ethane in the air-vapor mixture that is expelled from cargo compartments during filling with crude oil. It utilizes a modified version of Federal Reference Method 25 (FRM 25) to characterize the concentration of TGNMO, methane, and ethane. While the field testing in support of this protocol was performed only for the loading of crude oil into barges, the method could be suitable for loading of any volatile organic liquid into any type of vessel or compartment from which vapors are exhausted through a single vent opening where the field sampling can take place. Pages: 56
1st Edition | August 2016 | Product Number: H257401 | Price: $108.00

TR 2576
Short-Term Evaporative Loss Estimation from Atmospheric Storage Tanks
Provides methodology on how to estimate short-term individual tank and facility-wide emissions. The methodology in this technical report can be used for purposes such as preparing permit applications and air dispersion modeling. The technical report does not provide guidance on how to run the actual air dispersion model. Pages: 18
1st Edition | July 2016 | Product Number: H257601 | Price: $113.00
Chapter 20
Production Measurement and Allocation of Oil and Natural Gas

Chapter 20.1
Allocation Measurement

Addresses principles used in multiphase flow measurement devices, metering types and classifications, assessment of expected performance, and selecting and operating multiphase measurement systems. The requirements and guidelines apply to the development, implementation, and performance management of a process simulation model (PSM) incorporating an equation of state (EOS) description of phase behavior. This includes functional specifications, validation, and maintenance of the PSM, EOS specification and implementation, and fluid compositional specification and validation.

This document establishes a framework to conduct and apply production well testing for well rate determination in measurement and allocation. Production well testing addressed in this document refers to measurement of gas, oil, and water quantities from a single well during a specified length of time under controlled operational conditions. The intent of this document is to provide operators with a consistent and transparent approach for conducting, applying, and managing production well testing within an upstream measurement and allocation system. It is not intended to prescribe a particular mathematical phase estimation (i.e., EOS—EOS incorporating pressure, volume, temperature, or PVT—properties, the fluids within the modeled process. The intent of this document is to provide operators with a consistent and transparent approach for conducting, applying, and allocating production well test data. Additionally, this document addresses the determination of production well test results for use in allocation, the application of production well test data for use in measurement and allocation. This includes production well testing preparation, initiation, measurement, validation, and volume and rate calculations for separator, multiphase flow meter, and tank production well test systems. Additionally, this document also provides recommendations and guidelines for the application of well flow models and virtual flow metering in production measurement and allocation.

Allocation methodologies are addressed in Ch. 20.1. Pages: 123

Chapter 20.2
Production Allocation Measurement Using Single-Phase Devices

Provides requirements and guidelines for the application of hydrocarbon phase behavior modeling in upstream measurement and allocation systems. The document does not address specific meter configurations. Pages: 72

1st Edition | January 2013 | Reaffirmed: October 2018
Product Number: H2000301 | Price: $185.00

Chapter 20.3
Measurement of Multiphase Flow

Addresses multiphase flow measurement in the production environment, upstream of the custody transfer (single-phase) measurement point, where allocation measurement for onshore, offshore, or subsea is applied. For other multiphase flow measurement applications such as reservoir management, well tests, and flow assurance, the standard can be used as a reference or guide. However, the focus of this standard is on those applications where the accuracy of multiphase flow measurement for allocation systems is required.

This document refers to existing standards and recommended practices to supplement the guidance it provides in this subject area. The document addresses principles used in multiphase flow measurement, multiphase metering types and classifications, assessment of expected performance, and selecting and operating multiphase measurement systems. The document does not address specific meter configurations. Pages: 67

Product Number: H30701 | Price: $112.00

Chapter 20.4
Recommended Practice for Application of Production Well Testing in Measurement and Allocation

Establishes a framework to conduct and apply production well testing for well rate determination in measurement and allocation. Production well testing addressed in this document refers to measurement of gas, oil, and water quantities from a single well during a specified length of time under controlled operational conditions. The intent of this document is to provide operators with a consistent and transparent approach for conducting, applying, and managing production well testing within an upstream measurement and allocation system. It is not intended to prescribe a particular production well test method, or particular application of production well test data use in allocation. This document provides recommendations and guidelines for the application of production well testing in production measurement and allocation. The recommendations and guidelines apply to conducting a production well test, calculating production well test volumes and rates, and the application of production well test data for use in measurement and allocation. This includes production well testing preparation, initiation, measurement, validation, and volume and rate calculations for separator, multiphase flow meter, and tank production well test systems. Additionally, this document addresses the determination of production well test results for use in allocation, the application of production well test results for validation and update of flow models and virtual flow metering, and the adjustment of gas well continuous measurement results with production well test data. This document also provides recommendations and guidelines for the application of well flow modeling and virtual flow metering in production measurement and allocation.

Allocation methodologies are addressed in Ch. 20.1. Pages: 123

1st Edition | December 2017 | Product Number: H200501 | Price: $192.00

Draft Standard
Application of Hydrocarbon Phase Behavior Modeling in Upstream Measurement and Allocation Systems

Provides requirements and guidelines for the application of hydrocarbon phase behavior modeling in upstream measurement and allocation systems. The requirements and guidelines apply to the development, implementation, and performance management of a process simulation model (PSM) incorporating an equation of state (EOS) description of phase behavior. This includes functional specifications, validation, and maintenance of the PSM, EOS specification and implementation, and fluid compositional specification and validation.

This document establishes a framework to develop, implement, and manage the application of hydrocarbon phase behavior modeling. The applied phase behavior modeling addressed in this document refers to PSM incorporating EOS description of the phase behavior, or pressure, volume, temperature (PVT) properties, the fluids within the modeled process. The intent of this document is to provide operators with a consistent and transparent approach for conducting, applying, and allocating production well test data. Additionally, this document addresses the determination of production well test results for use in allocation, the application of production well test results for validation and update of flow models and virtual flow metering, and the adjustment of gas well continuous measurement results with production well test data. This document also provides recommendations and guidelines for the application of well flow modeling and virtual flow metering in production measurement and allocation.

Allocation methodologies are addressed in Ch. 20.1. Pages: 47

1st Edition | August 2016 | Product Number: H200401D | Price: $93.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Chapter 21.2

Electronic Liquid Volume Measurement Using Positive Displacement and Turbine Meters

Provides guidance for the effective use of electronic liquid measurement systems for custody transfer measurement of liquid hydrocarbons under the following conditions. Use of the measurement systems must fall within the scope and field of application of Ch. 12.2. Guidance applies to systems using turbine or positive displacement meters. Guidance applies to systems using on-line correction for the effect of temperature on liquid (TCL) and correction for the effect of pressure on liquid (CPL) compensation. The procedures and techniques in Ch. 21.2 are recommended for new measurement applications. This standard provides custody transfer measurement procedures for pipeline and other electronic liquid metering systems including design, selection, use, auditing, reporting, calibration, verification, and security. Pages: 60

Product Number: H21021 | Price: $197.00

Chapter 21.2-A1

Addendum 1 to Flow Measurement Using Electronic Metering Systems, Inferred Mass

This addendum specifically covers inferred mass measurement systems utilizing flow computers as the tertiary flow calculation device and either turbine or displacement type meters, working with on-line density meters, as the primary measurement devices. The scope does not include systems using calculated flowing densities, i.e. Equations of State. The hardware is essentially identical to that referenced in Ch. 21.2 and the methods and procedures are as described in Ch. 14.4, 14.6, 14.7, and 14.8. Audit, record-keeping, collection and calculation interval, security, and most other requirements for systems covered in Ch. 21.2 will apply to this addendum. As in Ch. 21.2, the hydrocarbon liquid streams covered in the scope must be single phase liquids at measurement conditions.

Product Number: H2102A | Price: $62.00

Chapter 22

Testing Protocols

Testing protocols for devices used in the measurement of hydrocarbon fluids. Testing protocols define appropriate methods for measuring and reporting the performance characteristics of similar equipment in a comparable manner, thus providing a means to highlight the relative performance advantages and disadvantages of similar devices.

Chapter 22.1

General Guidelines for Developing Testing Protocols for Devices Used in the Measurement of Hydrocarbon Fluids

(ANSI/API MPMS Ch. 22.1-2015)

Intended for the development of testing protocols and to serve as a guideline to document performance characteristics of hydrocarbon fluid measurement related devices. Pages: 7

2nd Edition | August 2015 | Product Number: H220102 | Price: $90.00
Chapter 22.2
Defines the testing and reporting protocols for flow measurement devices based on the detection of a pressure differential that is created by the device in a flowing stream. This protocol is designed to supply industry with a comparable description of the capabilities of these devices for the measurement of single-phase fluid flow when they are used under similar operating conditions. The objectives of this Testing Protocol are to:

- ensure that the user of any differential pressure flow meter knows the performance characteristics of the meter over a range of Reynolds numbers as applicable or defined by tests,
- facilitate both the understanding and the introduction of new technologies,
- provide a standardized vehicle for validating manufacturer’s performance specifications,
- provide information about relative performance characteristics of the primary elements of the differential pressure metering devices under standardized testing protocol,
- quantify the uncertainty of these devices and define the operating and installation conditions for which the stated uncertainties apply. Pages: 52

Chapter 22.3
Testing Protocol for Flare Gas Metering
(ANSI/API MPMS Ch. 22.3-2015)
Describes a testing protocol for flare gas meters. This includes a discussion of the testing to be performed, how the test data should be analyzed, and how an uncertainty is determined from the testing of the meter. The scope does not include the general guidelines to flare gas metering that are covered under Ch. 14.10. Pages: 21

1st Edition | August 2015 | Product Number: H220301 | Price: $101.00

Chapter 22.4
Testing Protocol for Pressure, Differential Pressure, and Temperature Measuring Devices
Documents the method for testing the performance characteristics specific to pressure, differential pressure, and temperature sensors and transmitters used in petroleum measurement. The testing protocol includes a listing of parameters affecting the performance of the devices, a description of the tests required, requirements for the test facility, a data reporting format, and an uncertainty determination methodology. Pages: 44

1st Edition | July 2018 | Product Number: H220401 | Price: $77.00

Chapter 22.6
Testing Protocol for Gas Chromatographs
A general gas chromatograph (GC) performance test protocol that specifies the scope and reporting requirements of GC tests for repeatability, reproducibility, and response linearity. The protocol specifies requirements for tests over a range of gas compositions, tests over a range of environmental conditions, and long-term performance tests. Pages: 50

1st Edition | August 2015 | Product Number: H220601 | Price: $101.00

Chapter 23
Reconciliation of Hydrocarbon Quantities
Provides practical methodologies for monitoring hydrocarbon transportation loss and gain for non-marine systems i.e. pipeline, tank cars (rail tank cars, tank trucks, etc.). For Marine Reconciliation, refer to Ch. 17.

Chapter 23.1
Reconciliation of Liquid Pipeline Quantities
(supersedes Std 2560)
Provides methodologies for monitoring liquid pipeline loss/gain and for determining the normal loss/gain level for any given pipeline system. Troubleshooting suggestions are also presented. This document does not establish industry standards for loss/gain level because each system is individual and exhibits its own loss/gain level and/or patterns under normal operating conditions. The document provides operational and statistically based tools for identifying when a system has deviated from normal, the magnitude of the deviation, and guidelines for identifying the causes of deviation from normal. The primary application of this publication is in custody transfer liquid pipeline systems in which there is provision for measuring all liquids that enter the system and exit the system, as well as liquid inventory within the system. The application is not intended for nonliquid or mixed-phase systems. The applications and examples in this document are intended primarily for custody transfer pipeline systems, but the principles may be applied to any system that involves the measurement of liquids into and out of the system and, possibly, inventory of liquids within the system. Such systems may include pipelines, marine terminals, marine voyages, bulk loading or storage terminals, tank farms, and rail and trucking systems. Pages: 35

1st Edition | June 2016 | Product Number: H230101 | Price: $98.00

Pub 2566
State of the Art Multiphase Flow Metering
Provides information on multiphase flow metering systems gleaned from more than 150 published documents that are in the public domain. The documentation was prepared from information obtained through mid-2002. It should be noted that the indicated performances data stated in these published documents have not necessarily been verified by an independent body. The listing of these references in the Appendix 2 is intended to provide a comprehensive source of data and information on multiphase metering; the reader needs to carefully review the source of the data in the documents when utilizing the information. Pages: 80

1st Edition | May 2004 | Product Number: H25661 | Price: $131.00

TR 2571
Fuel Gas Measurement
Provides a performance-based methodology for the measurement and reporting of fuel gas consumption. The document provides guidance in the following areas to allow the user to achieve a targeted uncertainty of measurement:

- selection of flow meter type; differential pressure (DP), displacement, ultrasonic, Coriolis, vortex, turbine, thermal, and others;
- associated instrumentation for measuring fluid properties and flowing conditions, such as pressure and temperature transmitters, densimeters, gas chromatographs;
- obtaining and use of gas composition or other analytical data;
- design and installation requirements of the measurement system;
- inspection, verification, and calibration practices of flow meters and their associated accessory instrumentation; and
- simplified uncertainty calculations with examples to illustrate the methodology.

Techniques are described to assess the uncertainty contribution of individual components of fuel gas measurement systems and overall facility fuel gas measurement uncertainty. Pages: 67

1st Edition | March 2011 | Product Number: H257101 | Price: $128.00
TR 2572
Carbon Content, Sampling, and Calculation
Carbon emission quantities can be calculated from either the volume/mass of fuel or feedstock fed to a process (as applicable) and carbon content of the process or fuel supply, or by directly measuring volume/mass emissions. This technical report (TR) provides guidance on the sampling and calculation of carbon content of process or fuel supplies. The API companion technical report, TR 2571, can be referenced for guidance on measuring the volume/mass of process fuel gas or feedstock, and the API Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Natural Gas Industry can be reference for guidance on the calculation of emissions.
TR 2572 provides guidance and a methodology for the determination of carbon content from hydrocarbon-based petroleum and petrochemical products, and the uncertainty of the average carbon content as calculated from multiple samples taken during a reporting period. This method is intended to make use of industry-accepted mixture property data and test methods with no new or modified test methods introduced in this document. The method is applicable to carbon-content-based reporting or trading for all gaseous and liquid hydrocarbons.
This TR provides references and supplemental information on applicable industry practices based on the published resources, existing industry standards, industry-accepted physical constants, or properties of hydrocarbons for measurement, sampling, sampling frequency, and analysis of hydrocarbon samples. Pages: 24

1st Edition | May 2013 | Product Number: H257201 | Price: $103.00

TR 2575
Measurement of Thermally Cracked Gas
Presents a method to compute the density, compressibility factor, and supercompressibility factor for thermally cracked gas (TCG) for custody transfer using orifice meters. It provides equations, parameters, computation flow diagrams, and example spreadsheet calculations. This technical report applies to TCG mixtures after treatment. It applies for temperature from 90 °F to 120 °F (305 K to 322 K) at pressures up to 300 psig (2 MPa). It is limited to a specific operating region. The method is for the single gas phase only. Pages: 17

1st Edition | September 2014 | Product Number: H257501 | Price: $67.00

TR 2577
Performance of Full-Bore Vortex Meters for Measurement of Liquid Flows
Provides documentation of performance characteristics of full-bore liquid vortex meters for measuring liquid hydrocarbon flows of different API gravity under the field operating conditions and under a controlled environment in a laboratory test facility with water as the proving fluid, limited laboratory proving facility test results using water as the calibration fluid of several and 2-in. (50 mm) and 4-in. (100 mm) commercially available full-bore vortex meters that are typically installed for non-custody transfer liquid installations, and typical performance of full-bore 4-in. (100-mm) liquid vortex meters for liquid hydrocarbon measurement and to provide guidance in selecting liquid vortex meters for custody transfer measurement. Pages: 30

1st Edition | July 2018 | Product Number: H257701 | Price: $74.00

TR 2578
Flow Conditioner Installation and Effects on Turbine Meters
Provides a summary of flow conditioning testing performed on turbine meters in liquid hydrocarbons. Initial testing was conducted in water and those findings were included as an addendum to Ch. 5.3 in 2009, subsequent testing in hydrocarbon liquids was carried out through July 2016. Phase II testing focused on operational effects, specifically the relationship of strainer design, strainer basket disturbances, flow conditioning, and their effects on the flow meter deviations in hydrocarbon applications (viscosities, densities, and Reynolds number). Pages: 16

1st Edition | October 2017 | Product Number: H257801 | Price: $67.00
potential and tolerance for risk, existing conditions at the installation, and or installations that are already in place, that are in the process of construction provisions of this standard to facilities, equipment, structures, intended for application at new facilities. Application of the design and terminal. The design and construction provisions of this standard are vessel (barge or ship), or road/rail transport to an airport. This RP does not the site-specific circumstances and detailed accounting for both the potential and tolerance for risk, existing conditions at the installation, and overall benefit for applying the required design and construction provisions.

The operation, sampling, testing, and maintenance provisions in the various sections of this standard shall apply to both new and existing installations. Pages: 75

2nd Edition | October 2012 | Product Number: C159502 | Price: $239.00

As of 2010, API does not maintain or distribute the following aviation fuel equipment related documents:

EI 1529
Aviation Fuelling Hose

EI 1540
Design, Construction, Operation and Maintenance of Aviation Fuelling Facilities, IP Model Code of Safe Practice Part 7

EI 1542
Identification Markings for Dedicated Aviation Fuel Manufacturing and Distribution Facilities, Airport Storage and Mobile Fuelling Equipment

EI 1550
Handbook on Equipment Used for the Maintenance and Delivery of Clean Aviation Fuel

EI 1581
Specification and Qualification Procedures for Aviation Jet Fuel Filter/ Separators

EI 1582
Specification for Similarity for API/EI 1581 Aviation Jet Fuel Filter/ Separators

EI 1584
Four-Inch Aviation Hydrant System Components and Arrangements

EI 1585
Guidance in the Cleaning of Aviation Fuel Hydrant Systems at Airports

EI 1590
Specifications and Qualification Procedures for Aviation Fuel Microfilters

EI 1594
Initial Pressure Strength Testing of Airport Fuel Hydrant Systems with Water

EI 1596
Design and Construction of Aviation Fuel Filter Vessels

EI 1597
Procedures for Overwing Fuelling to Ensure Delivery of the Correct Fuel Grade to an Aircraft

EI 1598
Considerations for Electronic Sensors to Monitor Free Water and/or Particulate Matter in Aviation Fuel

EI 1599
Laboratory Tests and Minimum Performance Levels for Aviation Fuel Dirt Defense Filters

The documents listed above are maintained and distributed by the Energy Institute. For ordering information, please refer to the following website: https://publishing.energyninst.org/.
Marketing

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

Publ 1642
Alcohol, Ethers, and Gasoline-Alcohol and -Ether Blends
Examines fire safety considerations at petroleum marketing facilities. Focuses on gasoline blended with oxygenates, and M85, but also includes alcohols and ethers because they may be present at terminals and bulk plants for blending purposes. Pages: 12

Publ 1645
Stage II Cost Study
Addresses the general installation cost information for three different types of retail gasoline outlet (RGO) vapor recovery systems: vapor balance, passive vacuum assist, and active vacuum assist. Additionally, it provides an overview of how each system operates. Pages: 6
1st Edition | August 2002 | Product Number: A16451 | Price: $59.00

RP 1646
Safe Work Practices for Contractors Working at Retail Petroleum/Convenience Facilities
Provides the recommended minimum safety procedures for working at retail petroleum/convenience facilities and is a key component of the API WorkSafe Program. It also details how to develop a task specific Job Safety Analysis that should be completed before any work may begin. This document also provides the user with a general awareness of safety issues associated with maintenance and construction work at retail petroleum/convenience facilities, including service stations. It also highlights many of the Federal OSHA requirements that may apply to maintenance and construction work in the retail petroleum/convenience business. Pages: 84
2nd Edition | May 2017 | Product Number: A164602 | Price: $151.00

Std 2610
Design, Construction, Operation, Maintenance, and Inspection of Terminal and Tank Facilities
Guides the management of terminals and tanks in a manner that protects the environment and the safety of workers and the public. This standard is intended for petroleum terminal and tank facilities associated with marketing, refining, pipeline, and other similar facilities. This standard may be used as a resource and management guide by those responsible for such facilities and by those working on their behalf. This standard is a compilation of industry knowledge, information, and management practices for all relevant aspects of terminal and tank operations aggregated into an overview document comprising best practices. Pages: 100
3rd Edition | September 2018 | Product Number: C26103 | Price: $183.00

USED OIL

A Guidebook for Implementing Curbside and Drop-Off Used Motor Oil Collection Programs
Designed to help municipal managers and regulators evaluate the types of available programs (either curbside or drop-off programs, including examples of both), and how to effectively implement these used oil recycling programs. It is based on national surveys of existing programs throughout the country and includes examples of budgets, procedures, equipment, and model programs that are currently underway. Pages: 47

Publ 1830
National Used Oil Collection Study
Reviews the status of used engine oil collection in the United States. Documents state efforts to collect oil and the outcomes of such efforts. Provides examples of how used oil collection can be successful, as well as warning of the pitfalls that should be avoided, based on the experience of other states. Pages: 248
1st Edition | June 1996 | Product Number: B18301 | Price: $61.00

Publ 1835
Study of Used Motor Oil Recycling in Eleven Selected Countries
The study described in this report obtained information about used motor oil collection and recycling programs in 11 selected countries around the world. Pages: 55
1st Edition | November 1997 | Product Number: B18351 | Price: $61.00

TANK TRUCK OPERATIONS

For Safety’s Sake—MC 306 Cargo Tank Vehicle Inspection
This VHS tape provides a step-by-step approach to pre- and post-trip inspection of MC 306 cargo tank vehicles. The tape follows a driver through an actual walk-around inspection and covers driver recordkeeping and the inspection itself—brakes, lights, mirrors, tires, wiring, the tank, and placards. Also includes common truck defects. The videotape was prepared under the direction of the API Highway Safety Committee and parallels the U.S. Department of Transportation’s truck inspection regulations. Two minutes of blank leader is provided on the tape so that it can be customized to fit company training needs. VHS tape: 14 minutes. Pages: 65
January 1989 | Product Number: A11500 | Price: $106.00

RP 1004
Bottom Loading and Vapor Recovery for MC-306 & DOT-406 Tank Motor Vehicles
Provides an industry standard for bottom loading and vapor recovery of proprietary and hired carrier DOT MC-306 tank vehicles at terminals operated by more than one supplier. Guides the manufacturer and operator of a tank vehicle as to the uniform features that should be provided to permit loading of a tank vehicle with a standard 4-in. adapter. This edition of RP 1004 requires an independent secondary control system and maximum requirements for outage in the tank to allow the secondary control system to function. Pages: 21
2-Year Extension: January 2018
Product Number: A10048 | Price: $114.00

RP 1007
Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles
Ensuring the safe and efficient loading and delivery of petroleum products to retail service stations and bulk facilities is the primary goal for all companies that transport product. This document is a guideline for use by the truck driver and persons responsible for loading and unloading of MC306/DOT406 cargo tanks. It identifies specific steps to ensure that product can be loaded into tank trucks and unloaded into both underground and aboveground storage tanks in a safe and efficient manner that protects the environment. It is intended to be used in conjunction with existing driver training programs and procedures. Pages: 24
2-Year Extension: January 2018
Product Number: A10071 | Price: $40.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
RP 1112
Developing a Highway Emergency Response Plan for Incidents Involving Hazardous Materials

Provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks, and for coordinating and cooperating with local, state, and federal officials. Covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activity. The appendices outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles. Pages: 21

2-Year Extension: January 2018
Product Number: A11123 | Price: $78.00

MOTOR OILS AND LUBRICANTS

Motor Oil Shelf Cards ◆

This two-page laminated guide helps consumers understand the API Engine Oil Quality Marks—the API Certification Mark, “Starburst,” and Service Symbol, “Donut,” and the API Service Categories. Shelf Cards are available in English and Spanish and can be personalized with a company logo. For information on personalizing the shelf cards, call 202-682-8156.

Single copies free on request from API [eolcs@api.org or (202)-682-8516]

Publ 1509 ◆
Engine Oil Licensing and Certification System
(includes Addendum 1 dated October 2014)

Describes the voluntary API Engine Oil Licensing and Certification System (EOLCS) and explains to marketers how different API marks are licensed and displayed for the consumer. The publication describes methods for developing new engine oil performance requirements and provides the marketer with a description of the API marks and their use, licensing requirements, aftermarket conformance, and enforcement procedures. EOLCS is the result of cooperation between U.S. and Japanese automobile manufacturers, diesel engine manufacturers, the additive industry represented by the American Chemistry Council (ACC), and the U.S. petroleum industry represented by API. This program benefits consumers, the petroleum industry, and gasoline- and diesel-engine manufacturers.

Pages: 72

Publ 1520 ◆
Directory of Licensees: API Engine Oil Licensing and Certification System

Identifies the companies licensed to display the API Engine Oil Licensing and Certification System (EOLCS) Symbols. This directory can be accessed only through API’s website, https://www.api.org/products-and-services/engine-oil/eolcs-categories-and-documents/publication-1520.

DIESEL FUEL

Publ 1571
Diesel Fuel—Questions and Answers for Highway and Off-Highway Use

Provides answers to some of the frequent questions asked about diesel fuel. Included are explanations of the quality features of diesel fuel and their significance, descriptions of diesel fuel classifications, discussions of additives normally used and their purposes, and explanations of factors that can affect performance. Pages: 20

Marketing

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Publ 1669

Results of a Retail Gasoline Outlet and Commercial Parking Lot Storm Water Runoff Study

Presents the findings of a study to characterize storm water runoff from retail gasoline outlets and compares the results with runoff from commercial parking lots and published urban "background" values. Funded by the Western States Petroleum Association (WSPA) and the American Petroleum Institute (API), the results of this study indicate that fueling activities at normally operated and maintained retail gasoline outlets do not contribute additional significant concentrations of measured constituents in storm water runoff. Pages: 24

1st Edition | December 1994 | Product Number: A16691 | Price: $85.00

HEALTH, ENVIRONMENT, AND SAFETY: SOIL AND GROUNDWATER

Publ 1628

A Guide to the Assessment and Remediation of Underground Petroleum Releases

Provides an overview of proven technologies for the assessment and remediation of petroleum releases in soil and groundwater. Covers accidental releases arising from the production, transportation, refining, and marketing of liquid petroleum products or unrefined crude oil. Pages: 119

Publ 1628 and its five companion publications (1628A, 1628B, 1628C, 1628D, and 1628E) may be purchased as a set.

Order Number: A1628S | Price: $333.00

Publ 1628A

Natural Attenuation Processes

Describes the physical, chemical, and biological processes that decrease the concentrations and ultimately limit the extent of the dissolved plume migrating from a hydrocarbon release. Pages: 16

Publ 1628B

Risk-Based Decision Making

Discusses risk-based decision making approaches used for the assessment of hazardous conditions. Also presents information that can be utilized to focus remedial measures and funds on petroleum hydrocarbon release sites while being protective of human health and the environment, and to facilitate timely closure of hydrocarbon-impacted sites. Pages: 13

Publ 1628C

Optimization of Hydrocarbon Recovery

Covers the optimization, in its broadest sense, to achieve an environmentally sound site closure in the appropriate timeframe for the least cost (to maximize efficiency of the selected system). Pages: 20

Publ 1628D

In-Situ Air Sparging

Addresses in-situ air sparging. Covers remediation technologies, starting with the early techniques of containment or mass reduction through today's very aggressive site closure techniques. Addresses containment as well as residual petroleum hydrocarbon compounds. Pages: 13

Publ 1628E

Operation and Maintenance Considerations for Hydrocarbon Remediation Systems

Discusses concepts regarding operation and maintenance procedures necessary to achieve and maintain optimal performance of petroleum hydrocarbon remediation systems.

Publ 1629

Guide for Assessing and Remediating Petroleum Hydrocarbons in Soils

This publication provides information regarding the site and release characteristics relevant to, and methods for assessing and remediating, soils contaminated with petroleum hydrocarbons released from underground or aboveground storage tank systems and operations. Developed to complement Publ 1628, which focuses primarily on assessing and remediating petroleum releases that may impact groundwater. Pages: 81

SECURITY

Std 1164

Pipeline SCADA Security

 Provides guidance to the operators of oil and gas liquids pipeline systems for managing SCADA system integrity and security. The use of this document is not limited to pipelines regulated under Title 49 CFR 195.1, but should be viewed as a listing of best practices to be employed when reviewing and developing standards for a SCADA system. This document embodies API's Security Guidelines for the Petroleum Industry. This guideline is designed to provide operators with a description of industry practices in SCADA security, and to provide the framework needed to develop sound security practices within the operator's individual companies. It is important that operators understand system vulnerability and risks when reviewing the SCADA system for possible system improvements. The goal of an operator is to control the pipeline such that there are no adverse effects on employees, the environment, the public, or the customers as a result of actions by the operator, or by other parties. This document's main body provides a high-level view of holistic security practices. The annexes provide further details and technical guidance. Reviewing this document and following the guidance set forth in the annexes assists in creating inherently secure operations. Implementation of this standard to advance supervisory control and data acquisition (SCADA) cyber security is a continuous process. The overall process could take years to implement, depending on the complexity of the SCADA system. Additionally, the process would optimally be started as part of a SCADA upgrade project and use this standard to "design in" security as an element of the new system. Pages: 76

Product Number: D11642 | Price: $150.00
The pipeline industry hopes that these guidelines will help both pipeline operators and people working and living along pipeline rights of way to better understand their respective responsibilities for maintaining the safety of this vital, but invisible, transportation system.

Get the Dirt

Video
A damage prevention awareness video produced by the Dig Safely team. The video explains the call first process and encourages its use. Available in both English and Spanish.

Single copies free from the API Pipeline Segment: 202-682-8125

Multiple copies available for $1.30 each plus shipping from Revak & Associates: 330-533-1727
Transportation

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

radiographic, magnetic particle, liquid penetrant, ultrasonic, and visual testing methods. It is intended that all work performed in accordance with this standard shall meet or exceed the requirements of this standard. Pages: 118
21st Edition | September 2013 | Product Number: D110421 | Price: $355.00

Std 1104 *
Welding of Pipelines and Related Facilities—Kazakh
Kazakh translation of Std 1104.
21st Edition | September 2013
Product Number: D110421K | Price: $284.00

Std 1104 *
Welding of Pipelines and Related Facilities—Portuguese
Portuguese translation of Std 1104.
21st Edition | September 2013
Product Number: D110421P | Price: $355.00

Std 1104 *
Welding of Pipelines and Related Facilities—Russian
Russian translation of Std 1104.
21st Edition | September 2013
Product Number: D110421R | Price: $284.00

Std 1104 *
Welding of Pipelines and Related Facilities—Spanish
Spanish translation of Std 1104.
21st Edition | September 2013
Product Number: D110421SP | Price: $355.00

RP 1109
Line Markers and Signage for Hazardous Liquid Pipelines and Facilities
Addresses the permanent marking of liquid petroleum pipeline transportation facilities. It covers the design, message, installation, placement, inspection, and maintenance of markers and signs on pipeline facilities located onshore and at inland waterway crossings. Markers and signs indicate the presence of a pipeline facility and warn of the potential hazards associated with its presence and operation. The markers and signs may contain information to be used by the public when reporting emergencies and seeking assistance in determining the precise location of a buried pipeline.
The provisions of this recommended practice cover the minimum marker and sign requirements for liquid petroleum pipeline facilities. Alternative markers, which are recommended for some locations under certain circumstances, are also discussed. The pipeline operator is responsible for determining the extent of pipeline marking. Consideration should be given to the consequences of pipeline failure or damage; hazardous characteristics of the commodity being transported; and the pipeline's proximity to industrial, commercial, residential, and environmentally sensitive areas. The pipeline marking programs are also integral parts of the pipeline operator's maintenance and emergency plans.
This recommended practice is not intended to be applied retroactively. Its recommendations are for new construction and for normal marker maintenance programs subsequent to the effective date of this edition. Pages: 24
5th Edition | October 2017 | Product Number: D11095 | Price: $101.00

RP 1110
Recommended Practice for the Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids, or Carbon Dioxide
Applies to all parts of a pipeline or pipeline facility including line pipe, pump station piping, terminal piping, compressor station piping, metering station piping, delivery station piping, regulator station piping, appurtenances connected to line pipe, appurtenances connected to facility piping, fabricated assemblies, valves, tees, elbows, reducers, flanges, and any other pipeline equipment or appurtenances. This RP does not apply to pumping units, compressor units, breakout tanks, pressure vessels, control piping, sample piping, instrument piping/tubing, or any component or piping system for which other codes specify pressure testing requirements (i.e., ASME Boiler and Pressure Vessel Code, piping systems covered by building codes, etc.). Although this recommended practice (RP) contains guidelines that are based on sound engineering judgment, it is important to note that certain governmental requirements may differ from the guidelines presented in this document. Nothing in this RP is intended to inhibit the use of engineering solutions that are not covered in this document. This may be particularly applicable where there is innovative developing technology. Where an alternative is offered, the RP may be used, provided any and all variations from the document are identified and documented. This RP does not address piping systems that are pressure tested with natural gas, nitrogen, or air. Pages: 25
6th Edition | February 2013 | Reaffirmed: July 2018
Product Number: D11106 | Price: $98.00

RP 1111
Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design)
Sets criteria for the design, construction, testing, operation, and maintenance of offshore steel pipelines used in the production, production support, or transportation of hydrocarbons from the outlet flange of a production facility. The criteria apply to transportation piping facilities located on production platforms after separation and treatment, including meter facilities, gas compression facilities, liquid pumps, and associated piping and appurtenances. This document may also be used for water injection pipelines offshore.
Limit state design has been incorporated into the document to provide a uniform factor of safety with respect to rupture or burst failure as the primary design condition independent of the pipe diameter, wall thickness, and grade. The criteria contained in this document are intended to permit the economical transportation of hydrocarbons while providing for the safety of life and property and the protection of the environment. The general adoption of these criteria should assure that offshore hydrocarbon pipelines possess the requisite structural integrity for their safe and efficient operation. Pages: 78
5th Edition | September 2015 | Product Number: D11115 | Price: $144.00

RP 1115
Design and Operation of Solution-Mined Salt Caverns Used for Liquid Hydrocarbon Storage
Provides guidance on the design and operation of solution-mined underground hydrocarbon liquid or liquefied petroleum gas storage facilities. It is intended for cavern engineers, supervisors, and all persons involved in liquid cavern operations. This recommended practice is based on the accumulated knowledge and experience of geologists, engineers, and other personnel in the petroleum industry. All aspects of solution-mined liquid hydrocarbon underground storage design and operation are covered, including site selection, cavern development, cavern hydraulics, brine facilities, wellhead and hanging string, cavern testing, and cavern abandonment. A section on risk management is included. Pages: 112
2nd Edition | November 2018 | Product Number: D11152 | Price: $156.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. ♦ This publication is related to an API licensing, certification, or accreditation program.
RP 1117
Recommended Practice for Movement in In-Service Pipelines
(includes Errata 1 dated December 2008 and Errata 2 dated August 2009)
Covers the design, execution, inspection, and safety of a pipeline-lowering or other movement operation conducted while the pipeline is in service. (In this document, the terms lowering and movement can be used interchangeably.) This recommended practice presents general guidelines for conducting a pipeline-movement operation without taking the pipeline out of service. It also presents equations for estimating the induced stresses. To promote the safety of the movement operation, it describes stress limits and procedures. Additionally, it outlines recommendations to protect the pipeline against damage. The practicality and safety of trench types, support systems, and lowering or other methods are considered. Inspection procedures and limitations are presented. Pages: 46
3rd Edition | July 2008 | Reaffirmed: March 2018
Product Number: D11173 | Price: $136.00

RP 1130
Computational Pipeline Monitoring for Liquids
Focuses on the design, implementation, testing, and operation of CPM systems that use an algorithmic approach to detect hydraulic anomalies in pipeline operating parameters. The primary purpose of these systems is to provide tools that assist pipeline controllers in detecting commodity releases that are within the sensitivity of the algorithm. It is intended that the CPM system would provide an alarm and display other related data to the pipeline controllers to aid in decision-making. The pipeline controllers would undertake an immediate investigation, confirm the reason for the alarm and initiate an operational response to the hydraulic anomaly when it represents an irregular operating condition or abnormal operating condition or a commodity release. The purpose of this recommended practice is to assist the pipeline operator in identifying issues relevant to the selection, implementation, testing, and operation of a CPM system. Pages: 54
1st Edition | September 2007 | Reaffirmed: November 2017
Product Number: D011301 | Price: $115.00

RP 1133
Managing Hydrotechnical Hazards for Pipelines Located Onshore or Within Coastal Areas
Sets out criteria for the design, construction, operation, maintenance, and abandonment of onshore pipelines that could affect high consequence floodplains and associated commercially navigable waterways. This document applies only to steel pipelines that transport gas, hazardous liquids, alcohols or carbon dioxide. The design, construction, inspection, and testing provisions of this document should not apply to pipelines that were designed or installed prior to the latest revision of this publication. The operation and maintenance provisions of this document should apply to existing facilities. The contents in this document should not be considered a fixed rule for application without regard to sound engineering judgment. Pages: 94
2nd Edition | December 2017 | Product Number: D11332 | Price: $167.00

TR 1149
Pipeline Variable Uncertainties and Their Effects on Leak Detectability
Describes procedures for predicting uncertainties in the detection of leaks in pipelines using computational methods based upon physical hydraulic state measurements. This class of pipeline leak detection methods is commonly called Computational Pipeline Monitoring (CPM). Pages: 160
2nd Edition | September 2015 | Product Number: D11492 | Price: $170.00

Std 1160
Managing System Integrity for Hazardous Liquid Pipelines
(includes Errata 1 dated September 2013)
Outlines a process that an operator of a pipeline system can use to assess risks and make decisions about risks in operating a hazardous liquid pipeline in order to reduce both the number of incidents and the adverse effects of errors and incidents.
An integrity management program provides a means to improve the safety of pipeline systems and to allocate operator resources effectively to: identify and analyze actual and potential precursor events that can result in pipeline incidents; examine the likelihood and potential severity of pipeline incidents; provide a comprehensive and integrated means for examining and comparing the spectrum of risks and risk reduction activities available; provide a structured, easily communicated means for selecting and implementing risk reduction activities; and establish and track system performance with the goal of improving that performance.
This standard is intended for use by individuals and teams charged with planning, implementing, and improving a pipeline integrity management program. Typically, a team would include engineers, operating personnel, and technicians or specialists with specific experience or expertise (corrosion, in-line inspection, right-of-way patrolling, etc.). Users of this standard should be familiar with the pipeline safety regulations (Title 49 CFR Part 195), including the requirements for pipeline operators to have a written pipeline integrity program and to conduct a baseline assessment and periodic reassessments of pipeline management integrity. Pages: 112
2nd Edition | September 2013 | Product Number: D116002 | Price: $221.00

RP 1161
Recommended Practice for Pipeline Operator Qualification (OQ)
Provides guidance to the liquids pipeline industry. The United States Department of Transportation (DOT) requires that pipeline operators develop a qualification program. The qualification program includes personnel and contractor ability to perform covered tasks and to recognize and respond to abnormal operating conditions that may be encountered while performing these covered tasks. This is a performance-based qualification program. Pages: 266
3rd Edition | January 2014 | Product Number: D11613 | Price: $216.00

RP 1162
Public Awareness Programs for Pipeline Operators
Provides guidance for pipeline operators to develop and manage public awareness programs tailored to meet the needs of the community. It is meant to raise the quality of public awareness programs and align baseline core safety messages across the oil and gas industry.
The scope of this recommended practice (RP) covers the development, implementation, evaluation, and documentation of public awareness programs associated with the normal operation of existing pipeline systems and facilities, including transmission pipelines, local distribution systems, and gathering lines.
Two important objectives of this RP are to provide a framework to help each pipeline operator create and manage a public awareness program as well as a process for periodic program evaluation to encourage each operator to enhance the program, at the operator’s discretion, as circumstances warrant. Communications related to new pipeline construction, offshore operations, and during emergencies are not covered by this RP. Nor is it intended to provide guidance to operators for communications about operator-specific performance measures that are addressed through other means of communication or regulatory reporting.
This RP provides the operator with the elements of a recommended baseline public awareness program and considerations to determine when and how to enhance the program to provide the appropriate level of public awareness outreach. Enhancements may affect messages, delivery frequency and methods, geographic coverage areas, program evaluation, and other elements. Pages: 72
Product Number: D11622 | Price: $128.00
<table>
<thead>
<tr>
<th>Product Number</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D116302</td>
<td>$130.00</td>
<td>Provides guidance to the operators of oil and gas liquids pipeline systems for managing SCADA system integrity and security. The use of this document is not limited to pipelines regulated under Title 49 CFR 195.1, but should be viewed as a listing of best practices to be employed when reviewing and developing standards for a SCADA system. This document embodies API's Security Guidelines for the Petroleum Industry. This guideline is designed to provide operators with a description of industry practices in SCADA security, and to provide the framework needed to develop sound security practices within the operator's individual companies. It is important that operators understand system vulnerability and risks when reviewing the SCADA system for possible system improvements. The goal of an operator is to control the pipeline such that there are no adverse effects on employees, the environment, the public, or the customers as a result of actions by the operator, or by other parties. This document's main body provides a high-level view of holistic security practices. The annexes provide further details and technical guidance. Reviewing this document and following the guidance set forth in the annexes assists in creating inherently secure operations. Implementation of this standard to advance supervisory control and data acquisition (SCADA) cyber security is a continuous process. The overall process could take years to implement, depending on the complexity of the SCADA system. Additionally, the process would optimally be started as part of a SCADA upgrade project and use this standard to "design in" security as an element of the new system. Pages: 76</td>
</tr>
</tbody>
</table>

| D11631 | $157.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11632 | $135.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11642 | $129.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11651 | $157.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11662 | $93.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11672 | $109.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11682 | $118.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

| D11692 | $129.00 | Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28 |

Transportation

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)
Phone Orders: +1 303 397 7956 (Local and International)

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
RP 1170
Design and Operation of Solution-Mined Salt Caverns Used for Natural Gas Storage
Provides functional recommendations for salt cavern facilities used for natural gas storage. Includes facility geomechanical assessments, cavern well design and drilling, and surveillance techniques and operations, including monitoring and maintenance practices. The recommended practice is based on the accumulated knowledge and experience of geologists, engineers, and other personnel in the petroleum and gas storage industries and promotes public safety by providing a comprehensive set of design guidelines. This recommended practice recommends the nature of subsurface geological diversity and stresses the need for in-depth, site-specific geomechanical assessments with a goal of long-term facility integrity and safety. This practice includes the cavern well system (wellhead, wellbore, and cavern) from the emergency shutdown valve down to the cavern and facilities having significant impact to safety and integrity of the cavern system. This practice does not apply to caverns used for the storage of non-hazardous liquid or liquefied petroleum products, brine production, or waste disposal; nor to caverns that are mechanically mined, or depleted hydrocarbon or aquifer underground gas storage systems. Pages: 96

RP 1171
Functional Integrity of Natural Gas Storage in Depleted Hydrocarbon Reservoirs and Aquifer Reservoirs
Applies to natural gas storage in depleted oil and gas reservoirs and aquifer reservoirs, and focuses on storage well, reservoir, and fluid management for functional integrity in design, construction, operation, maintenance, and documentation practices. Storage design, construction, operation, and maintenance include activities in risk management, site safety, security, environmental protection, and procedural documentation and training to embed human and organizational competence in the management of storage facilities. This recommended practice (RP) embodies historical knowledge and experience and emphasizes the need for case-by-case and site-specific conditional assessments. This practice applies to both existing and newly constructed facilities. Applicable distinctions for aquifer facilities are identified, as necessary. “Replacement,” as used in this document, refers to the complete replacement of a facility unit, as, for example, when an existing well is abandoned and replaced with a new well. This document recommends that operators manage integrity through monitoring, maintenance, and remediation practices and apply specific integrity assessments on a case-by-case basis. The scope does not include pipelines, gas conditioning and liquid handling, compressor, and ancillary facilities associated with storage. Pages: 60
1st Edition | September 2015 | Product Number: D117101 | Price: $124.00

RP 1172
Recommended Practice for Construction Parallel to Existing Underground Transmission Pipelines
Emphasizes of these guidelines is on the interaction between existing transmission pipeline operators and those planning to construct in a parallel fashion. These activities may involve many different parties. Contractors working on behalf of the constructing party, including environmental and survey professionals, design engineers, construction contractors, and operators of excavation and earth moving equipment, should engage in work practices that are in conformance with these guidelines and apply vigilance in identifying unanticipated circumstances that may indicate a problem. This RP refers to all of these entities as the “constructing party.” These guidelines have been developed such that they can be incorporated into contract documents executed with contractors and subcontractors by whichever party is involved in responsible for construction activities. Pages: 30
1st Edition | April 2014 | Product Number: D11721 | Price: $88.00

RP 1173
Pipeline Safety Management Systems (ANSI/API RP 1173)
Establishes a pipeline safety management systems (PSMS) framework for organizations that operate hazardous liquids and gas pipelines jurisdictional to the U.S. Department of Transportation. Operators of other pipelines may find this document applicable useful in operating to their systems. This recommended practice (RP) provides pipeline operators with safety management system requirements that when applied provide a framework to reveal and manage risk, promote a learning environment, and continuously improve pipeline safety and integrity. At the foundation of a PSMS is the operator’s existing pipeline safety system, including the operator’s pipeline safety processes and procedures. This RP provides a comprehensive framework and defines the elements needed to identify and address safety for a pipeline’s life cycle. These safety management system requirements identify what is to be done, and leaves the details associated with implementation and maintenance of the requirements to the individual pipeline operators. The document does not explicitly address personnel safety, environmental protection, and security, but the elements herein can be applied to those aspects of an operation. Pages: 42
1st Edition | July 2015 | Product Number: D117301 | Price: $88.00

RP 1174
Recommended Practice for Onshore Hazardous Liquid Pipeline Emergency Preparedness and Response
Provides operators of onshore hazardous liquid pipelines a framework that promotes the continual improvement of emergency planning and response processes, including identification and mitigation of associated risks and implementation of changes from lessons learned. This recommended practice (RP) assists the operator in preparing for a safe, timely, and effective response to a pipeline emergency. This RP applies to assets under the jurisdiction of the U.S. Department of Transportation (DOT), specifically U.S. Title 49 Code of Federal Regulations (CFR) Parts 194 and 195. Operators of non-DOT jurisdictional pipelines or tank assets may also make voluntary use of this document. Pages: 48
1st Edition | December 2015 | Product Number: D11741 | Price: $96.00

RP 1175
Pipeline Leak Detection—Program Management (includes Errata 1 dated March 2017)
Establishes a framework for Leak Detection Program (LDP) management for hazardous liquid pipelines that are jurisdictional to the U.S. Department of Transportation (specifically, 49 CFR Part 195). This recommended practice (RP) is specifically designed to provide pipeline operators with a description of industry practices in risk-based pipeline LDP management and to provide the framework to develop sound program management practices within a pipeline operator’s individual companies. It is important that pipeline operators understand system vulnerabilities, risks, and program management best practices when reviewing a pipeline LDP management process either for a new program or for possible system improvements. This RP focuses on using a risk-based approach to each pipeline operator’s LDP and following the guidance set forth assists in creating an inherently risk mitigating LDP management system. The overall goal of the LDP is to detect leaks quickly and with certainty, thus facilitating quicker shutdown and therefore minimizing negative consequences. This RP focuses on management of LDPs, not the design of leak detection systems (LDSs). Pages: 95
1st Edition | December 2015 | Product Number: D11751 | Price: $165.00
RP 1176
Recommended Practice for Assessment and Management of Cracking In Pipelines

Applies to any pipeline system used to transport hazardous liquid or natural gas, including those defined in U.S. Title 49 Code of Federal Regulations (CFR) Parts 192 and 195. This RP is designed to provide the operator with a description of industry-proven practices in the integrity management of cracks and threats that give rise to cracking mechanisms. The guidance is largely targeted to the line pipe along the right-of-way (ROW), but some of the processes and approaches can be applied to pipeline facilities, including pipeline stations, terminals, and delivery facilities associated with pipeline systems. Defects associated with lap-welded (LW) pipe and selective seam weld corrosion (SSWC) are not covered within this RP.

This RP presents the pipeline industry’s understanding of pipeline cracking. Mechanisms that cause cracking are discussed, methods to estimate the failure pressure of cracks are reviewed, and methods to estimate crack growth are presented. Selection of the appropriate integrity assessment method for various types of cracking, operating conditions, and pipeline characteristics is discussed. This RP also reviews current knowledge about in-line inspection (ILI) technology and in-the-ditch (ITD) nondestructive evaluation technology. A methodology for responding to ILI indications and specific criteria for when to respond to certain results is presented. Applicable repair techniques are reviewed. Sections are included for the discussion of reassessment interval determination and the consideration of appropriate preventive and mitigative measures. Some performance metrics for measuring the effectiveness of a crack management program are discussed. The technical discussion about crack formation, growth, and failure is to provide the knowledge needed by operators to effectively manage cracking on their pipeline systems.

Pages: 144
1st Edition | July 2016 | Product Number: D117601 | Price: $173.00

RP 1177
Recommended Practice for Steel Pipeline Construction Quality Management Systems

Establishes minimum Quality Management System (QMS) processes for organizations that own, operate, construct, or provide construction-related services for onshore carbon and low-alloy steel pipelines used in the transportation of hazardous liquids, carbon dioxide, and gas.

This recommended practice specifies the elements of a QMS to manage the construction process systematically from design verification, materials manufacturing, procurement, construction, inspection, and testing to initiation of operations.

Pages: 68
1st Edition | November 2017 | Product Number: D110701 | Price: $121.00

Bull 1178
Integrity Data Management and Integration

Provides a compendium of methodologies and considerations for integrating the underlying data used to support integrity management. Any one approach may not be appropriate or applicable in all circumstances. The document reviews possible approaches for consideration by operators in the context of their specific circumstances.

The primary focus of this bulletin is the methodologies and processes used to spatially integrate and normalize the data to support the application of comparative techniques used in interpreting integrity data, with particular emphasis on in-line inspection (ILI) data. The begins with a discussion of general data quality processes, goals, and considerations such that data quality approaches can be considered in the context of the data integration processes.

Pages: 144
1st Edition | November 2017 | Product Number: D11781 | Price: $107.00

RP 2611
Terminal Piping Inspection—Inspection of In-Service Terminal Piping Systems

Covers the inspection of typical terminal piping systems within terminal boundaries, which includes off-plot piping. Off-plot piping includes, but is not limited to piping between facilities, piping that comes from or goes to a refinery, or other type facility, or piping that may cross a road, ditch, or other property outside the confines of a terminal facility. Piping for transportation of finished fuel products, such as gasoline, diesel, lubricating oils, jet fuel, and aviation fuel, are covered by the scope of this document. Also covered are piping systems for nonfuel-type fluids. The piping for other terminal nonfuel-type fluids typically found in terminals, include asphaltic products, process water, transmix, slop water, and biofuels. This document does not address piping in a refinery facility, sanitary waste piping, cast iron piping, and nonmetallic gravity flow piping systems.

Pages: 42

PIPOLE MAINTENANCE WELDING

Investigation and Prediction of Cooling Rates During Pipeline Maintenance Welding, and User’s Manual for Battelle’s Hot-Tap Thermal-Analysis Models

Investigated and improved the methods of predicting cooling rates during pipeline maintenance welding. The scope of this study included:

- a review of three previous research efforts to develop satisfactory methods for welding appurtenances to in-service pipelines;
- a survey of pipeline leak and rupture incidents associated with appurtenances;
- the enhancement of existing analytical models for predicting cooling rates and temperatures during welding on an in-service pipeline; and
- a validation of the thermal-analysis models that was achieved by performing welds on pipeline carrying three different liquid-petroleum products.

May 2002 | Product Number: | Version 4.2 | May 2002

Please order this document from PRCI: https://www.prci.org/.
This standard also covers the procedures for radiographic, magnetic particle, combination of position and roll welding. The welds may be produced by position or roll welding or by a combination of these processes using a manual, semiautomatic, mechanized, or automatic welding technique or a combination of these techniques. The welds may be produced by position or roll welding or by a combination of position and roll welding.

This standard also covers the procedures for radiographic, magnetic particle, liquid penetrant, and ultrasonic testing, as well as the acceptance standards to be applied to production welds tested to destruction or inspected by radiographic, magnetic particle, liquid penetrant, ultrasonic, and visual testing methods. It is intended that all work performed in accordance with this standard shall meet or exceed the requirements of this standard. Pages: 118

21st Edition | September 2013
Product Number: D110421 | Price: $355.00

Std 1104 *
Welding of Pipelines and Related Facilities—Kazakh
Kazakh translation of Std 1104.
21st Edition | September 2013
Product Number: D110421K | Price: $284.00

Std 1104 *
Welding of Pipelines and Related Facilities—Portuguese
Portuguese translation of Std 1104.
21st Edition | September 2013
Product Number: D110421P | Price: $355.00

Std 1104 *
Welding of Pipelines and Related Facilities—Russian
Russian translation of Std 1104.
21st Edition | September 2013
Product Number: D110421R | Price: $284.00

Std 1104 *
Welding of Pipelines and Related Facilities—Spanish
Spanish translation of Std 1104.
21st Edition | September 2013
Product Number: D110421SP | Price: $355.00

TANK TRUCK OPERATIONS

RP 1004
Bottom Loading and Vapor Recovery for MC-306 & DOT-406 Tank Motor Vehicles
Provides an industry standard for bottom loading and vapor recovery of proprietary and hired carrier DOT MC-306 tank vehicles at terminals operated by more than one supplier. Guides the manufacturer and operator of a tank vehicle as to the uniform features that should be provided to permit loading of a tank vehicle with a standard 4-in. adapter. This edition of RP 1004 requires an independent secondary control system and maximum requirements for outage in the tank to allow the secondary control system to function. Pages: 21
2-Year Extension: January 2018
Product Number: A10048 | Price: $114.00

RP 1007
Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles
Ensuring the safe and efficient loading and delivery of petroleum products to retail service stations and bulk facilities is the primary goal for all companies that transport product. This document is a guideline for use by the truck driver and persons responsible for loading and unloading of MC306/DOT406 cargo tanks. It identifies specific steps to ensure that product can be loaded into tank trucks and unloaded into both underground and aboveground storage tanks in a safe and efficient manner that protects the environment. It is intended to be used in conjunction with existing driver training programs and procedures. Pages: 24
2-Year Extension: January 2018
Product Number: A10071 | Price: $40.00

RP 1112
Developing a Highway Emergency Response Plan for Incidents Involving Hazardous Materials
Provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks, and for coordinating and cooperating with local, state, and federal officials. Covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activities. The appendices outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles. Pages: 21
2-Year Extension: January 2018
Product Number: A11123 | Price: $78.00
SECURITY

Std 780
Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries

Prepared by a Security Risk Assessment (SRA) Committee of the American Petroleum Institute (API) to assist the petroleum and petrochemical industries in understanding security risk assessment and in conducting SRAs. The standard describes the recommended approach for assessing security risk widely applicable to the types of facilities operated by the industry and the security issues the industry faces. The standard is intended for those responsible for conducting security risk assessments and managing security at these facilities. The method described in this standard is widely applicable to a full spectrum of security issues from theft to insider sabotage to terrorism. The API SRA Methodology was developed for the petroleum and petrochemical industry, for a broad variety of both fixed and mobile applications. This recommended practice describes a single methodology, rather than a general framework for SRAs, but the methodology is flexible and adaptable to the needs of the user. This methodology constitutes one approach for assessing security vulnerabilities at petroleum and petrochemical industry facilities. However, there are other risk assessment techniques and methods available to industry, all of which share common risk assessment elements. Pages: 113

1st Edition | May 2013 | Product Number: K78001 | Price: $196.00

RP 781
Facility Security Plan Methodology for the Oil and Natural Gas Industries

Provides the framework to establish a secure workplace. The plan provides an overview of the threats facing the facility and describes the security measures and procedures designed to mitigate risk and protect people, assets, operations, and company reputation. This API standard was prepared with guidance and direction from the API Security Committee, to assist the petroleum and petrochemical industries in the preparation of a Facility Security Plan (FSP). This standard specifies the requirements for preparing an FSP as well as a discussion of the typical elements included in an FSP. This standard is intended to be flexible and adaptable to the needs of the user. It is noted that the content of an FSP can vary depending on circumstances such as facility size, location, and operations. This methodology is one approach for preparing an FSP at petroleum and petrochemical facilities. There are other security plan formats available for the industry. It is the responsibility of the user to choose the format and content of the FSP that best meets the needs of a specific facility. The format and content of some FSPs should be dictated by government regulations for covered facilities. This standard is not intended to supersede the requirements of any regulated facility but may be used as a reference document. Pages: 82

1st Edition | September 2016 | Product Number: K78101 | Price: $149.00
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards.

NOTE Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

INSPCTION OF REFINERY EQUIPMENT

API 510

Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration

(includes Addendum 1 dated May 2017 and Addendum 2 dated March 2018)

Covers the in-service inspection, repair, alteration, and rerating activities for pressure vessels and the pressure-relieving devices protecting these vessels. This inspection code applies to most refining and chemical process vessels that have been in place. This includes:

- vessels constructed in accordance with an applicable construction code;
- vessels constructed without a construction code (non-code)—a vessel not fabricated to a recognized construction code and meeting no known recognized standard;
- vessels constructed and approved as jurisdictional special based upon jurisdiction acceptance of particular design, fabrication, inspection, testing, and installation;
- non-standard vessels—a vessel fabricated to a recognized construction code but has lost its nameplate or stamping.

Pages: 71

10th Edition | May 2014 | Product Number: C51010 | Price: $232.00

API 510

Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Chinese

Chinese translation of API 510.

10th Edition | May 2014 | Product Number: C51010C | Price: $163.00

API 510

Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish

Spanish translation of API 510.

10th Edition | May 2014 | Product Number: C51010S | Price: $232.00

API 570

Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems

(includes Addendum 1 dated May 2017, Addendum 2 dated March 2018, and Errata 1 dated April 2018)

Covers inspection, rating, repair, and alteration procedures for metallic and fiberglass reinforced plastic (FRP) piping systems and their associated pressure-relieving devices that have been placed in service. This inspection code applies to all hydrocarbon and chemical process piping covered in 1.2.1 that have been placed in service unless specifically designated as optional per 1.2.2. This publication does not cover inspection of specialty equipment including instrumentation, exchanger tubes, and control valves. However, this piping code could be used by owner/users in other industries and other services at their discretion. Process piping systems that have been retired from service and abandoned in place are no longer covered by this “in-service inspection” Code. However abandoned in place piping may still need some amount of inspection and/or risk mitigation to assure that it does not become a process safety hazard because of continuing deterioration. Process piping systems that are temporarily out of service but have been mothballed (preserved for potential future use) are still covered by this Code. Pages: 88

4th Edition | February 2016 | Product Number: C57004 | Price: $185.00

RP 571

Damage Mechanisms Affecting Fixed Equipment in the Refining Industry

Provides background information on damage that can occur to equipment in the refining process. It is intended to supplement Risk-Based Inspection (RP 580 and Publ 581) and Fitness-for-Service (API 579-1/ASME FFS-1) technologies developed in recent years by API to manage existing refining equipment integrity. It is also an excellent reference for inspection, operations, and maintenance personnel. RP 571 covers 60 damage mechanisms. Each write-up consists of a general description of the damage, susceptible materials, construction, critical factors, inspection method selection guidelines, and control measures. Wherever possible, pictures are included and references are provided for each mechanism. In addition, generic process flow diagrams have been included that contain a summary of the major damage flow mechanism expected for typical refinery process units. Pages: 362

Product Number: C57102 | Price: $339.00

RP 571

Damage Mechanisms Affecting Fixed Equipment in the Refining Industry—Chinese

Chinese translation of RP 571.

2nd Edition | April 2011 | Product Number: C57102C | Price: $238.00

RP 572

Inspection Practices for Pressure Vessels

Supplements API 510 by providing pressure vessel inspectors with information that can improve skills and increase basic knowledge of inspection practices. This recommended practice (RP) describes inspection practices for the various types of pressure vessels (e.g. drums, heat exchangers, columns, reactors, air coolers, spheres) used in petroleum refineries and chemical plants. This RP addresses vessel components, inspection planning processes, inspection intervals, methods of inspection and assessment, methods of repair, records, and reports. API 510 has requirements and expectations for inspection of pressure vessels. Pages: 154

4th Edition | December 2016 | Product Number: C57204 | Price: $237.00

RP 573

Inspection of Fired Boilers and Heaters

Covers the inspection practices for fired boilers and process heaters (furnaces) used in petroleum refineries and petrochemical plants. The practices described in this document are focused to improve equipment reliability and plant safety by describing the operating variables which impact reliability and to ensure that inspection practices obtain the appropriate data, both on-stream and off-stream, to assess current and future performance of the equipment. Pages: 109

3rd Edition | October 2013 | Product Number: C57303 | Price: $155.00

RP 574

Inspection Practices for Piping System Components

Supplements API 570 by providing piping inspectors with information that can improve skill and increase basic knowledge of inspection practices. This recommended practice describes inspection practices for piping, tubing, valves (other than control valves), and fittings used in petroleum refineries and chemical plants. Common piping components, valve types, pipe joining methods, inspection planning processes, inspection intervals and techniques, and types of records are described to aid the inspectors in fulfilling their role implementing API 570. This publication does not cover inspection of specialty items, including instrumentation, furnace tubulars, and control valves. Pages: 113

4th Edition | November 2016 | Product Number: C57404 | Price: $216.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program.
RP 575

Inspection Practices for Atmospheric and Low-Pressure Storage Tanks

Covers the inspection of atmospheric and low-pressure storage tanks that have been designed to operate at pressures from atmospheric to 15 psig. Includes reasons for inspection, frequency and methods of inspection, methods of repair, and preparation of records and reports. This recommended practice is intended to supplement Std 653, which covers the minimum requirements for maintaining the integrity of storage tanks after they have been placed in service. Pages: 96

3rd Edition | April 2014 | Product Number: C57503 | Price: $196.00

RP 575

Inspection Practices for Atmospheric and Low-Pressure Storage Tanks—Chinese

Chinese translation of RP 575.
3rd Edition | April 2014 | Product Number: C57503C | Price: $137.00

RP 576

Inspection of Pressure-Relieving Devices

Describes the inspection and repair practices for self-actuated pressure-relieving devices commonly used in the oil/gas and petrochemical industries. As a guide to the inspection and repair of these devices in the user’s plant, it is intended to ensure their proper performance. This publication covers self-actuated devices such as direct acting spring loaded valves, pilot operated pressure-relief valves, rupture disks, pin actuated devices, and weight-loaded pressure vacuum vents.

The recommendations in this publication are not intended to supersede requirements established by regulatory bodies. This publication excludes tank weak seams and/or sections or tank brief hatches, explosion domes, fusible plugs, control valves, pressure regulating devices, integral rotating equipment components, other devices that either depend on an external source of power for operation or are manually operated or devices not designed to be inspected or recertified. Inspections and tests made at manufacturers’ plants, which are usually covered by codes or purchase specifications, are not covered by this publication.

This publication does not cover training requirements for personnel involved in the inspection and repair of pressure-relieving devices. Those seeking these requirements should see API 510/570, which gives the requirements for a quality control system and specifies that the repair organization maintain and document a training program ensuring that personnel are qualified. Pages: 80

4th Edition | April 2017 | Product Number: C57604 | Price: $216.00

RP 576

Inspection of Pressure-Relieving Devices—Spanish

Spanish translation of RP 576.
4th Edition | April 2017 | Product Number: C57604S | Price: $216.00

RP 577

Welding Processes, Inspection, and Metallurgy

Provides guidance to the API authorized inspector on welding inspection as encountered with fabrication and repair of refinery and chemical plant equipment and piping. Common welding processes, welding procedures, welder qualifications, metallurgical effects from welding, and inspection techniques are described to aid the inspector in fulfilling their role implementing API 510, API 570, Std 653, and RP 582. The level of learning and training obtained from this document is not a replacement for the training and experience required to be an American Welding Society (AWS) Certified Welding Inspector (CWI). Pages: 145

2nd Edition | December 2013 | Product Number: C57702 | Price: $232.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
AP 579-2/ASME FFS-2

Fitness-For-Service Example Problem Manual

Fitness-For-Service (FFS) assessments in API 579-1/ASME FFS-1 are engineering evaluations that are performed to demonstrate the structural integrity of an in-service component that may contain a flaw or damage or that may be operating under specific conditions that could produce a failure. API 579-1/ASME FFS-1 provides guidance for conducting FFS assessments using methodologies specifically prepared for pressurized equipment. The guidelines provided in this standard may be used to make run-repair-replace decisions to help determine if pressurized equipment containing flaws that have been identified by inspection can continue to operate safely for some period of time. These FFS assessments of API 579-1/ASME FFS-1 are currently recognized and referenced by the API Codes and Standards (510, 570, and 653), and by NB-23 as a suitable means for evaluating the structural integrity of pressure vessels, piping systems, and storage tanks where inspection has revealed degradation and flaws in the equipment or where operating conditions suggest that a risk of failure may be present.

Example problems illustrating the use and calculations required for Fitness-For-Service assessments described in API 579-1/ASME FFS-1 are provided in this document. Example problems are provided for all calculation procedures in both SI and U.S. customary units.

An introduction to the example problems in this document is described in Part 2 of this standard. The remaining parts of this document contain the example problems. The parts in this document coincide with the parts in API 579-1/ASME FFS-1. For example, example problems illustrating calculations for local thin areas are provided in Part 5 of this document. This coincides with the assessment procedures for local thin areas contained in Part 5 of API 579-1/ASME FFS-1. Pages: 366

RP 580

Risk-Based Inspection

Provides users with the basic minimum and recommended elements for developing, implementing, and maintaining a risk-based inspection (RBI) program. It also provides guidance to owner-users, operators, and designers of pressure-containing equipment for developing and implementing an inspection program. These guidelines include means for assessing an inspection program and its plan. The approach emphasizes safe and reliable operation through risk-prioritized inspection. A spectrum of complementary risk analysis approaches (qualitative through fully quantitative) can be considered as part of the inspection planning process. RBI guideline issues covered include an introduction to the concepts and principles of RBI for risk management and individual sections that describe the steps in applying these principles within the framework of the RBI process. Pages: 94

3rd Edition | February 2016 | Product Number: C58003 | Price: $273.00

RP 581

Risk-Based Inspection Methodology

Provides quantitative procedures to establish an inspection program using risk-based methods for pressurized fixed equipment including pressure vessel, piping, tankage, pressure relief devices (PRDs), and heat exchanger tube bundles. RP 580 provides guidance for developing Risk-Based Inspection (RBI) programs on fixed equipment in refineries, petrochemical, chemical process plants, and oil and gas production facilities. The intent is for RP 580 to introduce the principles and present minimum general guidelines for RBI, while this recommended practice provides quantitative calculation methods to determine an inspection plan.

The calculation of risk outlined in API RP 581 involves the determination of a probability of failure (POF) combined with the consequence of failure (COF). Failure is defined as a loss of containment from the pressure boundary resulting in leakage to the atmosphere or rupture of a pressurized component. Risk increases as damage accumulates during in-service operation as the risk tolerance or risk target is approached and an inspection is recommended of sufficient effectiveness to better quantify the damage state of the component. The inspection action itself does not reduce the risk; however, it does reduce uncertainty and therefore allows more accurate quantification of the damage present in the component. Pages: 652

3rd Edition | April 2016 | Product Number: C58103 | Price: $891.00

AP 582

Welding Guidelines for the Chemical, Oil, and Gas Industries

Provides supplementary guidelines and practices for welding and welding related topics for shop and field fabrication, repair, and modification of the following:

- pressure-containing equipment, such as pressure vessels, heat exchangers, piping, heater tubes, and pressure boundaries of rotating equipment and attachments welded thereto;
- tanks and attachments welded thereto;
- non-removable internals for process equipment;
- structural items attached and related to process equipment;
- other equipment or component items, referenced by an applicable purchase document.

This document is general in nature and augments the welding requirements of ASME BPVC Section IX and similar codes, standards, specifications, and practices, such as those listed in Section 2. The intent of this document is to be inclusive of chemical, oil, and gas industry standards, although there are many areas not covered herein, e.g. pipeline welding and offshore structural welding are intentionally not covered. This document is based on industry experience, and any restrictions or limitations may be used or augmented by the purchaser. Pages: 38

3rd Edition | May 2016 | Product Number: C58203 | Price: $141.00

RP 583

Corrosion Under Insulation and Fireproofing

Covers the design, maintenance, inspection, and mitigation practices to address external corrosion under insulation (CUI) and corrosion under fireproofing (CUF). The document discusses the external corrosion of carbon and low alloy steels under insulation and fireproofing, and external chloride stress corrosion cracking (ECSSC) of austenitic and duplex stainless steels under insulation. The document does not cover atmospheric corrosion or corrosion at uninsulated pipe supports, but does discuss corrosion at insulated pipe supports.

The purpose of this RP is to:

- help owner/users understand the complexity of the many CUI/CUF issues,
- provide owner/users with understanding the advantages and limitations of the various NDE methods used to identify CUI and CUF damage,
- provide owner/users with an approach to risk assessment (i.e. likelihood of failure, and consequence of failure) for CUI and CUF damage, and
- provide owner/users guidance on how to design, install, and maintain insulation systems to avoid CUI and CUF damage. Pages: 88

1st Edition | May 2014 | Product Number: C58301 | Price: $175.00
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

| RP 584 ◆ | Integrity Operating Windows |
|--|
| Explains the importance of IOWs for process safety management and to guide users in how to establish and implement an IOW program for refining and petrochemical process facilities for the express purpose of avoiding unexpected equipment degradation that could lead to loss of containment. It is not the intent of this document to provide a complete list of specific IOWs or operating variables that might need IOWs for the numerous types of hydrocarbon process units in the industry (though some generic examples are provided in the text and in Appendix A), but rather to provide the user with information and guidance on the work process for development and implementation of IOWs for each process unit. Pages: 35 |
| 1st Edition | May 2014 | Product Number: CS8401 | Price: $124.00 |

| RP 585 ◆ | Pressure Equipment Integrity Incident Investigation |
|--|
| Provides owner/users with guidelines and recommended practices for developing, implementing, sustaining, and enhancing an investigation program for pressure equipment integrity incidents. This recommended practice describes characteristics of an effective investigation and how organizations can learn from pressure equipment integrity incident investigations. This RP is intended to supplement and provide additional guidance for the OSHA Process Safety Management (PSM) Standard 29 CFR 1910.119 (m) incident investigation requirements, with a specific focus on incidents caused by integrity failures of pressure equipment. Pages: 41 |
| 1st Edition | April 2014 | Product Number: CS8501 | Price: $129.00 |

| Std 653 ◆ | Tank Inspection, Repair, Alteration, and Reconstruction |
|--|
| (Includes Addendum 1 dated April 2018) |
| Covers steel storage tanks built to Std 650 and its predecessor Spec 12C. It provides minimum requirements for maintaining the integrity of such tanks after they have been placed in service and addresses inspection, repair, alteration, relocation, and reconstruction. |
| The scope is limited to the tank foundation, bottom, shell, structure, roof, attached appurtenances, and nozzles to the face of the first flange, first threaded joint, or first welding-end connection. Many of the design, welding, examination, and material requirements of Std 650 can be applied in the maintenance inspection, rating, repair, and alteration of in-service tanks. In the case of apparent conflicts between the requirements of this standard and Std 650 or its predecessor Spec 12C, this standard shall govern for tanks that have been placed in service. |
| This standard employs the principles of Std 650; however, storage tank owner/operators, based on consideration of specific construction and operating details, may apply this standard to any steel tank constructed in accordance with a tank specification. |
| This standard is intended for use by organizations that maintain or have access to engineering and inspection personnel technically trained and experienced in tank design, fabrication, repair, construction, and inspection. |
| This standard does not contain rules or guidelines to cover all the varied conditions which may occur in an existing tank. When design and construction details are not given, and are not available in the as-built standard, details that will provide a level of integrity equal to the level provided by the current edition of Std 650 must be used. |
| This standard recognizes fitness-for-service assessment concepts for evaluating in-service degradation of pressure containing components. API 579-1/ASME FFS-1, Fitness-For-Service, provides detailed assessment procedures or acceptance criteria for specific types of degradation referenced in this standard. When this standard does not provide specific evaluation procedures or acceptance criteria for a specific type of degradation or when this standard explicitly allows the use of fitness-for-service criteria, API 579-1/ ASME FFS-1 may be used to evaluate the various types of degradation or test methods addressed in this standard. Pages: 162 |

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Phone Orders: +1 303 397 7956 (Local and International)

<table>
<thead>
<tr>
<th>Std 653 *</th>
<th>Tank Inspection, Repair, Alteration, and Reconstruction—Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese translation of Std 653.</td>
<td></td>
</tr>
<tr>
<td>5th Edition</td>
<td>November 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANICAL EQUIPMENT STANDARDS FOR REFINERY SERVICE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Std 610/ISO 13709:2009</th>
<th>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ANSI/API Std 610)</td>
<td></td>
</tr>
<tr>
<td>(includes Errata 1 dated July 2011)</td>
<td></td>
</tr>
<tr>
<td>Specifies requirements for centrifugal pumps, including pumps running in reverse as hydraulic power recovery turbines, for use in petroleum, petrochemical, and gas industry process services. This International Standard is applicable to overhung pumps, between bearings pumps, and vertically suspended pumps. Clause 9 provides requirements applicable to specific types of pumps. All other clauses of this International Standard apply to all pump types. Illustrations are provided of the various specific pump types and the designations assigned to each specific pump type. It does not cover sealless pumps.</td>
<td></td>
</tr>
<tr>
<td>This edition of API Std 610 is the identical national adoption of ISO 13709:2009. Pages: 205</td>
<td></td>
</tr>
<tr>
<td>Product Number: CX61011</td>
<td>Price: $265.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std 610/ISO 13709:2009 *</th>
<th>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries—Russian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian translation of Std 610.</td>
<td></td>
</tr>
<tr>
<td>11th Edition</td>
<td>September 2010</td>
</tr>
<tr>
<td>Product Number: CX61011R</td>
<td>Price: $212.00</td>
</tr>
</tbody>
</table>

| Std 611 | General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services |
|--|
| Covers the minimum requirements for general-purpose steam turbines. These requirements include basic design, materials, related lubrication systems, controls, auxiliary equipment, and accessories. General-purpose turbines are horizontal or vertical turbines used to drive equipment that is usually spared, is relatively small in size, or is non-critical service. They are generally used where steam conditions will not exceed a pressure of 48 bar (700 psig) and a temperature of 400C (750F) or where speed will not exceed 6000 rpm. This standard does not cover special-purpose turbines. Pages: 118 |
| Product Number: C66105 | Price: $151.00 |

| Std 612 | Petroleum Petrochemical and Natural Gas Industries—Steam Turbines—Special-Purpose Applications |
|--|
| Specifies the minimum requirements for steam turbines for special-purpose applications for use in the petroleum, petrochemical, and natural gas industries. These requirements include basic design, materials, fabrication, inspection testing, and preparation for shipment. It also covers the related lube oil systems, instrumentation, control systems, and auxiliary equipment. It is not applicable to general-purpose steam turbines, which are covered in Std 611. Pages: 146 |
| 7th Edition | August 2014 | Product Number: C61207 | Price: $227.00 |

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Std 613
Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services
(ANSI/API Std 613)
(includes Errata 1 dated December 2005)
Covers the minimum requirements for special-purpose, enclosed, precision single- and double-helical one-and two-stage speed increasers and reducers of parallel-shaft design for refinery services. Primarily intended for gear units that are in continuous service without installed spare equipment. Pages: 94
Product Number: C61305 | Price: $170.00

Std 614/ISO 10438-1:2007
Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries
(ANSI/API Std 614)
(includes Errata 1 dated May 2008)
Covers the minimum requirements for General Purpose and Special Purpose Oil Systems. The standard also includes requirements for Self-acting Gas Seal Support Systems. The standard includes the systems' components, along with the required controls and instrumentation. Chapters included in Std 614 are: 1. General Requirements; 2. Special-purpose Oil Systems; 3. General-purpose Oil Systems; and 4. Self-acting Gas Seal Support Systems. This edition of API Std 614 is the identical national adoption of ISO 10438:2007. Pages: 202
Product Number: CX61402 | Price: $302.00

Std 616
Gas Turbines for the Petroleum, Chemical, and Gas Industry Services
Covers the minimum requirements for open, simple, and regenerative-cycle combustion gas turbine units for services of mechanical drive, generator drive, or process gas generation. All auxiliary equipment required for operating, starting, controlling, and protecting gas turbine units are either discussed directly in this standard or referred to in this standard through references to other publications. Specifically, gas turbine units that are capable of firing gas or liquid or both are covered by this standard. This standard covers both industrial and aerodervative gas turbines. Pages: 168
Product Number: C61605 | Price: $212.00

Std 617
Axial and Centrifugal Compressors and Expander-Compressors
(includes Errata 1 dated August 2016)
Covers the minimum requirements for centrifugal compressors used in petroleum, chemical, and gas industry services that handle air or gas, including process gear mounted. Does not apply to fans or blowers that develop less than 34 kPa (5 psi) pressure rise above atmospheric pressure; these are covered by Std 673. This standard also does not apply to packaged, integrally-geared centrifugal air compressors, which are covered by Std 672. Pages: 374
8th Edition | September 2014 | Product Number: C61707 | Price: $247.00

Std 618
Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services
(ANSI/API Std 618)
(includes Errata 1 dated November 2009 and Errata 2 dated July 2010)
Covers the minimum requirements for reciprocating compressors and their drivers used in petroleum, chemical, and gas industry services for handling process air or gas with either lubricated or nonlubricated cylinders. Compressors covered by this standard are of low to moderate speed and in critical services. Also covered are related lubricating systems, controls, instrumentation, intercoolers, aftercoolers, pulsation suppression devices, and other auxiliary equipment. Pages: 190
5th Edition | December 2007 | Reaffirmed: July 2017
Product Number: C61805 | Price: $186.00

Std 619/ISO 10440-1:2007
Rotary-Type Positive Displacement Compressors for Petroleum, Petrochemical and Natural Gas Industries
(includes Errata 1 to datasheets dated August 2018)
Specifies requirements for dry and oil-flooded, helical-lobe rotary compressors used for vacuum or pressure or both in petroleum, petrochemical, and gas industry services. It is intended for compressors that are in special-purpose applications. It is not applicable to general-purpose air compressors, liquid-ring compressors, or vane-type compressors. This edition of API Std 619 is the identical national adoption of ISO 10440-1:2007. Pages: 135
5th Edition | December 2010 | Product Number: CX61905 | Price: $222.00

Std 670
Machinery Protection Systems
Provides a purchase specification to facilitate the manufacture, procurement, installation, and testing of vibration, axial-position, and bearing temperature monitoring systems for petroleum, chemical, and gas industry services. Covers the minimum requirements for monitoring radial shaft vibration, casing vibration, shaft axial position, and bearing temperatures. It outlines a standardized monitoring system and covers requirements for hardware (sensors and instruments), installation, testing, and arrangement. Pages: 244
5th Edition | November 2014 | Product Number: C67005 | Price: $201.00

Std 671/ISO 10441:2007
Special Purpose Couplings for Petroleum, Chemical and Gas Industry Services
Specifies the requirements for couplings for the transmission of power between the rotating shafts of two machines in special-purpose applications in the petroleum, petrochemical and natural gas industries. Such applications are typically in large and/or high speed machines, in services that can be required to operate continuously for extended periods, are often unspered and are critical to the continued operation of the installation. By agreement, it can be used for other applications or services. Couplings covered are designed to accommodate parallel (or lateral) offset, angular misalignment and axial displacement of the shafts without imposing unacceptable mechanical loading on the coupled machines. It is applicable to gear, metallic flexible element, quill shaft and torsionally resilient type couplings. Torsional damping and resilient type couplings are detailed in Annex A; gear-type couplings are detailed in Annex B and quill shaft style coupling are detailed in Annex C. Also covers the design, materials of construction, manufacturing quality, inspection and testing special purpose couplings. This edition of API Std 671 is the identical national adoption of ISO 10441:2007. Pages: 56
4th Edition | August 2007 | Reaffirmed: September 2010
2-Year Extension: November 2015
Product Number: C67104 | Price: $172.00
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

Std 672
Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services
(includes Errata 1 dated October 2007 and Errata 2 dated July 2010)
Covers the minimum requirements for constant-speed, packaged, general purpose integrally geared centrifugal air compressors, including their accessories. This standard is not applicable to machines that develop a pressure rise of less than 0.35 bar (5.0 psi) above atmospheric pressure, which are classed as fans or blowers. Pages: 136
3rd Edition | November 2009 | Reaffirmed: December 2013
Product Number: C67202 | Price: $242.00

Std 673
Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services
Covers the minimum requirements for centrifugal fans for use in petroleum, chemical, and gas industry services. Fan static pressure rise is limited to differential usually not exceeding 130 in. (330 cm) of water equivalent air pressure from a single impeller or each impeller in a two stage fan. This standard does not apply to axial flow, aerial cooler, cooling tower, and ventilation fans and positive displacement blowers.
This standard covers equipment for both general purpose and special purpose applications. The purchaser shall determine which classification applies. Refer to Section 3 for definition of the terms general purpose and special purpose.
Additional or overriding requirements applicable to special purpose applications are included at the end of each section (e.g. 6.7.5, etc.).
Pages: 113
3rd Edition | December 2014 | Product Number: C67303 | Price: $175.00

Std 674
Positive Displacement Pumps—Reciprocating
(includes Errata 1 dated May 2014 and Errata 2 dated April 2015)
Covers the minimum requirements for reciprocating positive displacement pumps and pump units for use in the petroleum, petrochemical, and gas industry services. Both direct-acting and power-frame types are included. Controlled-volume pumps, hydraulically driven pumps, and rotary pumps are not included. Pages: 95
2-Year Extension: November 2015
Product Number: C67403 | Price: $192.00

Std 675
Positive Displacement Pumps—Controlled Volume for Petroleum, Chemical, and Gas Industry Services
(includes Errata 1 dated June 2014 and Errata 2 dated April 2015)
Covers the minimum requirements for reciprocating, controlled volume pumps, and pump units for use in the petroleum, petrochemical, and gas industry services. These pumps are either hydraulic diaphragm or packed plunger design. Rotary positive displacement pumps are not included. Diaphragm pumps that use direct mechanical actuation are also excluded.
NOTE See Std 674 for positive displacement reciprocating pumps and Std 670 for positive displacement rotary pumps.
This standard requires the purchaser to specify certain details and features. A bullet (•) at the beginning of a paragraph indicates that either a decision by, or further information from, the purchaser is required. Further information should be shown on the datasheets (see example in Annex A) or stated in the quotation request and purchase order. Pages: 64
3rd Edition | November 2012 | Product Number: C67503 | Price: $131.00

Std 676
Positive Displacement Pumps—Rotary
Covers the minimum requirements for rotary positive displacement process pumps and pump units for use in the petroleum, petrochemical, and gas industry services. Controlled-volume pumps, hydraulically driven pumps, and positive displacement reciprocating pumps are not included. Pages: 102
3rd Edition | November 2009 | Reaffirmed: March 2015
Product Number: C67603 | Price: $155.00

Std 676 *
Positive Displacement Pumps—Rotary—Chinese
Chinese translation of Std 676.
3rd Edition | November 2009
Product Number: C67603 CN945 | Price: $108.00

Std 677
General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services
(includes Errata 1 dated February 2012)
Covers the minimum requirements for general-purpose, enclosed, single, and multistage gear units incorporating parallel shaft helical and right angle spiral bevel gears for the petroleum, chemical, and gas industries. Gears manufactured according to this standard shall be limited to the following pitchline velocities. Helical gears shall not exceed 60 meters per second (12,000 feet per minute), and spiral bevels shall not exceed 40 meters per second (8,000 feet per minute). Typical applications for which this standard is intended are cooling tower water pump systems, forced and induced draft fan systems, and other general-purpose equipment trains. Pages: 84
Product Number: C67703 | Price: $170.00

Std 681
Liquid Ring Vacuum Pumps and Compressors for Petroleum, Chemical, and Gas Industry Services
Defines the minimum requirements for the basic design, inspection, testing, and preparation for shipment of liquid ring vacuum pump and compressor systems for service in the petroleum, chemical, and gas industries. It includes both vacuum pump and compressor design and system design. Pages: 86
1st Edition | February 1996 | Reaffirmed: November 2010
2-Year Extension: November 2015
Product Number: C68101 | Price: $146.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Std 682
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps
Specifies requirements and gives recommendations for sealing systems for centrifugal and rotary pumps used in the petroleum, natural gas, and chemical industries. See A.1.1 and A.1.2. It is the responsibility of the purchaser or seal vendor to ensure that the selected seal and auxiliaries are suitable for the intended service condition. It is applicable mainly for hazardous, flammable, and/or toxic services where a greater degree of reliability is required for the improvement of equipment availability and the reduction of both emissions to the atmosphere and life-cycle sealing costs. It covers seals for pump shaft diameters from 20 mm (0.75 in.) to 110 mm (4.3 in.). This standard is also applicable to seal spare parts and can be referred to for the upgrading of existing equipment. A classification system for the seal configurations covered by this standard into categories, types, arrangements, and orientations is provided.

This standard is referenced normatively in Std 610. It is applicable to both new and retrofitted pumps and to pumps other than Std 610 pumps (e.g. ASME B73.1, ASME B73.2, and Std 676 pumps). This standard may be referenced by other machinery standards such as other pumps, compressors, and agitators. Users are cautioned that this standard is not specifically written to address all of the potential applications that a purchaser may specify. This is especially true for the size envelope specified for Std 682 seals. The purchaser and seal vendor shall mutually agree on the features taken from this standard and used in the application. Pages: 170

4th Edition | May 2014 | Product Number: C68204 | Price: $263.00

Std 682 *
Chinese translation of Std 682.

Chinese

RP 684
Describes, discusses, and clarifies the section of the API Standard Paragraphs that outline the complete lateral and torsional rotodynamics and rotor balancing acceptance program designed by API to ensure equipment mechanical reliability. Background material on these subjects (including terminology) along with rotor modeling utilized in this analysis is presented for those unfamiliar with the subject. This document is an introduction to the major aspects of rotating equipment vibrations that are addressed during a typical lateral dynamics analysis. Pages: 303

2nd Edition | August 2005 | Reaffirmed: November 2010
Product Number: C68402 | Price: $181.00

Std 685
Sealless Centrifugal Pumps for Petroleum, Petrochemical, and Gas Industry Process Service
Specifies the minimum requirements for sealless centrifugal pumps for use in petroleum, heavy duty petrochemical and gas industry services. This standard is applicable to single stage overhung pumps of two classifications: magnetic drive pumps and canned motor pumps. Pages: 170

2nd Edition | February 2011 | Product Number: C68502 | Price: $212.00

RP 686
Recommended Practice for Machinery Installation and Installation Design
Provides recommended procedures, practices, and checklists for the installation and precommissioning of new, existing, and reapplied machinery and to assist with the installation design of such machinery for petroleum, chemical, and gas industry services facilities. In general, this RP is intended to supplement vendor instructions and the instructions provided by the original equipment manufacturer (OEM) should be carefully followed with regard to equipment installation and checkout. Most major topics of this RP are subdivided into sections of “Installation Design” and “Installation” with the intent being that each section can be removed and used as needed by the appropriate design or installation personnel. Pages: 254

Product Number: C68602 | Price: $193.00

RP 687
Rotor Repair
Covers the minimum requirements for the inspection and repair of special purpose rotating equipment rotors, bearings and couplings used in petroleum, chemical, and gas industry service. Pages: 540

Product Number: C68701 | Price: $275.00

RP 688
Pulsation and Vibration Control in Positive Displacement Machinery Systems for Petroleum, Petrochemical, and Natural Gas Industry Services
Provides guidance on the application of pulsation and vibration control requirements found in the API purchasing specifications for positive displacement machinery. The fundamentals of pulsation and piping system analysis are presented in Part 1. Part 2 deals specifically with reciprocating compressors and provides commentary regarding each paragraph of Section 7.9 of Std 618, 5th Edition. Pages 128

1st Edition | April 2012 | Product Number: C68801 | Price: $161.00

Std 689, ISO 14224:2006
Collection and Exchange of Reliability and Maintenance Data for Equipment (ANSI/API Std 689)
Provides a comprehensive basis for the collection of reliability and maintenance (RM) data in a standard format for equipment in all facilities and operations within the petroleum, natural gas, and petrochemical industries during the operational life cycle of equipment. It describes data-collection principles and associated terms and definitions that constitute “reliability language” that can be useful for communicating operational experience. The failure modes defined in the normative part of this standard can be used as a “reliability thesaurus” for various quantitative as well as qualitative applications. This standard also describes data quality control and assurance practices to provide guidance for the user. Std 689 establishes requirements that any inhouse or commercially available RM data system is required to meet when designed for RM data exchange. Examples, guidelines, and principles for the exchange and merging of such RM data are addressed.

This edition of API Std 689 is the identical national adoption of ISO 14224:2006. Pages: 171

RP 691
Risk-Based Machinery Management
 Defines the minimum requirements for the management of health, safety, and environmental (HSE) risks across the machinery life cycle. It shall be applied to the subset of operating-company- and/or vendor-defined high-risk machinery. Pages: 198

1st Edition | June 2017 | Product Number: C69101 | Price: $168.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

Std 692
Dry Gas Sealing Systems for Axial, Centrifugal, and Rotary Screw Compressors and Expanders

Covers the minimum dry gas sealing system requirements in association with axial, centrifugal, and rotary screw compressors and expanders for use in the petroleum, chemical, and gas industries as described in API 617 and API 619. Pages: 258

1st Edition | June 2018 | Product Number: C69201 | Price: $170.00

EQUIPMENT DATASHEETS

Electronically formatted mechanical equipment standards datasheets are now available in electronic format (Excel 5.0 spreadsheets):

All of the following datasheets are available for single user at $61.00 each or for intranet licensing at $317.00 each.

- Std 610, 11th Edition
- Std 611, 5th Edition
- Std 612, 7th Edition
- Std 613, 5th Edition
- Std 614, 5th Edition
- Std 616, 5th Edition
- Std 617, 8th Edition
- Std 618, 5th Edition
- Std 619, 5th Edition
- Std 660, 9th Edition
- Std 661, 6th Edition
- Std 662, 2nd Edition
- Std 663, 1st Edition
- Std 664, 1st Edition
- Std 670, 4th Edition
- Std 671, 4th Edition
- Std 672, 4th Edition
- Std 673, 3rd Edition
- Std 674, 3rd Edition
- Std 675, 3rd Edition
- Std 676, 3rd Edition
- Std 677, 3rd Edition
- Std 682, 4th Edition
- Std 685, 2nd Edition
- Std 687, 1st Edition
- Std 687, 1st Edition

Mechanical Equipment Residual Unbalance Worksheets

Electronic versions of the residual unbalance worksheets that appear in mechanical equipment standards (Excel) along with instructions (Word).

Price: $118.00

The API Specification Database

The American Petroleum Institute Specification Database Software™ provides a knowledge-management toolset for the project engineering team. Facilitates the entire equipment specification process including the entry of process data and release to design to the final entry of mechanical datasheets and development of the technical bid specification package. Electronic outputs can be combined to form a master technical specification bid package for quotation and purchasing purposes with a modern tree-view format for ease of navigation. Completed projects provide on-going documentation for plant equipment assets—improving safety and reliability. Available in a full-featured corporate wide Oracle® format or a portable ODBC database format with primary focus on equipment datasheets.

Contact EPCON International at (281) 398-9400 or visit the EPCON website: www.epcon.com

STORAGE TANKS

Impact of Gasoline Blended with Ethanol on the Long-Term Structural Integrity of Liquid Petroleum Storage Systems and Components

Summarizes the results of a literature review conducted for the American Petroleum Institute on the impact of gasoline blended with ethanol on the long-term structural integrity of liquid petroleum storage systems and components. It is anticipated that the use of ethanol in motor fuels will continue to increase. This has generated interest about the potential long-term structural effects of ethanol on liquid petroleum storage systems, including underground storage tanks (USTs), underground piping, and associated components. The objective of the literature review is to determine the state of industry knowledge and research on the effects of ethanol/gasoline blends on the long-term structural integrity of UST systems and components. This review is intended to assist decision-makers on further research requirements and needed changes or supplements to existing standards for underground storage system components used for storing and dispensing gasoline blended with ethanol. Appendix A may be purchased separately as an electronic database file. The database synopsis’ and bibliographic information for all articles reviewed for the project. The report is organized by article index number. Reference numbers cited in this report refer to the article index number. Pages: 25

January 2003 | Executive Summary | Price: $67.00

Appendix A—Literature Review | Price $131.00

Spec 12B
Specification for Bolted Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed and open top, welded steel storage tanks in various standard sizes and capacities for internal pressures approximately atmospheric. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 31

16th Edition | November 2014
Product Number: G12B156 | Price: $124.00

Spec 12D
Specification for Field-Welded Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed top, welded steel storage tanks with internal pressures approximately atmospheric at various sizes and capacities ranging from 500 to 10,000 barrels. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 29

12th Edition | June 2017 | Effective Date: December 1, 2017
Product Number: G12D12 | Price: $111.00

Spec 12F
Specification for Shop Welded Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for shop-fabricated vertical, cylindrical, aboveground, closed top, welded steel storage tanks with internal pressures approximately atmospheric at various sizes and capacities ranging from 90 to 750 barrels. Tanks covered by this specification have been designed using established engineering calculations to determine minimum metal thickness and bolting specifications for each-size tank filled with water. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. Pages: 25

12th Edition | October 2008 | Effective Date: April 1, 2009
2-Year Extension: November 2015
Product Number: G12F12 | Price: $100.00

Spec 12F *
Specification for Shop Welded Tanks for Storage of Production Liquids—Chinese

Chinese translation of Spec 12F.

12th Edition | October 2008 | Product Number: G12F12C | Price: $70.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
This publication is related to an API licensing, certification, or accreditation program.

Spec 12P • Specification for Fiberglass Reinforced Plastic Tanks
Covers material, design, fabrication, and testing requirements for fiberglass reinforced plastic (FRP) tanks. Only shop-fabricated, vertical, cylindrical tanks are covered. Tanks covered by this specification are intended for above ground and atmospheric pressure service. This specification applies to new tanks. The requirements may be applied to existing tanks at the discretion of the owner/operator.

This specification is designed to provide the petroleum industry with various standard sizes of FRP tanks. Because of the versatility of FRP tanks, the user shall be responsible for determining the suitability of FRP tanks for the intended service. Unsupported cone bottom tanks are outside the scope of this specification. Pages: 27

4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G12P04 | Price: $111.00

RP 12R1
Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service
(includes Addendum 1 dated December 2017)
Serves as a guide on new tank installations and maintenance of existing tanks. It contains recommendations for good practices in (a) the collection of well or lease production, (b) gauging, (c) delivery to pipeline carriers for transportation, and (d) other production storage and treatment operations. In particular, the spill prevention and examination/inspection provisions of this recommended practice should be companion to the spill prevention control and countermeasures (SPCC) to prevent environmental damage. This recommended practice is intended primarily for application to tanks fabricated to Specs 12C, 12D, 12F, and 12P when employed in on-land production service; but its basic principles are applicable to atmospheric tanks of other dimensions and specifications when they are employed in similar oil and gas production, treating, and processing services. It is not applicable to refineries, petrochemical plants, marketing bulk stations, or pipeline storage facilities operated by carriers.

Addendum 1 to the 5th Edition specifically adds Annex J, Unmanned Upstream Facility Design and Safety Considerations. Annex J is a guide for the design and security of storage tanks at unmanned exploration and production facilities for all produced fluids. It contains recommendations for practices when such facilities may be subject to tampering or introduction of ignition sources by members of the public that could result in damage, injury, or accidental release of tank contents into the environment. Pages: 63

2-Year Extension: November 2015
Product Number: G12R15 | Price: $136.00

Std 620
Design and Construction of Large, Welded, Low-Pressure Storage Tanks
(includes Addendum 1 dated November 2014 and Addendum 2 dated April 2018)
Covers the design and construction of large field-assembled, welded, low-pressure carbon steel above ground storage tanks (including flat-bottom tanks) that have a single vertical axis of revolution, that contain petroleum intermediates (gases or vapors) and finished products, as well as other liquid products commonly handled and stored by the various branches of the industry.

Covered are tanks designed for metal temperatures not greater than 250 °F and with pressures in their gas or vapor spaces not more than 15 pounds per square inch gauge. The basic rules in this standard provide for installation in areas where the lowest recorded 1-day mean atmospheric temperature is -50 °F. Annex S covers stainless steel low-pressure storage tanks in ambient temperature service in all areas, without limit on low temperatures. Annex R covers low-pressure storage tanks for refrigerated products at temperatures from +40 °F to -60 °F. Annex Q covers low-pressure storage tanks for liquefied gases at temperatures not lower than -325 °F.

This standard is applicable to tanks that (a) hold or store liquids with gases or vapors above their surface or (b) hold or store gases or vapors alone. These rules do not apply to lift-type gas holders.

Although the rules in this standard do not cover horizontal tanks, they are not intended to preclude the application of appropriate portions to the design and construction of horizontal tanks designed in accordance with good engineering practice. Pages: 268

12th Edition | October 2013 | Product Number: C62012 | Price: $448.00

Std 620 *
Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese
Chinese translation of Std 620.

12th Edition | October 2013 | Product Number: C62012C | Price: $314.00

Std 625
Tank Systems for Refrigerated Liquefied Gas Storage
(includes Errata 1 dated July 2013, Addendum 2 dated November 2014, and Addendum 3 dated June 2018)
Covers low pressure, aboveground, vertical, and cylindrical tank systems storing liquefied gases requiring refrigeration. This standard provides general requirements on responsibilities, selection of storage concept, performance criteria, accessories/appurtenances, quality assurance, insulation, and commissioning of tank systems. Included are tank systems having a storage capacity of 800 cubic meters (5000 bbls) and larger. Stored product shall be liquids which are in a gaseous state at ambient temperature and pressure and require refrigeration to less than 5 °C (40 °F) to maintain a liquid phase. Also covered are tank systems with a minimum design temperature of -198 °C (-325 °F), a maximum design internal pressure of 50 kPa (7 psig), and a maximum design uniform external pressure of 1.75 kPa (0.25 psig).

Tank system configurations covered consist of a primary liquid and vapor containment constructed of metal, concrete, or a metal/concrete combination and, when required, a secondary liquid containment. Pages: 63

1st Edition | August 2010 | Product Number: C62501 | Price: $239.00

Std 650 *
Welded Tanks for Oil Storage
(includes Errata 1 dated July 2013, Addendum 1 dated September 2014, Errata 2 dated December 2014, Addendum 2 dated January 2016, and Addendum 3 dated August 2018)
Establishes minimum requirements for material, design, fabrication, erection, and testing for vertical, cylindrical, aboveground, closed- and open-top, welded carbon, or stainless steel storage tanks in various sizes and capacities for internal pressures approximating atmospheric pressure (internal pressures not exceeding the weight of the roof plates), but a higher internal pressure is permitted when addition requirements are met. This standard applies only to tanks whose entire bottom is uniformly supported and to tanks in non-refrigerated service that have a maximum design temperature of 93 °C (200 °F) or less. Pages: 498

12th Edition | March 2013 | Product Number: C65012 | Price: $489.00

Std 650 *
Welded Tanks for Oil Storage—Chinese
Chinese translation of Std 650.

12th Edition | March 2013 | Product Number: C65012C | Price: $343.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 651 •
Cathodic Protection of Aboveground Petroleum Storage Tanks

Presents procedures and practices for achieving effective corrosion control on aboveground storage tank bottoms through the use of cathodic protection. This RP contains provisions for the application of cathodic protection to existing and new aboveground storage tanks. Corrosion control methods based on chemical control of the environment or the use of protective coatings are not covered in detail.

When cathodic protection is used for aboveground storage tank applications, it is the intent of this RP to provide information and guidance specific to aboveground metallic storage tanks in hydrocarbon service. Certain practices recommended herein may also be applicable to tanks in other services. It is intended to serve only as a guide to persons interested in cathodic protection. Specific cathodic protection designs are not provided. Such designs should be developed by a person thoroughly familiar with cathodic protection practices for aboveground petroleum storage tanks.

This RP does not designate specific practices for every situation because the varied conditions in which tank bottoms are installed preclude designs should be developed by a person thoroughly familiar with cathodic protection practices for aboveground petroleum storage tanks.

This publication is a new entry in this catalog.

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

4th Edition | September 2014 | Product Number: C65104 | Price: $129.00

RP 651 *
Cathodic Protection of Aboveground Petroleum Storage Tanks—Chinese

Chinese translation of RP 651.

4th Edition | September 2014 | Product Number: C65104C | Price: $91.00

RP 652 •
Linings of Aboveground Petroleum Storage Tank Bottoms
(includes Errata 1 dated August 2016)

Provides guidance on achieving effective corrosion control by the application of tank bottom linings in aboveground storage tanks in hydrocarbon service. It contains information pertinent to the selection of lining materials, surface preparation, lining application, cure, and inspection of tank bottom linings for existing and new storage tanks. In many cases, tank bottom linings have proven to be an effective method of preventing internal corrosion of steel tank bottoms.

This recommended practice does not designate specific tank bottom linings for every situation because the wide variety of service environments.

Pages: 24

4th Edition | September 2014 | Product Number: C65204 | Price: $134.00

RP 652 *
Linings of Aboveground Petroleum Storage Tank Bottoms—Chinese

Chinese translation of RP 652.

4th Edition | September 2014 | Product Number: C65204C | Price: $94.00

Std 653 ◆
Tank Inspection, Repair, Alteration, and Reconstruction
(includes Addendum 1 dated April 2018)

Covers steel storage tanks built to Std 650 and its predecessor Spec 12C. It provides minimum requirements for maintaining the integrity of such tanks after they have been placed in service and addresses inspection, repair, alteration, relocation, and reconstruction.

The scope is limited to the tank foundation, bottom, shell, structure, roof, attached appurtenances, and nozzles to the face of the first flange, first threaded joint, or first welding-end connection. Many of the design, welding, examination, and material requirements of Std 650 can be applied in the maintenance inspection, rating, repair, and alteration of in-service tanks. In the case of apparent conflicts between the requirements of this standard and Std 650 or its predecessor Spec 12C, this standard shall govern for tanks that have been placed in service.

This standard employs the principles of Std 650; however, storage tank owner/operators, based on consideration of specific construction and operating details, may apply this standard to any steel tank constructed in accordance with a tank specification.

This standard is intended for use by organizations that maintain or have access to engineering and inspection personnel trained and experienced in tank design, fabrication, repair, construction, and inspection.

This standard does not contain rules or guidelines to cover all the varied conditions which may occur in an existing tank. When design and construction details are not given, and are not available in the as-built standard, details that will provide a level of integrity equal to the level provided by the current edition of Std 650 must be used.

This standard recognizes fitness-for-service assessment concepts for evaluating in-service degradation of pressure containing components. API 579-1/ASME FFS-1, Fitness-For-Service, provides detailed assessment procedures or acceptance criteria for specific types of degradation referenced in this standard. When this standard does not provide specific evaluation procedures or acceptance criteria for a specific type of degradation or when this standard explicitly allows the use of fitness-for-service criteria, API 579-1/ASME FFS-1 may be used to evaluate the various types of degradation or test requirements addressed in this standard.

Pages: 162

Std 653 *
Tank Inspection, Repair, Alteration, and Reconstruction—Chinese

Chinese translation of Std 653.

5th Edition | November 2014 | Product Number: C65305C | Price: $170.00

Publ 937
Evaluation of Design Criteria for Storage Tanks with Frangible Roof Joints

Describes research that evaluated the ability of the present Std 650 tank design criteria to ensure the desired frangible joint behavior. Particular questions include:

• evaluation of the area inequality as a method to predict the buckling response of the compression ring,
• effect of roof slope, tank diameter, and weld size on the frangible joint, and
• effect of the relative strength of the roof-to-shell joint compared to the shell-to-bottom joint.

Pages: 73

1st Edition | April 1996 | Product Number: C93701 | Price: $139.00

Publ 937-A
Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell and Shell-to-Bottom Joints

Investigates the relative strengths of the roof-to-shell and shell-to-bottom joints, with the goal of providing suggestions for frangible roof design criteria applicable to smaller tanks.

Pages: 68

1st Edition | August 2005 | Product Number: C937A0 | Price: $126.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
TR 399-D
Stress Corrosion Cracking of Carbon Steel in Fuel Grade Ethanol—Review, Experience Survey, Field Monitoring, and Laboratory Testing (includes Addendum 1 dated October 2013)
Addresses stress corrosion cracking (SCC) in carbon steel equipment used in distribution, transportation, storage, and blending of denatured fuel ethanol. API, with assistance from the Renewable Fuels Association (RFA), conducted research on the potential for metal cracking and product leakage in certain portions of the fuel ethanol distribution system. TR 399-D contains a review of existing literature, results of an industry survey on cracking events and corrosion field monitoring, and information on mitigation and prevention. Pages: 172
2nd Edition | May 2007 | Product Number: C93900 | Price: $165.00

Std 2015
Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks
Applicable to stationary atmospheric and low-pressure (up to and including 15 psig) aboveground petroleum storage tanks used in all sectors of the petroleum and petrochemical industry, including crude oil and gas production; refining; petrochemicals; pipelines and terminals; bulk storage; and ethanol facilities. This standard provides requirements for safely planning, coordinating, and conducting tank entry and cleaning operations, from removal from service through return to service. Pages: 146
8th Edition | January 2018 | Product Number: K20158 | Price: $204.00

RP 2026
Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service
Provides information to enable safe access/egress involving floating roofs of storage tanks used in petroleum service and identifies common hazards and potentially hazardous conditions associated with these activities. The objective of this recommended practice (RP) is to establish general precautions appropriate for individual situations. It provides the appropriate precautions for preventing accidents and injuries. This RP is intended primarily for those persons who are required to perform inspections, service, maintenance, and/or repair activities that involve descent onto floating roofs of in-service petroleum tanks.
This RP does not cover general considerations that apply to climbing onto petroleum storage tanks and other structures. Pages: 28
3rd Edition | June 2017 | Product Number: K20263 | Price: $94.00

RP 2027
Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service
Provides safe work practices for the prevention and control of vapor, ignition, and other potential hazards during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. It also provides assistance to employers in developing operating procedures that provide for hazard recognition to significantly reduce ignition risks during abrasive blasting of hydrocarbon storage tanks in service that may contain or have the potential to develop a flammable atmosphere in the vapor space. This RP applies to safe work practices required for abrasive blasting of exterior shells and exterior roofs of all aboveground atmospheric storage tanks in liquid hydrocarbon service. It also applies to safe work practices for abrasive blasting conducted on the roofs and inner portions of the exposed surfaces of shells (that portion of the shell above the roof level) on open-top (external) floating roof tanks. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static electricity, internal combustion engines, electric motors, friction sparks, hot metal surfaces, and external-to-the-work ignition sources. Pages: 27
4th Edition | November 2018 | Product Number: C20274 | Price: $125.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedethe English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
This standard includes basic definitions and information about the operational characteristics and applications of various pressure relief devices. It also includes sizing procedures and methods based on steady state flow of Newtonian fluids. Atmospheric and low-pressure storage tanks covered in Std 2000 and pressure vessels used for the transportation of products in bulk or shipping containers are not within the scope of this standard. See Std 521 for information about appropriate ways of reducing pressure and restricting heat input. The rules for overpressure protection of fired vessels are provided in ASME Section I and ASME B31.1 and are not within the scope of this standard.

Pages: 143

RP 520, Part II
Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation

Covers the methods of installation for pressure relief devices for equipment that has a maximum allowable working pressure (MAWP) of 15 psig (1.03 bar g) or greater. Pressure relief valves or rupture disks may be used independently or in combination with each other to provide the required protection against excessive pressure accumulation. The term “pressure relief valve” includes safety relief valves used in either compressible or incompressible fluid service, and relief valves used in incompressible fluid service. Covers gas, vapor, steam, and incompressible fluid service.

Pages: 55

Std 521
Pressure-Relieving and Depressuring Systems

Applies to pressure-relieving and vapor depressuring systems. Although intended for use primarily in oil refineries, it is also applicable to petrochemical facilities, gas plants, liquefied natural gas (LNG) facilities, and oil and gas production facilities. The information provided is designed to aid in the selection of the system that is most appropriate for the risks and circumstances involved in various installations. This standard specifies requirements and gives guidelines for the following:

- examining the principal causes of overpressure;
- determining individual relieving rates;
- selecting and designing disposal systems, including such component parts as piping, vessels, flares, and vent stacks.

This standard does not apply to direct-fired steam boilers.

Pages: 248

Std 526
Flanged Steel Pressure-Relief Valves (includes Errata 1 dated September 2018)

Purchase specification for flanged steel pressure-relief valves. Basic requirements are given for direct spring-loaded pressure relief valves and pilot-operated pressure-relief valves as follows:

- orifice designation and area;
- valve size and pressure rating, inlet and outlet;
- materials;
- pressure-temperature limits;
- center-to-face dimensions, inlet and outlet.

Nameplate nomenclature and requirements for stamping are detailed in Annex A.

Pages: 53

7th Edition | September 2017 | Product Number: C52607 | Price: $216.00

Std 527
Seat Tightness of Pressure Relief Valves

Describes methods of determining the seat tightness of metal- and soft-seated pressure relief valves, including those of conventional, bellows, and pilot-operated designs.

The maximum acceptable leakage rates are defined for pressure relief valves with set pressures from 103 kPa gauge (15 psig) to 41,379 kPa gauge (6,000 psig). If greater seat tightness is required, the purchaser shall specify it in the purchase order.

The test medium for determining the seat tightness—air, steam, or water—shall be the same as that used for determining the set pressure of the valve. For dual-service valves, the test medium—air, steam, or water—shall be the same as the primary relieving media.

To ensure safety, the procedures outlined in this standard shall be performed by persons experienced in the use and functions of pressure relief valves.

Pages: 5

RP 576
Inspection of Pressure-Relieving Devices

Describes the inspection and repair practices for self-actuated pressure-relieving devices commonly used in the oil/gas and petrochemical industries. As a guide to the inspection and repair of these devices in the user’s plant, it is intended to ensure their proper performance. This publication covers self-actuated devices such as direct acting spring loaded valves, pilot operated pressure-relief valves, rupture disks, pin actuated devices, and weight-loaded pressure vacuum vents.

The recommendations in this publication are not intended to supersede requirements established by regulatory bodies. This publication excludes tank weak seams and/or sections or tank thick hatches, explosion doors, fusible plugs, control valves, pressure regulating devices, integral rotating equipment components, other devices that either depend on an external source of power for operation or are manually operated or devices not designed to be inspected or recertified. Inspections and tests made at manufacturers’ plants, which are usually covered by codes or purchase specifications, are not covered by this publication.

This publication does not cover training requirements for personnel involved in the inspection and repair of pressure-relieving devices. Those seeking these requirements should see API 510/570, which gives the requirements for a quality control system and specifies that the repair organization maintain and document a training program ensuring that personnel are qualified.

Pages: 80

4th Edition | April 2017 | Product Number: C57604 | Price: $216.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
This International Standard does not apply to external floating-roof tanks.

judgment whenever this International Standard is applied to other liquids.

This International Standard is intended for tanks containing petroleum and

other liquids; however, it is necessary to use sound engineering analysis and

and installation of venting devices; and testing and marking of relief devices.

This International Standard is intended for tanks containing petroleum and

petroleum products but it can also be applied to tanks containing other

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.

This International Standard does not apply to external floating-roof tanks.
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

Std 599 *
Metal Plug Valves—Flanged, Threaded, and Welding Ends—Russian
Russian translation of Std 599.
7th Edition | January 2013 | Product Number: CS9907R | Price: $66.00

Std 600 ◆
Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets
Specifies the requirements for a heavy-duty series of bolted bonnet steel gate valves for petroleum refinery and related applications where corrosion, erosion, and other service conditions would indicate a need for full port openings, heavy wall sections, and large stem diameters.

This standard sets forth the requirements for the following gate valve features:
• bolted bonnet,
• outside screw and yoke,
• rising stems,
• non-rising handwheels,
• single or double gate,
• wedge or parallel seating,
• metallic seating surfaces,
• flanged or butt-welding ends.

It covers valves of the nominal pipe sizes DN:
• 25, 32, 40, 50, 65, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050;
• corresponding to nominal pipe sizes NPS:
 1, 1 1/4, 1 1/2, 2, 2 1/2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42;
• and applies to pressure class designations:
 150, 300, 600, 900, 1500, 2500.

13th Edition | January 2015 | Effective Date: July 15, 2015
Product Number: C60013 | Price: $139.00

Std 600 *
Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Chinese
Chinese translation of Std 600.
13th Edition | January 2015 | Product Number: C60013C | Price: $98.00

Std 602 ◆
Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries
(includes Errata 1 dated September 2016)

Specifies the requirements for a series of compact steel gate, globe, and check valves for petroleum and natural gas industry applications. It is applicable to valves of:
• nominal pipe sizes NPS 1/4, NPS 3/8, NPS 1/2, NPS 3/4, NPS 1, NPS 1 1/4, NPS 1 1/2, NPS 2, NPS 2 1/2, NPS 3, and NPS 4;
• corresponding to nominal sizes DN 8, DN 10, DN 15, DN 20, DN 25, DN 32, DN 40, DN 50, DN 65, DN 80, and DN 100.

It is also applicable to pressure designations of Class 150, Class 300, Class 600, Class 800, and Class 1500. Class 800 is not a listed class designation, but is an intermediate class number widely used for socket welding and threaded end compact valves.

It includes provisions for the following valve characteristics:
• Outside screw with rising stems (OS & Y), in sizes 1/4 NPS 4 (8 DN 100) and pressure designations including Class 800.

Product Number: C60210 | Price: $129.00

Std 602 *
Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries—Russian
Russian translation of Std 602.
10th Edition | May 2015 | Product Number: C60210R | Price: $100.00

Std 603 ◆
Corrosion-Resistant, Bolted Bonnet Gate Valves—Flanged and Butt-Welding Ends
Specifies the requirements for corrosion-resistant bolted bonnet gate valves meeting the requirements of ASME B16.34, Standard Class, for valves having flanged or butt-weld ends in sizes NPS 1/4 through 24, corresponding to nominal pipe sizes in ASME B36.10M, and Classes 150, 300, and 600.

This standard covers the requirements for corrosion-resistant gate valves for use in process piping applications. Covered are requirements for outside-screw-and-yoke (OS&Y) valves with rising stems, non-rising hand-wheels, bolted bonnets, and various types of gate configurations.

9th Edition | September 2018 | Product Number: C60309 | Price: $98.00

Std 607 Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seats

 Specifies fire type-testing requirements and a fire type-test method for confirming the pressure-containing capability of quarter-turn valves and other valves with nonmetallic seating under pressure during and after the fire test. It does not cover the testing requirements for valve actuators other than manually operated gear boxes or similar mechanisms when these form part of the normal valve assembly. Other types of valve actuators (e.g., electrical, pneumatic, or hydraulic) may need special protection to operate in the environment considered in this valve test, and the fire testing of such actuators is outside the scope of this standard.

7th Edition | June 2016 | Product Number: C60707 | Price: $100.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Phone Orders: +1 303 397 7956 (Local and International)
Metal Ball Valves—Flanged, Threaded, and Welding Ends

Specifies the requirements for metal ball valves suitable for petroleum, petrochemical, and industrial applications that have butt-welding or flanged ends for NPS 1/2 through NPS 20 and threaded or socket-welding ends for NPS 1/4 through NPS 2, corresponding to the nominal pipe sizes in ASME B36.10M. Also applies to metal ball valves in pressure classes 150, 300, and 600 for flanged and butt-welding ends and in pressure classes 150, 300, 600, and 800 for socket-welding and threaded ends. Establishes requirements for bore sizes described as full bore, single reduced bore, and double reduced bore. Covers additional requirements for ball valves that are otherwise in full conformance to the requirements of ASME B16.34, Standard Class. Pages: 15

5th Edition | November 2012 | Product Number: C60805 | Price: $112.00

Steel Globe Valves—Flanged and Butt-Welding Ends, Bolted Bonnets

Provides guidelines for reconditioning heavy wall (API 600 and API 594 type) carbon steel, ferritic alloy (up to 9 % Cr), stainless steel, and nickel alloy gate, globe, and check valves for ASME pressure classes 150, 300, 400, 600, 900, 1500, and 2500. Guidelines contained in this RP apply to flanged and butt weld cast or forged valves.

This RP does not cover reconditioning or remanufacturing of used or surplus valves intended for resale. The only intent of this RP is to provide guidelines for refurbishing an end user's (Owner) valves for continued service in the Owner's facility. Valves reconditioned or remanufactured to this RP may not meet API standard requirements for new valves. Pages: 36

4th Edition | October 2018 | Product Number: C62104 | Price: $154.00

Type Testing of Process Valve Packing for Fugitive Emissions

Provides the requirements for comparative testing of block valve stem packing for process applications where fugitive emissions are a consideration. Packing(s) shall be suitable for use at -29 °C to 538 °C (-20 °F to 1000 °F). Factors affecting fugitive emissions performance that are considered by this standard include temperature, pressure, thermal cycling, mechanical cycling, and corrosion. Pages: 37

3rd Edition | October 2018 | Product Number: C62203 | Price: $154.00

Steel Globe Valves—Flanged and Butt-Welding Ends, Bolted Bonnets

Specifies the requirements for a heavy-duty series of bolted bonnet steel globe valves for petroleum refinery and related applications where corrosion, erosion, and other service conditions would indicate a need for heavy wall sections and large stem diameters. This standard sets forth the requirements for the following globe valve features:

- bolted bonnet,
- outside screw and yoke,
- rotating rising stems, and nonrotating rising stems,
- rising handwheels and nonrising handwheels,
- conventional, y-pattern, right-angle,
- stop-check (nonreturn type globe valves in which the disc may be positioned against the seat by action of the stem, but is free to rise as a check valve due to flow from under the disc, when the stem is in a full or partially open position),
- plug, narrow, conical, ball, or guided disc,
- metallic seating surfaces,
- flanged or butt-welding ends.

It covers valves of the nominal pipe sizes NPS:

- 2, 2 1/2, 3, 4, 6, 10, 12, 14, 16, 18, 20, 24;
- corresponding to nominal pipe sizes DN:
 - 50, 65, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600;
 - applies for pressure class designations:
 - 150, 300, 600, 900, 1500, 2500. Pages: 27

1st Edition | September 2013 | Product Number: C62301 | Price: $77.00
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

Std 624
Type Testing of Rising Stem Valves Equipped with Flexible Graphite Packing for Fugitive Emissions

Specifies the requirements and acceptance criteria (100 ppmv) for fugitive emission type testing of rising and rising-rotating stem valves equipped with packing previously tested in accordance with Std 622. Packing shall be suitable for use at service temperatures -29 °C to 538 °C (-20 °F to 1000 °F). The type testing requirements contained herein are based upon elements of EPA Method 21. Valves larger than NPS 24 or valves greater than class 1500 are outside the scope of this standard. Pages: 12

1st Edition | February 2014 | Product Number: C62401 | Price: $88.00

Std 641
Type Testing of Quarter-Turn Valves for Fugitive Emissions

Specifies the requirements and acceptance criteria for fugitive emission type testing of quarter-turn valves. The type testing requirements contained herein are based on elements of EPA Method 21. Valves larger than NPS 24 and valves greater than ASME B16.34 class 1500 are outside the scope of this standard. Valves with a pressure rating at ambient temperature less than 6.89 barg (100 psig) are outside the scope of this standard. Repacking or resealing of valves is outside the scope of this standard. Pages: 14

1st Edition | October 2016 | Product Number: C64101 | Price: $77.00

ELECTRICAL INSTALLATIONS AND EQUIPMENT

RP 500
Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2

Provides guidelines for determining the degree and extent of Class I, Division 1 and Class I, Division 2 locations at petroleum facilities, for the selection and installation of electrical equipment. Basic definitions provided in the National Electric Code have been followed in developing this document which applies to the classification of locations for both temporarily and permanently installed electrical equipment. RP 500 is intended to be applied where there may be a risk of ignition due to the presence of flammable gas or vapor, mixed with air under normal atmospheric conditions. Pages: 146

3rd Edition | December 2012 | Product Number: C50003 | Price: $287.00

RP 500 *
Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2—Kazakh

Kazakh translation of RP 500.

3rd Edition | December 2012 | Product Number: C50003K | Price: $231.00

RP 505
Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2

Provides guidelines for determining the degree and extent of Class I, Zone 0, Zone 1, and Zone 2 locations at petroleum facilities for the selection and installation of electrical equipment. Basic definitions provided in the National Electrical Code have been followed in developing this document, which applies to the classification of locations for both temporarily and permanently installed electrical equipment. RP 505 is intended to be applied where there may be a risk of ignition due to the presence of flammable gas or vapor mixed with air under normal atmospheric conditions. Pages: 177

2nd Edition | August 2018 | Product Number: C50502 | Price: $224.00

RP 540
Electrical Installations in Petroleum Processing Plants

Provides information on electrical installations in petroleum processing plants. It is intended for all individuals and organizations concerned with the safe design, installation, and operation of electrical facilities in petroleum processing plants. Pages: 107

Product Number: C54004 | Price: $194.00

Std 541
Form-Wound Squirrel Cage Induction Motors—375 kW (500 Horsepower) and Larger

Covers the minimum requirements for all form-wound squirrel-cage induction motors 500 Horsepower and larger in use in petroleum industry services. This standard may be applied to adjustable speed motors and induction generators with appropriate attention to the specific requirements of such applications. Pages: 160

5th Edition | December 2014 | Product Number: C54105 | Price: $196.00

RP 545
Recommended Practice for Lightning Protection of Aboveground Storage Tanks for Flammable or Combustible Liquids

Replaces the requirements of RP 2003 regarding lightning protection for preventing fires in storage tanks with flammable or combustible contents. This recommended practice (RP) provides guidance and information to assist owners/operators with lightning protection for tanks. This RP does not provide complete protection for all possible lightning stroke occurrences. Pages: 12

Product Number: C54501 | Price: $104.00

TR 545-A
Verification of Lightning Protection Requirements for Above Ground Hydrocarbon Storage Tanks

Collates a number of research reports investigating the lightning phenomena and the adequacy of lightning protection requirements on above ground hydrocarbon storage tanks. These are as follows:

• review of lightning phenomena and the interaction with above ground storage tanks;
• review of tank base earthing and test current recommendations,
• lightning tests to tank shell/shunt samples,
• visits to oil refinery A and B,
• review of burn-through and hot-spot effects on metallic tank skins from lightning strikes,
• lightning simulation testing to determine the required characteristics for roof bonding cables on external floating roof above ground storage tanks;
• investigative tests on the lightning protection of submerged shunts with parallel roof bonding cables.

Pages: 193

Std 546
Brushless Synchronous Machines—500 kW and Larger

Covers the minimum requirements for form- and bar-wound brushless synchronous machines in petroleum-related industry service. The standard has been updated to include both synchronous motors and generators with two different rotor designs:

• the conventional salient-pole rotor with solid or laminated poles, and
• the cylindrical rotor with solid or laminated construction.

Also included are new datasheet guides to help clarify the datasheet requirements. Pages: 191

Product Number: C54603 | Price: $214.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
The burner types discussed are those currently in industry use. It is not necessary to pay attention. It offers information and descriptions of burner types, materials, and configurations. Many of the individual features described in these guidelines are applicable to a variety of equipment designs where they interact with the burner system design. However, the design of external piping is not considered unless it interacts with the HRSG system design. The standard does not give recommendations for the design of external piping. This standard does not cover forced circulation boilers. Pages: 62

2nd Edition | May 2017 | Effective Date: November 1, 2017
Product Number: C54702 | Price: $121.00

HEAT TRANSFER EQUIPMENT STANDARDS FOR REFINERY SERVICE

Std 530
Calculation of Heater-Tube Thickness in Petroleum Refineries

Specifies the requirements and gives recommendations for the procedures and design criteria used for calculating the required wall thickness of new tubes and associated component fittings for fired heaters for the petroleum, petrochemical, and natural gas industries. These procedures are appropriate for designing tubes for service in both corrosive and non-corrosive applications. These procedures have been developed specifically for the design of refinery and related fired heater tubes (direct-fired, heat-absorbing tubes within enclosures). These procedures are not intended to be used for the design of external piping. This standard does not give recommendations for tube retirement thickness; Annex A describes a technique for estimating the life remaining for a heater tube. Pages: 264

7th Edition | April 2015 | Product Number: C53007 | Price: $299.00

RP 534
Heat Recovery Steam Generators

Provides guidelines for the selection and evaluation of heat recovery steam generator (HRSG) systems. Details of related equipment designs and system operations are considered only where they interact with the HRSG system design. The document does not provide rules for design, but indicates areas that need attention and offers information and descriptions of HRSG types available to the designer/user for purposes of selecting the appropriate HRSG. Pages: 60

2-Year Extension: April 2013 | Product Number: C53402 | Price: $98.00

RP 535
Burners for Fired Heaters in General Refinery Services

Provides guidelines for the selection and/or evaluation of burners installed in fired heaters in general refinery services. Details of fired heater and related equipment designs are considered only where they interact with the burner selection. This RP does not provide rules for design, but indicates areas that need attention. It offers information and descriptions of burner types available to the designer/user for purposes of selecting the appropriate burner for a given application.

The burner types discussed are those currently in industry use. It is not intended to imply that other burner types are not available or recommended. Many of the individual features described in these guidelines are applicable to most burner types. In addition to specification of burners, this RP has been updated to include practical guidelines for troubleshooting in service burners as well as including considerations for safe operation. Pages: 84

3rd Edition | May 2014 | Product Number: C53503 | Price: $155.00

Std 536
Post-Combustion NOx Control for Equipment in General Refinery and Petrochemical Services

Specifies requirements and provides guidance for the selection, design, specification, operation, and maintenance of flares and related equipment in the petroleum, petrochemical, and natural gas industries. While this standard is primarily intended for onshore facilities, supplementary guidance related to offshore applications is included. Annexes A through D provide further guidance and best practices for the selection, specification, and mechanical details for flares and the design, operation, and maintenance of flare combustion and related equipment. Annex E explains how to use the data sheets provided in Annex F; it is intended that these data sheets be used to communicate and record design information. Pages: 170

3rd Edition | September 2017 | Product Number: C53603 | Price: $173.00

Std 537
Flare Details for Petroleum, Petrochemical, and Natural Gas Industries (ANSI/API Std 537)

Specifies requirements and provides guidance for the selection, design, specification, operation, and maintenance of flares and related equipment in the petroleum, petrochemical, and natural gas industries. While this standard is primarily intended for onshore facilities, supplementary guidance related to offshore applications is included. Annexes A through D provide further guidance and best practices for the selection, specification, and mechanical details for flares and the design, operation, and maintenance of flare combustion and related equipment. Annex E explains how to use the data sheets provided in Annex F; it is intended that these data sheets be used to communicate and record design information. Pages: 170

2nd Edition | March 2017 | Product Number: C53703 | Price: $247.00

RP 538
Industrial Fired Boilers for General Refinery and Petrochemical Service

Specifies requirements and gives recommendations for design, operation, maintenance, and troubleshooting considerations for industrial fired boilers used in refineries and chemical plants. Covers waterside control, combustion control, burner management systems, feedwater preparation, steam purity, emissions, and more.

This recommended practice (RP) is based on the accumulated knowledge and experience of manufacturers and users of industrial fired boilers. It directly meets the business needs of refining and petrochemical industry operator-users, equipment vendors and manufacturers, and contractors. This RP reflects prevailing technical expertise.

This RP does not apply to fire tube boilers, gas turbine exhaust boilers, or fluidized bed boilers. It does not cover boiler mechanical construction, nor does it cover forced circulation boilers. Pages: 348

1st Edition | October 2015 | Product Number: C53801 | Price: $314.00
Refining

Std 560
Fired Heaters for General Refinery Service
Specifies requirements and gives recommendations for the design, materials, fabrication, inspection, testing, preparation for shipment, and erection of fired heaters, air preheaters (APHs), fans, and burners for general refinery service. This standard does not apply to the design of steam reformers or pyrolysis furnaces. Pages: 327
5th Edition | February 2016 | Product Number: C56005 | Price: $345.00

RP 573 ◆
Inspection of Fired Boilers and Heaters
Covers the inspection practices for fired boilers and process heaters (furnaces) used in petroleum refineries and petrochemical plants. The practices described in this document are focused to improve equipment reliability and plant safety by describing the operating variables which impact reliability and to ensure that inspection practices obtain the appropriate data, both on-stream and off-stream, to assess current and future performance of the equipment. Pages: 109
3rd Edition | October 2013 | Product Number: C57303 | Price: $155.00

Std 660
Shell-and-Tube Heat Exchangers
Specifies requirements and gives recommendations for the mechanical design, material selection, fabrication, inspection, testing, and preparation for shipment of shell-and-tube heat exchangers for the petroleum, petrochemical, and natural gas industries. This standard is applicable to the following types of shell-and-tube heat exchangers: heaters, condensers, coolers, and reboilers. This standard is not applicable to vacuum-operated steam surface condensers and feed-water heaters. Pages: 62

Std 661
Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service (ANSI/API Std 661)
Gives requirements and recommendations for the design, materials, fabrication, inspection, testing, and preparation for shipment of air-cooled heat exchangers for use in the petroleum, petrochemical, and natural gas industries. This standard is applicable to air-cooled heat exchangers with horizontal bundles, but the basic concepts can also be applied to other configurations. Pages: 147
7th Edition | July 2013 | Reaffirmed: November 2018
Product Number: C66107 | Price: $258.00

Std 661 ◆
Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service—Russian
Russian translation of Std 661.
7th Edition | July 2013 | Product Number: C66107R | Price: $206.00

Std 662, Part 1/ISO 15547-1:2005
Gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of plate-and-frame heat exchangers for use in petroleum, petrochemical and natural gas industries. It is applicable to gasketed, semi-welded and welded plate-and-frame heat exchangers.
This edition of Std 662-1 is an identical national adoption of ISO 15547-1:2005. Pages: 34
2-Year Extension: May 2016 | Product Number: CX662101 | Price: $136.00

Std 663
Hairpin-Type Heat Exchangers
Gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of hairpin heat exchangers for use in the petroleum, petrochemical, and natural gas industries. Hairpin heat exchangers include double-pipe and multi-tube type heat exchangers. Pages: 44
1st Edition | May 2014 | Product Number: C66301 | Price: $180.00

Std 664
Spiral Plate Heat Exchangers
 Specifies the requirements and gives recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of spiral plate heat exchangers for the petroleum, petrochemical, and natural gas industries. It is applicable to standalone spiral plate heat exchangers and those integral with a pressure vessel. Pages: 39
1st Edition | March 2014 | Product Number: C66401 | Price: $180.00

Std 668 ◆
Brazed Aluminum Plate-Fin Heat Exchangers
Gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of brazed aluminum plate-fin heat exchangers for use in the petroleum, petrochemical, and natural gas industries. This edition is a revision of the First Edition of Std 662, Part 2. Pages: 49
1st Edition | November 2018 | Product Number: C66801 | Price: $140.00

INSTRUMENTATION AND CONTROL SYSTEMS

RP 551
Process Measurement Instrumentation
Provides procedures for the installation of the more generally used measuring and control instruments and related accessories. Pages: 233
2nd Edition | February 2016 | Product Number: C55102 | Price: $162.00

RP 552
Transmission Systems
Reviews the recommended practices for the installation of electronic and pneumatic measurement and control-signal transmission systems. It does not discuss leased wire, radio, and telemetering transmission. Pages: 39
1st Edition | October 1994 | Reaffirmed: August 2015
2-Year Extension: November 2012
Product Number: C55201 | Price: $112.00

RP 553
Refinery Valves and Accessories for Control and Safety Instrumented Systems
Addresses the special needs of automated valves in refinery services. The knowledge and experience of the industry has been captured to provide proven solutions to well-known problems. This document provides recommended criteria for the selection, specification, and application of piston (i.e. double-acting and spring-return) and diaphragm-actuated (spring-return) control valves. Control valve design considerations are outlined such as valve selection, material selection, flow characteristic evaluation, and valve accessories. It also discusses control valve sizing, fugitive emissions, and consideration of the effects of flashing, cavitation, and noise. Recommendations for emergency block and vent valves, on/off valves intended for safety instrumented systems, and special design valves for refinery services, such as Fluid Catalytic Cracking Unit (FCCU) slide valves and vapor depressurizing systems, are also included in this recommended practice. Pages: 109
2nd Edition | October 2012 | Product Number: C55302 | Price: $149.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall not replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Refining

Fax Orders: +1 303 397 2740 Online Orders: global.ihs.com

RP 554, Part 1
Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topics addressed in Part 1 is the basic functions that a process control system may need to perform, and recommended methodologies for determining the functional and integration requirements for a particular application. Pages: 32
Product Number: C55402 | Price: $143.00

RP 554, Part 1 *
2nd Edition | July 2007 | Product Number: C55402R | Price: $115.00

RP 554, Part 2
Process Control Systems, Part 2—Process Control System Design
Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topic addressed in Part 2 is the practices to select and design the installation for hardware and software required to meet the functional and integration requirements. Pages: 65
2-Year Extension: November 2012
Product Number: C554201 | Price: $143.00

RP 554, Part 2 *
Russian translation of RP 554, Part 2.
1st Edition | October 2008 | Product Number: C554201R | Price: $115.00

RP 554, Part 3
Process Control Systems, Part 3—Project Execution and Process Control System Ownership
Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topic addressed in Part 3 is project organization, skills and management required to execute a process control project and then to own and operate a process control system. Pages: 40
2-Year Extension: November 2012
Product Number: C554301 | Price: $110.00

API 555
Process Analyzers
Addresses the considerations in the application of analyzers and associated systems, installation, and maintenance. Process monitors that measure and transmit information about chemical composition, physical properties, or chemical properties are known as process analyzer systems. Process analyzers are now used widely in the refining industry for:
• monitoring and controlling product quality,
• implementing advanced control strategies in improving process operations,
• enhancing area safety, and
• continuous emission monitoring and environmental measurement of air and water quality. Pages: 314
3rd Edition | June 2013 | Product Number: C55503 | Price: $196.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

RP 556
Instrumentation, Control, and Protective Systems for Gas Fired Heaters
Provides guidelines that specifically apply to instrument, control, and protective system installations for gas fired heaters in petroleum production, refineries, petrochemical, and chemical plants. Includes primary measuring and actuating instruments, controls, alarms, and protective systems as they apply to fired heaters. Not covered in this RP are the following: oil fired and combination fired heaters; water tube boilers which consist of single or multiple burners and are designed for utility operation or where the primary purpose is steam generation; fired steam generators used to recover heat from combustion turbines; and oven and furnaces used for the primary purpose of incineration, oxidation, reduction, or destruction of the process medium; water bath or oil bath indirect fired heaters; and CO boilers, pyrolysis furnaces, and other specialty heaters. Pages: 66
2nd Edition | April 2011 | Product Number: C55602 | Price: $157.00

RP 556 *
Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian
Russian translation of RP 556.
2nd Edition | April 2011 | Product Number: C55602R | Price: $126.00

RP 557
Guide to Advanced Control Systems
Addresses the implementation and ownership of advanced control systems for refinery purposes. The document also described commonly used practices for the opportunity identification, justification, project management, implementation, and maintenance of advanced control system applications in refinery service. Pages: 45
2nd Edition | October 2013 | Product Number: C55702 | Price: $113.00

TECHNICAL DATA BOOK PETROLEUM REFINING

Electronic Version of the API Technical Data Book
Improve the overall design and operations in today’s highly complex petroleum refinery process systems with the API Technical Database. Version 1.0 of the API Technical Database replaces the printed format of the popular API Tech Data Books with a modern Windows interface that is so unique it is patented. This single screen approach provides access to the latest API physical property estimation methods and the software is critically reviewed and approved by the API Technical Data Committee. Included is a database of property data for nearly 900 components, characterization of petroleum fractions, and petroleum fraction distillation interconversions. Users can quickly determine petroleum fraction physical property data such as critical properties, vapor pressure, density, liquid enthalpy, gas enthalpy, heat of vaporization, liquid heat capacity, gas heat capacity, surface tension, liquid viscosity, gas viscosity, liquid thermal conductivity, gas thermal conductivity, and heat of combustion. Temperature-dependent properties can be tabulated and graphed over any range, and distillation interconversions are displayed graphically. This data can then be exported for use in simulation and engineering software programs.
Contact EPCON International at 281-389-9400 or visit the EPCON website: www.epcon.com
This publication is a new entry in this catalog.
RP 934-C
Materials and Fabrication of 1 1/4Cr-1/2Mo Steel Heavy Wall Pressure Vessels for High Pressure Hydrogen Service Operating at or Below 825 °F (441 °C)

Presents materials and fabrication requirements for new 1 1/4Cr-1/2Mo steel heavy wall pressure vessels and heat exchangers for high-temperature, high-pressure hydrogen service. It applies to vessels that are designed, fabricated, and documented in accordance with ASME Boiler & Pressure Vessel Code, Section VIII, Division 1 or Division 2. This document may also be used as a resource for equipment fabricated using 1Cr-1/2Mo Steel. This document may also be used as a resource when planning to modify an existing heavy-wall pressure vessel. The interior surfaces of these heavy-wall pressure vessels may have an austenitic stainless steel or ferritic stainless steel weld overlay or cladding to provide additional corrosion resistance. For this recommended practice, the heavy wall is defined as a shell thickness of 2 in. (50 mm) or greater, but less than or equal to 4 in. (100 mm). Integri ly reinforced nozzles, flanges, tubesheets, bolted channel covers, etc. can be greater than 4 in. (100 mm).

At shell or head thicknesses greater than 4 in. (100 mm), 1 1/4Cr-1/2Mo has been shown to have difficulty meeting the toughness requirements given in this document. Although outside of the scope of this document, it can be used as a resource for vessels down to 1 in. (25 mm) shell thickness with changes defined by the purchaser. This recommended practice is not intended for use for operating above 825 °F (441 °C) or in the creep range. Pages: 15

Product Number: C934C01 | Price: $110.00

RP 934-C *
Materials and Fabrication of 1 1/4Cr-1/2Mo Steel Heavy Wall Pressure Vessels for High Pressure Hydrogen Service Operating at or Below 825 °F (441 °C)—Russian

Russian translation of RP 934-C.

1st Edition | May 2008 | Product Number: C934C01R | Price: $89.00

TR 934-D
Technical Report on the Materials and Fabrication Issues of 1 1/4Cr-1/2Mo and 1Cr-1/2Mo Steel Pressure Vessels

Numerous 1 1/4Cr-1/2Mo and 1Cr-1/2Mo vessels have been constructed and successfully used in various applications in petroleum industry and in other types of service applications. These vessels have been constructed to the requirements of the ASME Boiler & Pressure Vessel Code, Section VIII, Divisions 1 and 2, and to various international pressure vessel code and standards. The 1 1/4Cr-1/2Mo and 1Cr-1/2Mo vessels are typically used in service conditions (e.g., high temperature and/or high pressure hydrogen), which require heavy walls and cause in service deterioration. As such, the steels are subject to special requirements, such as notch toughness, elevated temperature tensile properties, hardness, fabrication heat treatments, etc., which may limit the maximum thickness to be able to meet the desired properties. Corrosion protection by stainless steel weld overlay or cladding may also be required.

This report provides background information and guidance on the implementation of RP 934-C. In recent years it has been recognized that there are important distinctions that need to be considered for 1 1/4Cr-1/2Mo steels. Whereas RP 934-A continues to provide materials and fabrication requirements for new 1 1/4Cr-1/2Mo vessels, whereas RP 934-A continues to provide materials and fabrication requirements for new 1 1/4Cr-1/2Mo and 2 1/2Cr-3/4Mo vessels in high pressure hydrogen service, different material, and fabrication requirements have been developed for 1 1/4Cr-1/2Mo steel high wall pressure vessels. These requirements are covered in RP 934-C and 934-E. This document contains a description of key mechanisms that relate specifically to 1 1/4Cr-1/2Mo pressure vessels used in a variety of services. These damage mechanisms include elevated temperature damage such as “reheat cracking” or “creep embrittlement,” as well as other damage mechanisms that may occur at lower temperatures. This document provides information and guidance on successful practices for fabrication of 1 1/4Cr-1/2Mo steel high wall pressure vessels for the intended services of both RP 934-C and RP 934-E. The survey of steel producers and vessel fabricators (Annex 1) indicates that there is a need to evaluate the effect of heat treat cycles on materials properties (CVN toughness, tensile and yield strength). Pages: 56

1st Edition | September 2010
Product Number: C934D01 | Price: $139.00

RP 934-E
Recommended Practice for Materials and Fabrication of 1 1/4Cr-1/2Mo Steel Pressure Vessels for Service Above 825 °F (440 °C)

Includes materials and fabrication requirements for new 1 1/4Cr-1/2Mo and 1Cr-1/2Mo steel pressure vessels, including heat exchanger shells and channels for elevated temperature service. It applies to vessels that are designed, fabricated, and documented in accordance with ASME Code Section VIII, Division 1, or Division 2 (hereafter referred to as “Code”). This document may also be used as a resource when planning to modify existing pressure vessels. The interior surfaces of these pressure vessels and heat exchangers (i.e., the surfaces exposed to the process) may or may not have an austenitic stainless steel (SS), ferritic SS, or nickel alloy weld overlay or cladding to provide additional corrosion resistance.

This RP is primarily intended for wall thicknesses less than 4 in. (100 mm), and a preferred option for thicker components is to use 2 1/4Cr-1Mo alloys. This RP is applicable to shell thicknesses greater than 1 in. (25 mm). Although outside of the scope of this document, this document can be used as a resource for vessels down to lower shell thicknesses with changes defined by the purchaser. Pages: 27

2nd Edition | January 2018 | Product Number: C934E02 | Price: $140.00

TR 934-F Part 1
Impact of Hydrogen Embrittlement on Minimum Pressurization Temperature for Thick-Wall Cr-Mo Steel Reactors in High-Pressure H2 Service—Initial Technical Basis for RP 934-F

In support of API Recommended Practice 934-F Guidance for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Reactors in High-Temperature Hydrogen Service During Startups and Shutdowns, not yet published, the objective of this study is to establish the technical basis for determining a minimum pressurization temperature necessary to avoid Internal Hydrogen Assisted Cracking (IHAC) of weld metal and base plate of temper embrittled 2¼Cr-1Mo steel in high pressure H2 service. The threshold condition for the onset of subcritical crack propagation—and its dependencies on dissolved hydrogen concentration, temperature, and steel purity and temper embrittlement—are targeted as particularly important to pressure vessel safe operations. A second objective is to improve the underlying database for fracture mechanics fitness-for-service (FFS) modeling of IHAC. Both analyses are built on the conservative rising-displacement threshold stress intensity factor for IHAC (KIH).

This investigation has accomplished 5 tasks, leading to conclusions that are sufficient to establish RP 934-F on MPT to conservatively avoid IHAC in 2¼Cr-1Mo steel.

Task 1—Summarize and clarify the technical approach, assumptions, data, and modeling results used in Phase II JIP research to quantitatively establish the H concentration and temperature dependencies of the threshold stress intensity, KIH, for IHAC and the concentration dependence of MPT for moderate-impurity 2¼Cr-1Mo steel.

Task 2—Validate the Phase II correlation of KIH and critical temperature vs H concentration, based on new analyses of post-Phase-II IHAC data.

Task 3.0—Enhance the Phase II analysis of KIH vs crack tip H concentration, and thus MPT, by describing the interaction between temper embrittlement and IHAC using JIP Phase I data so as to predict the influence of modern steel purity.

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Task 4.0—Build on the hydrogen-damage-mechanism-based master correlation between KIH and crack tip stress field/microstructure-trapped H to develop a H concentration similitude parameter that is useful in engineering analysis of thick-wall reactor FFS and MPT.

Task 5.0—Validate the empirically based trends and predictions of the effects of temperature and steel purity on the threshold stress intensity through consideration of state-of-the art theory and micromechanical modeling of IHAC. Pages: 118

1st Edition | September 2017
Product Number: C934F101 | Price: $192.00

TR 934-F Part 2

Literature Review of Fracture Mechanics-Based Experimental Data for Internal Hydrogen-Assisted Cracking of Vanadium-Modified 2-1/4Cr-1Mo Steel

Documents a critical assessment of the existing literature on IHAC of V-modified Cr-Mo steels for use in interpreting the results of the present laboratory work and so as to establish a definitive characterization of the H cracking resistance of this steel class. Since these modern Cr-Mo-V steels are of relatively high purity, and thus retain a low FATT after laboratory simulation of in-service temper embrittlement, the database for 2%Cr-1Mo provides a context for assessment of the IHAC performance of V-modified grades. Hydrogen cracking of less pure V-modified Cr-Mo steels was not considered in this review. The content that follows is chronologically organized into initial and more modern works, as justified by improvement in test execution, data analysis, and reporting, as well as the evolution from laboratory to commercial scale heats of Cr-Mo-V. Pages: 46

1st Edition | August 2017 | Product Number: C934F201 | Price: $128.00

TR 934-F Part 3

Subcritical Cracking of Modern 2½Cr-1Mo-¼V Steel Due to Dissolved Internal Hydrogen and H2 Environment, Research Report

Conveys the results of API-sponsored research to: (a) quantitatively characterize the internal hydrogen assisted cracking (IHAC) resistance of modern 2½Cr-1Mo-¼V steel, in both base metal and weld metal product forms and including the effect of stressing temperature, (b) scope the hydrogen environment assisted cracking (HEAC) resistance of 2½Cr-1Mo-¼V base metal, (c) understand the mechanism(s) for the IHAC and HEAC behaviors of Cr-Mo and Cr-Mo-V steels, centered on H interactions with microstructure-scale trap sites, and (d) assess application of data and understanding of IHAC and HEAC to determine the role of subcritical H-assisted cracking on a minimum pressurization temperature estimate relevant to thick-wall hydro-treating reactor vessels. Pages: 170

1st Edition | December 2017 | Product Number: C934F301 | Price: $180.00

TR 934-F Part 4

The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels

Hydrogen, dissolved in the thick wall of a steel pressure vessel during steady-state operation in elevated temperature, high-pressure H2, can cause both slow-subcritical crack advance as well as unstable-catastrophic fracture during shutdown and startup. This behavior is defined in Section 2. It follows that modern fracture-mechanics assessments of the minimum pressurization temperature (MPT) and fitness for service (FFS) must include the deleterious effect of H on both subcritical and unstable internal hydrogen assisted cracking (IHAC). Two approaches are in draft stage to develop standard procedures that address this need; an API 934-F recommended practice and a WRC Bulletin 562 basis for ASME/API 579. The objective of this technical report is to establish the technical basis necessary to enable and validate these best practices for quantifying the effects of hydrogen on (a) the MPT and (b) FFS of a thick wall hydroprocessing reactor. Pages: 112

1st Edition | November 2018
Product Number: C934F401 | Price: $180.00

RP 934-G

Design, Fabrication, Operational Effects, Inspection, Assessment, and Repair of Coke Drums and Peripheral Components in Delayed Coking Units

Includes information and guidance on the practices used by industry practitioners on the design, fabrication, operation, inspection, assessment, and repair of coke drums and peripheral components in delayed coking units. The guidance is general and does not reflect specific details associated with a design offered by licensors of delayed coking technology, or inspection tools, operating devices/components, repairs techniques, and/or engineering assessments offered by contractors. For details associated with the design offered by a licensor or services provided by contractors, the licensor or contractor should be consulted for guidance and recommendations for their design details and operating guidance. This document is a technical report and as such provides generally used practices in industry and is not an API recommended practice for coke drums in delayed coking units. Pages: 57

1st Edition | April 2016 | Product Number: C934G01 | Price: $155.00

Publ 935

Thermal Conductivity Measurement Study of Refractory Castables

Compares the differences between measurement techniques used to develop thermal conductivity of refractory castables. The following procedures were examined: Water Calorimeter, Calorimeter-Pilkington Method, Hot Wire Method, Comparative Thermal Conductivity Method, and Panel Test. The refractory industry uses various methods for measuring and reporting thermal conductivity. The accuracy of reporting and understanding thermal conductivity are vital to developing the most cost effective, efficient, and reliable equipment. The study makes no attempt to rank, classify or assign accuracy to each of the measurement techniques. Pages: 22

1st Edition | September 1999 | Product Number: C93501 | Price: $62.00

Std 936

Refractory Installation Quality Control—Inspection and Testing Monolithic Refractory Linings and Materials

Provides installation quality control procedures for monolithic refractory linings and may be used to supplement owner specifications. Materials, equipment, and personnel are qualified by the methods described, and applied refractory quality is closely monitored, based on defined procedures and acceptance criteria. The responsibilities of inspection personnel who monitor and direct the quality control process are also defined. In addition, this standard provides guidance for the establishment of quality control elements necessary to achieve the defined requirements. Pages: 49

Publ 937-A

Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell and Shell-to-Bottom Joints

Investigates the relative strengths of the roof-to-shell and shell-to-bottom joints, with the goal of providing suggestions for fragible roof design criteria applicable to smaller tanks. Pages: 68

1st Edition | August 2005 | Product Number: C937A0 | Price: $126.00

Publ 938-A

An Experimental Study of Causes and Repair of Cracking of 1½Cr-1/2Mo Steel Equipment

Gives the results of an experimental study conducted to provide the petroleum industry with solutions to recurring incidents of cracking in the application of welded 1½Cr-1/2Mo steel for hydrogen processing equipment. Pages: 220

1st Edition | May 1996 | Product Number: C938A0 | Price: $169.00
Use of 9Cr-1Mo-V (Grade 91) Steel in the Oil Refining Industry

Provides guidelines on the proper specifications for base metal and welding consumables and successful welding and heat treatment requirements, for use of 9Cr-1Mo-V alloy steel in oil refining services. This includes guidelines for preheat, postweld heat treatment, procedure qualification, and mechanical and nondestructive testing. It covers the basic material and metallurgical properties of 9Cr-1Mo-V steel, including a summary of the physical and mechanical properties, corrosion and oxidation resistance, indicating possible corrosion and/or mechanical failure mechanisms and how to avoid them. The appropriate base metal heat treatment is also given. This document also defines hardness limits for the base material and welds in order to avoid cracking failures due to wet sulfide stress corrosion cracking or due to other possible failure mechanisms. A discussion of both proper and improper refinery service applications for these steels is also provided. Pages: 40

TR 938-C

Use of Duplex Stainless Steels in the Oil Refining Industry

Covers many of the “lean,” “standard,” “super,” and “hyper” grades of duplex stainless steels (DSSs) most commonly used within refineries. DSSs are finding increasing use in the refining industry primarily because they often offer an economical combination of strength and corrosion resistance. These stainless steels typically have an annealed structure that is generally half ferrite and half austenite, although the ratios can vary from approximately 35/65 to 55/45. Most refinery applications where DSSs are used are corrosive, and DSSs or other higher alloys are required for adequate corrosion resistance. However, some plants are also starting to consider DSS as a “baseline” material. These plants are using DSS in applications where carbon steel may be acceptable, but DSSs have been shown to be more economical considering their higher strength and better long-term reliability. The product forms within the scope are tubing, plate, sheet, forgings, pipe, and fittings for piping, vessel, exchanger, and tank applications. The Third Edition of this report has added castings and wrought isostructurally-pressed (HIP) components for pumps, valves, and other applications. The limited use of DSSs as a cladding is also briefly covered within the document. Pages: 59

TR 939-C

Guidelines for Avoiding Sulfidation (Sulfidic) Corrosion Failures in Oil Refineries

Applies to hydrocarbon process streams containing sulfur compounds, with and without the presence of hydrogen, which operate at temperatures above approximately 450 °F (230 °C) up to about 1000 °F (540 °C). A threshold limit for sulfur content is not provided because within the past decade significant corrosion has occurred in the reboiler/fracti onator sections of some hydrotreating units at sulfur or H2S levels as low as 1 ppm. Nickel based alloy corrosion is excluded from the scope of this document. While sulfidation can be a problem in some sulfur recovery units, sulfur plant combustion sections and external corrosion of heater tubes due to firing sulfur containing fuels in heaters are specifically excluded from the scope of this document. Pages: 35

TR 939-D

Stress Corrosion Cracking of Carbon Steel in Fuel-Grade Ethanol: Review, Experience Survey, Field Monitoring, and Laboratory Testing (includes Addendum 1 dated October 2013)

Addresses stress corrosion cracking (SCC) in carbon steel equipment used in fuel-grade ethanol. API, with assistance from the Renewable Fuels Association (RFA), conducted research on the potential for metal cracking and product leakage in certain portions of the fuel ethanol distribution system. TR 939-D contains a review of existing literature, results of an industry survey on cracking events and corrosion field monitoring, and information on mitigation and prevention. Pages: 172

Bull 939-E

Identification, Repair, and Mitigation of Cracking of Steel Equipment in Fuel Ethanol Service

Usage of fuel ethanol as an oxygenate additive in gasoline blends is increasing, both in the United States and internationally. This document discusses stress corrosion cracking (SCC) of carbon steel tanks, piping and equipment exposed to fuel ethanol as a consequence of being in the distribution system, at ethanol distribution facilities, or end user facilities where the fuel ethanol is eventually added to gasoline. Such equipment includes but is not limited to:

- storage tanks,
- piping and related handling equipment, and
- pipelines that are used in distribution, handling, storage, and blending of fuel ethanol.

However, data for pipelines in ethanol service is limited and caution should be used when applying guidelines from this document, which have been derived mainly from applications involving piping and tanks in ethanol storage and blending facilities. SCC of other metals and alloys is beyond the scope of this document, as is the corrosion of steel in this service. Pages: 42
RP 941
Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants
(includes Errata 1 dated June 2016 and Errata 2 dated December 2017)
Summarizes the results of experimental tests and actual data acquired from operating plants to establish practical operating limits for carbon and low alloy steels in hydrogen service at elevated temperatures and pressures. The effects on the resistance of steels to hydrogen at elevated temperature and pressure that result from high stress, heat treating, chemical composition, and cladding are discussed. This recommended practice (RP) does not address the resistance of steels to hydrogen at lower temperatures (below about 400 °F [204 °C]), where atomic hydrogen enters the steel as a result of an electrochemical mechanism.

This RP applies to equipment in refineries, petrochemical facilities, and chemical facilities in which hydrogen or hydrogen-containing fluids are processed at elevated temperature and pressure. The guidelines in this RP can also be applied to hydrogenation plants such as those that manufacture ammonia, methanol, edible oils, and higher alcohols.

The steels discussed in this RP resist high temperature hydrogen attack (HTHA) when operated within the guidelines given. However, they may not be resistant to other corrosive present in a process stream or to other metallurgical damage mechanisms that can occur in the operating HTHA range. This RP also does not address the issues surrounding possible damage from rapid cooling of the metal after it has been in high temperature, high pressure hydrogen service (e.g., possible need for outgassing hydroprocessing reactors). This RP will discuss in detail only the resistance of steels to HTHA.

Presented in this document are curves that indicate the operating limits of temperature and hydrogen partial pressure for satisfactory resistance of carbon steel and Cr-Mo steels to HTHA in elevated temperature, hydrogen service. In addition, it includes a summary of inspection methods to evaluate equipment for the existence of HTHA. Pages: 45

8th Edition | February 2016 | Product Number: C94108 | Price: $144.00

TR 941
The Technical Basis Document for API RP 941
Even before the first edition of API Publ 941, Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants appeared in 1970, there had been fundamental questions regarding the technical basis for the performance curves contained in the document (1–6). Based upon sparse laboratory data combined with plant experience, with only a few exceptions, the curves have done an exceptionally good job at safely directing the refining industry in selecting materials based upon operating temperature, hydrogen partial pressure, and the metallurgy of the equipment being considered. Pages: 301

1st Edition | September 2008 | Product Number: C09410 | Price: $204.00

Second Edition | February 2016 | Product Number: C94108 | Price: $144.00

TR 942-A
Materials, Fabrication, and Repair Considerations for Hydrogen Reformer Furnace Outlet Pigtails and Manifolds
Addresses materials, fabrication, and repair issues related to hydrogen and syngas reformer furnace outlet pigtails and manifolds. High reliability of outlet pigtails and manifold components, such as headers, tees, and fittings, is important to the successful long-term operation of hydrogen and syngas reformer furnaces. These components typically operate at high temperatures in the range of 750 to 950 °C (1382 to 1742 °F) where they are potentially subject to high-temperature creep, stress relaxation, hot corrosion, and thermal fatigue damage. In recent years a number of reformer furnace operators have encountered problems of in-service degradation and cracking of outlet pigtails and manifold components, while others have had little or no problems of this type. Both direct experience in addressing specific cases of outlet pigtail and manifold cracking problems and indirect experience gained from surveying industry with regard to these problems were used in preparing this report. The objective of the project was to develop an understanding, based on published literature and industry experience, of why some reformer furnaces have had problems with embrittlement and cracking of outlet pigtails and manifold components in service, while others have not had such problems. Pages: 53

1st Edition | June 2014 | Product Number: C942A01 | Price: $144.00

Online Orders: global.ihs.com

TR 942-B
Material, Fabrication, and Repair Considerations for Austenitic Alloys Subject to Embrittlement and Cracking in High Temperature 565 °C to 760 °C (1050 °F to 1400 °F) Refinery Services
Focuses on the materials, fabrication, and repair of austenitic stainless steels and nickel-iron-chromium alloys in high temperature 565 °C to 760 °C (1050 °F to 1400 °F) refinery services. Many of these alloys are subject to embrittlement and cracking after prolonged exposure to these temperatures. Susceptible components in the following processing units are addressed: fluid catalytic cracking units, hydrogen/syngas plants, catalytic reformers,okers, and hydروprocessing units. This report summarizes industry experience and recommends methods to improve reliability and process safety, and increases industry awareness to high temperature embrittlement issues.

As a basis of this report, technical literature, industry experience, and published case studies were reviewed. The review included materials of construction, damage mechanisms, and component-specific fabrication and repair issues. The scope of this report includes the following wrought austenitic alloys: Alloys 800, 800H, 800HT, and 300 series austenitic stainless steels, and corresponding weld consumables. Limits in chemical composition, microstructural requirements, and heat treating practices that mitigate susceptibility to embrittlement and cracking are identified. Potentially viable upgrades to commonly used alloys are identified where applicable.

The remainder of this report is organized as follows: Section 3, Process Units, gives a brief process overview followed by an explanation of the various damage mechanisms found in that unit. Component specific considerations and examples of in-service damage are also included. Inspection recommendations and general repair method considerations are also included. Section 4, Damage Mechanisms, contains detailed discussions of high-temperature damage mechanisms, including fundamental details of the solid state reactions, their rate of reaction, and recommended mitigation measures. Section 4 also incorporates fabrication and repair practices that can be used for cracked or embrittled equipment. Pages: 88

1st Edition | May 2017 | Effective Date: November 1, 2017
Product Number: C942B01 | Price: $178.00

Online Orders: global.ihs.com

RP 945
Avoiding Environmental Cracking in Amine Units
Discusses environmental cracking problems of carbon steel equipment in amine units. This publication provides guidelines for carbon steel construction materials, including, fabrication, inspection, and repair, to help ensure safe and reliable operation. The steels referred to in this document are defined by the ASTM designation system, or equivalent materials contained in other recognized codes or standards. This document is based on current engineering practices and insights from recent industry experience. Pages: 25

2-Year Extension: April 2013 | Product Number: C94503 | Price: $104.00

Online Orders: global.ihs.com

Publ 959
Characterization Study of Tempre Embrittlement of Chromium-Molybdenum Steels
Evaluates the temper embrittlement characteristics of Cr-Mo pressure vessel steels. The steels are designated A387 in Part 4 of the ASTM Book of Standards. Most of the samples studied were of Grade 22 (2-1/4Cr–1Mo) and a few samples of Grades 11 and 21 were also included, (1-1/4Cr–1/2Mo, 3Cr–1Mo). The 64 samples studied represented a wide range of commercially available steel, including qualification welds in 1-in. and 6-in. steel plate, large nozzle cut-outs, and randomly-shaped pieces of forging material. These materials received heat treatment typical of hydro-treater reactor fabrication. The objective of this program was to characterize typical commercial reactor steels and weldments in terms of toughness and other physical properties prior to being placed in service and the changes anticipated in toughness due to long-time service at elevated temperatures.

It is important to note that the materials studied were typical of commercial production and fabrication up to about 1975 and are not representative of plate, forgings, and weld metal having low temper embrittlement susceptibility, generally available after 1975. Pages: 145

1st Edition | January 1982 | Product Number: C95900 | Price: $162.00

Online Orders: global.ihs.com

This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program. 115
RP 970
Corrosion Control Documents
Provides users with the basic elements for developing, implementing and maintaining a Corrosion Control Document (CCD) for refining, and at the owner's discretion, may be applied at petrochemical and chemical process facilities. A CCD is a document or other repository or system that contains all the necessary information to understand materials damage susceptibility issues in a specific type of operating process unit at a plant site.

CCDs are a valuable addition to an effective Mechanical Integrity Program. They help to identify the damage mechanism susceptibilities of pressure containing piping and equipment, factors that influence damage mechanism susceptibilities, and recommended actions to mitigate the risk of loss of containment or unplanned outages.

This recommended practice serves as the basis for tracking CCD development, implementation, and maintenance to maintain consistency and to integrate the CCD work process with other plant integrity programs, such as Management of Change (MOC), Process Hazards Analysis (PHA), and Reliability Centered Maintenance (RCM). Some of these programs have significant overlap with the development of CCDS, including Risk-Based Inspection studies (see RP 580 and RP 581), Integrity Operating Windows (see RP 584), in-house unit corrosion reviews, circuitization/systemization programs, and similar types of corrosion studies. Development of CCDS can serve as a useful starting point for establishing these programs if they have not been undertaken.

This recommended practice provides the owner/user with information and guidance on the work processes for development and implementation of CCDS for the owners'/users' process units. Pages: 59

1st Edition | December 2017 | Product Number: C97001 | Price: $139.00

Std 976
Refractory Installation Quality Control—Inspection and Testing of AES/RCF Fiber Linings and Materials
Provides installation quality control procedures and lining system design requirements for AES/RCF fiber linings and may be used to supplement owner specifications. Materials, equipment, and personnel are qualified by the methods described, and applied refractory quality is closely monitored, based on defined procedures and acceptance criteria. The responsibilities of inspection personnel who monitor and direct the quality control process are also defined. The lining described in this standard is for internal refractory linings on the process side of the equipment. External insulation and jacketing are not covered in this standard. Pages: 34

1st Edition | March 2018 | Product Number: C97601 | Price: $124.00

TR 977
ASTM C704 Test Variability Reduced to Allow Further Optimization of Erosion-Resistant Refractories for Critical Oil Refining Applications
Documents the results of a joint project conducted by the API CRE Subcommittee on Refractory Materials and the ASTM C08 Committee to improve the reproducibility of the 2015 edition of ASTM C704/C704M, Standard Test Method for Abrasion Resistance of Refractory Materials at Room Temperature. Erosion-resistant refractories are used in many oil refining applications, such as Fluid Catalytic Cracking Units (FCCUs), to resist the wearing effects of solids particles circulating at elevated velocities in a high-temperature process environment. This report documents changes made to the setup and procedures to improve the reproducibility of the test. These changes are designed to achieve this end, while providing a rough equivalency consistent with historical data before the changes were made. These results are validated by the results of extensive international round-robin and ruggedness testing, and are reported herein. Pages: 27

1st Edition | February 2018 | Product Number: C97701 | Price: $114.00

TR 979
Applications of Refractory Lining Materials
Covers the use of refractory concrete (castables), plastics, and ramming mixes for applications for the hydrocarbon processing industry (HPI). Its content is complemented by the two other reports in this series:

- API TR 978, Monolithic Refractories: Manufacture, Properties and Selection;
- API TR 980, Monolithic Refractories: Installation and Dryout.

These technical reports update and add to the original reports written by Committee 547 of the American Concrete Institute (ACI) in 1979 and 1989. These are ACI 547.R-79, State-of-the-Art Report: Refractory Concrete, and ACI 547.1R-89, State-of-the-Art Report: Refractory Plastics and Ramming Mixes. TR 979 focuses specifically on the information on the applications of refractories contained in ACI 547.R-79 and ACI 547.1R-89.

The original content of these reports was focused primarily on steel- and glass-making applications, which represent the largest refractory markets. In tailoring the revision of this content to the HPI, has greatly expanded the text pertaining to the specialized oil-refining and petrochemical-processing applications. At the same time, API has retained and updated the information covering applications outside of the HPI (see Section 5) because of the similarities and applicability that this information has for refractory professionals in these other industries. Pages: 63

1st Edition | October 2018 | Product Number: C97901 | Price: $135.00

TR 980
Monolithic Refractories: Installation and Dryout
Covers the installation and dryout of monolithic refractory lining materials for hydrocarbon processing industry (HPI) applications. It discusses the best practice procedures and techniques used in the installation of refractory concrete, as well as those for air-and heat-setting plastics and ramming mixes. In addition, it discusses the need for curing and dryout and procedures to achieve successful results. This instruction is consistent with Std 936, which is the HPI industry standard for the installation quality control of monolithic refractories. It also serves as the body of knowledge document for the API 936 Refractory Personnel Certification Program. This report is the last in a series of three API reports covering the use of refractory concrete (castables), plastics, and ramming mixes for applications for the hydrocarbon processing industry. Its content is complemented by the two other reports in this series:

- API TR 978, Monolithic Refractories: Manufacture, Properties and Selection;
- API TR 979, Applications of Refractory Lining Materials.

Pages: 66

PETROLEUM PRODUCTS AND PETROLEUM PRODUCT SURVEYS

API/NPRA Survey
A survey of industry refining data for the period May 1 through August 31, 1996. The report includes information on domestically produced gasoline and diesel product quality as well as aggregate domestic refining capacity and average operating data. Pages: 190

1st Edition | July 1997 | Product Number: F10001 | Price: $67.00

Aviation Turbines Fuels, 2001 | Price: $95.00

Heating Oils, 2002 | Price: $106.00

Motor Gasolines, Summer 2001 | Price: $128.00

Diesel Fuel Oils, 2002 | Price: $106.00

Magnetic computer tapes of raw data are available upon request. Reports from previous years are also available.

Order these petroleum product surveys from:
TRW Petroleum Technologies
P.O. Box 2543 | Bartlesville, OK 74005
Attn: Cheryl Dickenson
918-338-4419
Refining

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Publ 4261
Alcohols and Ethers: A Technical Assessment of Their Application as Fuels and Fuel Components
Summarizes information from the technical literature on producing and applying alcohols and ethers as fuels and fuel components for the transportation sector. It assesses the technical advantages and disadvantages of alcohols and ethers with respect to hydrocarbon fuels. Since the amendment of the Clean Air Act in 1977, and subsequently in 1990, public interest in the role of oxygenates in transportation has significantly increased. This edition of Publ 4261 has been updated and expanded to include a review of the oxygenate regulations and the technical literature that has been published since 1988. It provides a technical assessment suitable for policy discussions related to alcohols and ethers in transportation. Pages: 119
3rd Edition | June 2001 | Product Number: C42613 | Price: $167.00

Publ 4262
Methanol Vehicle Emissions
December 1990 | Product Number: F42620 | Price: $129.00

PROCESS SAFETY STANDARDS

RP 752
Management of Hazards Associated with Location of Process Plant Permanent Buildings
Provides guidance for managing the risk from explosions, fires and toxic material releases to on-site personnel located in new and existing buildings intended for occupancy. This RP was developed for use at refineries, petrochemical and chemical operations, natural gas liquids extraction plants, natural gas liquefaction plants, and other onshore facilities covered by the OSHA Process Safety Management of Highly Hazardous Chemicals, 29 CFR 1910.119. Buildings covered by this RP are rigid structures intended for permanent use in fixed locations: tents, fabric enclosures and other soft-sided structures are outside the scope of this document. This 3rd Edition of RP 752:2009 supersedes all previous editions, including the technical data provided in those documents. Significant research and development of technology pertinent to building siting evaluations has been performed since the publication of the previous editions of RP 752. Examples of updated technology include prediction of blast damage to buildings, determination of occupant vulnerabilities, and estimates of event frequencies. Prior versions of RP 752 and the technical data included in them should not be used for building siting evaluations. The 2nd Edition of RP 752 covered all building types both permanent and portable. This 3rd Edition of RP 752 does not cover portable buildings. Portable buildings are now covered by RP 753. It is recognized, however, that portable buildings specifically designed for significant blast load represent a potential area of overlap between RP 753 and RP 752. In accordance with 1.3 of this document:

“Buildings described in API RP 753, Management of Hazards Associated with Location of Process Plant Portable Buildings, First Edition, June 2007, as ‘portable buildings specifically designed to resist significant blast loads’ and intended for permanent use in a fixed location are covered in this document (API RP 752). All other portable buildings are covered by API RP 753.” Pages: 27
3rd Edition | December 2009 | Product Number: K75203 | Price: $145.00

RP 753
Management of Hazards Associated with Location of Process Plant Portable Buildings
Provides guidance for reducing the risk to personnel located in portable buildings from potential explosion, fire and toxic release hazards. While occupied permanent buildings (e.g. control rooms, operator shelters) located near covered process area are typically constructed to be blast and fire resistant, conventional portable buildings (i.e. light wood trailers) are typically not constructed to be blast and fire resistant. Past explosion accidents have demonstrated that occupants of conventional portable buildings are susceptible to injuries from structural failures, building collapse, and building debris and projectiles.
Guidance is provided based on the following principles.

• Locate personnel away from covered process areas consistent with safe and effective operations.
• Minimize the use of occupied portable buildings in close proximity to covered process areas.
• Manage the occupancy of portable building especially during periods of increased risk including unit start up or planned shut-down operations.
• Design, construct, install, and maintain occupied portable buildings to protect occupants against potential hazards.
• Manage the use of portable buildings as an integral part of the design, construction, and maintenance operation of a facility. Pages: 22
1st Edition | June 2007 | Reaffirmed: January 2012
Product Number: K75301 | Price: $145.00

RP 754
Process Safety Performance Indicators for the Refining and Petrochemical Industries (ANSI/API RP 754)
Identifies leading and lagging process safety indicators useful for driving performance improvement. As a framework for measuring activity, status, or performance, this document classifies process safety indicators into four tiers of leading and lagging indicators. Tiers 1 and 2 are suitable for nationwide public reporting, and Tiers 3 and 4 are intended for internal use at individual facilities. Guidance on methods for development and use of performance indicators is also provided. This recommended practice (RP) was developed for the refining and petrochemical industries, but may also be applicable to other industries with operating systems and processes where loss of containment has the potential to cause harm. Applicability is not limited to those facilities covered by the OSHA Process Safety Management Standard, 29 CFR 1910.119, or similar national and international regulations. To enable consistent application of this RP to other refining and petrochemical industry sub segments, informative annexes have been created to define the Applicability and Process definition for those subsegments. The user would substitute the content of those annexes for the referenced sections of this RP: Annex A–Petroleum Pipeline and Terminal Operation, Annex B–Retail Service Stations, and Annex C–Oil and Gas Drilling and Production Operations. Performance indicators identified in this recommended practice are based on the following guiding principles.

• Indicators should drive process safety performance improvement and learning.
• Indicators should be relatively easy to implement and easily understood by all stakeholders (e.g. workers and the public).
• Indicators should be statistically valid at one or more of the following levels: industry, company, and facility. Statistical validity requires a consistent definition, a minimum data set size, a normalization factor, and a relatively consistent reporting pool.
• Indicators should be appropriate for industry, company, or facility level benchmarking. Pages: 118
2nd Edition | April 2016 | Product Number: K75402 | Price: $155.00
Fatigue Risk Management Systems (FRMS) have emerged and been widely recognized as a more effective approach to managing and mitigating employee fatigue risk in the 24/7 workplace. The core feature of the FRMS is that it is a data-driven, risk-informed, safety performance-based system. The FRMS implementation process first identifies all sources of fatigue risk in the business operation, then introduces mitigating policies, technologies, and procedures to reduce the risk, and most importantly then maintains them in a proactively managed continuous improvement system. The history of FRMS was recently summarized.

This method represents a significant step change from the traditional approaches of either relying on maximum limits to hours of work or minimum limits to hours of rest (variously called Hours of Service, Work-Rest Rules, Working Time Directives), or adopting intermittent or piece-meal solutions (e.g. fatigue training program or a shift schedule redesign), depending on the interests and initiative of local site managers.

One essential feature of FRMS is that it is a system meant to be improved over time, driven by the collection of data on fatigue risk and fatigue outcomes (e.g. fatigue-related incidents).
Overfill Protection for Storage Tanks in Petroleum Facilities

(ANSI/API Std 2350)

Applies to storage tanks associated with marketing, refining, pipeline, and terminals operations and with tanks containing Class I or Class II petroleum liquids and use is recommended for Class III petroleum liquids. This standard addresses overfill protection for petroleum storage tanks. It recognizes that prevention provides the most basic level of protection, thus while using both terms “protection” and “prevention,” the document emphasizes prevention. The standard’s scope covers overfill (and damage) prevention practices for aboveground storage tanks in petroleum facilities, including refineries, marketing terminals, bulk plants, and pipeline terminals that receive flammable and combustible liquids. The fourth edition continues to build on experience and new technology through the use of management systems. Since operations are the primary overfill prevention safeguard, new definitions and requirements are established for alarms. Risk reduction is also addressed by current and generally accepted industry practices.

The essential elements of this document are based on current industry safe operating practices and existing consensus standards. Federal, state, and local regulations or laws may contain additional requirements for tank overfill protection programs. For existing facilities, the results of a risk-based analysis of aboveground atmospheric petroleum storage tanks may indicate the need for more protection against overfilling. In such cases, some provisions from this standard may be suitable.

The purpose of this standard is to assist owner/operators and operating personnel in the prevention of tank overfills by implementation of a comprehensive overfill prevention process (OPP). The goal is to receive product into the intended storage tank without overfill or loss of containment.

This standard does not apply to: underground storage tanks; aboveground tanks of 1320 U.S. gallons (5000 liters) or less; aboveground tanks which comply with PEI 600; pressure vessels; tanks containing non-petroleum liquids; tanks storing LPG and LNG; tanks at service stations; tanks filled exclusively from wheeled vehicles (i.e. tank trucks or railroad tank cars); and tanks covered by OSHA 29 CFR 1910.119 and EPA 40 CFR 68, or similar regulations.

Pages: 47

4th Edition | May 2012 | Product Number: K235004 | Price: $117.00

Groundwater Protection Programs for Petroleum Refining and Storage Facilities: A Guidance Document

Reflects continuing industry action and commitment to positively address groundwater protection by developing and implementing individual groundwater protection plans. Provides additional guidance to help petroleum facilities identify the types of issues that may need to be addressed in a groundwater protection plan. Intended to help refiners, terminals associated with transportation pipelines, product distribution terminals, and other downstream petroleum storage units develop groundwater protection plans that are tailored to their individual circumstances.

Pages: 9

1st Edition | October 1994 | Product Number: C42201 | Price: $67.00

Literature Survey: Subsurface and Groundwater Protection Related to Petroleum Refinery Operations

This report is the principal product of an API-sponsored project to prepare a background basis for the development of further information on subsurface and groundwater protection at refineries. It contains an explanation of how the literature survey was conducted; annotations for pertinent articles; a discussion of applicable federal statutes and regulations; and annotations for pertinent regulatory programs under the 5 principal statutes that apply to refinery operations.

Pages: 145

1st Edition | September 1988 | Product Number: C80000 | Price: $95.00
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards.

UPSTREAM SAFETY STANDARDS

RP 49
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide

Provides recommendations that apply to oil and gas well drilling and servicing operations involving hydrogen sulfide. These operations include well drilling, completion, servicing, workover, downhole maintenance, and plug and abandonment procedures conducted with hydrogen sulfide present in the fluids being handled. Coverage of this publication is applicable to operations confined to the original wellbore or original total depth and applies to the selection of materials for installation or use in the well and in the well drilling or servicing operation(s). The presence of hydrogen sulfide in these operations also presents the possibility of exposure to sulfur dioxide from the combustion of hydrogen sulfide. Pages: 29

3rd Edition | May 2001 | Reaffirmed: January 2013
Product Number: G49003 | Price: $88.00

**RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh

Kazakh translation of RP 49.
3rd Edition | May 2001 | Product Number: G4903K | Price: $71.00

**RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian

Russian translation of RP 49.
3rd Edition | May 2001 | Product Number: G04903R | Price: $68.00

RP 51R
Environmental Protection for Onshore Oil and Gas Production Operations and Leases

Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Gas compression for transmission purposes or production operations, such as gas lift, pressure maintenance, or enhanced oil recovery (EOR), is included. Annex A provides guidance for a company to consider as a “good neighbor.” Pages: 35

Product Number: G51R01 | Price: $78.00

RP 54
Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations

Includes procedures for promotion and maintenance of safe working conditions for employees engaged in rotary drilling operations and well servicing operations, including special services. Applies to rotary drilling rigs, well servicing rigs, and special services as they relate to operations on locations. Pages: 35

3rd Edition | August 1999 | Reaffirmed: January 2013
Product Number: G54003 | Price: $125.00

**RP 54 *
Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Kazakh

Kazakh translation of RP 54.
3rd Edition | August 1999 | Product Number: G54003K | Price: $100.00

**RP 54 *
Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Russian

Russian translation of RP 54.
3rd Edition | August 1999 | Product Number: G54003R | Price: $100.00

RP 55
Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide

Covers recommendations for protection of employees and the public, as well as conducting oil and gas producing and gas processing plant operations where hydrogen sulfide is present in the fluids being produced. Pages: 40

Product Number: G55002 | Price: $115.00

Std 65-2
Isolating Potential Flow Zones During Well Construction

Contains best practices for zone isolation in wells to prevent annular pressure and/or flow through or past pressure-containment barriers that are installed and verified during well construction. Well construction practices that may affect barrier sealing performance are mentioned along with methods to help ensure positive effects or to minimize any negative ones. The objectives of this guideline are two-fold. The first is to help prevent and/or control flows just prior to, during, and after primary cementing operations or install or “set” casing and liner pipe string in wells. The second objective is to help prevent sustained casing pressure (SCP). The guidance from this document covers recommendations for pressure-containment barrier design and installation and well construction practices that affect the zone isolation process to prevent or mitigate annular fluid flow or pressure. Pages: 83

Product Number: G65202 | Price: $130.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 67
Recommended Practice for Oilfield Explosives Safety
Applies to explosives used in oil and gas well operations, more specifically, explosives used inside the wellbore. Guidance is provided for explosives transportation, on-site explosives loading and unloading operations, electrical wireline operations, tubing conveyed operations, self-contained activating tools, setting tools, sidewall sample taker tools, select fire perforating guns, and bullet perforating guns. Recommendations are presented regarding surface equipment and downhole equipment. Recommended training and minimum qualifications are presented for personnel who participate in handling and using explosives at the well site. Pages: 18
Product Number: G06702 | Price: $85.00

RP 67 *
Recommended Practice for Oilfield Explosives Safety—Kazakh
Kazakh translation of RP 67.
2nd Edition | May 2007 | Product Number: G06702K | Price: $68.00

RP 67 *
Recommended Practice for Oilfield Explosives Safety—Russian
Russian translation of RP 67.
2nd Edition | May 2007 | Product Number: G06702R | Price: $69.00

RP 74
Recommended Practice for Occupational Safety on Offshore Oil and Gas Production Operation
Recommended practice and procedures for promoting and maintaining safe working conditions for personnel engaged in onshore oil and gas production operations, including special services. Pages: 23
1st Edition | October 2001 | Reaffirmed: January 2013
Product Number: G74001 | Price: $61.00

RP 75
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities
Provides guidance for use in preparing safety and environmental management programs (SEMP) for oil, gas, and sulphur operations and facilities located on the outer continental shelf (OCS). These guidelines are applicable to well drilling, servicing, and production; and pipeline facilities and operations that have the potential for creating a safety or environmental hazard at OCS platform sites. Eleven major program elements are included for application to these facilities and operations. Identification and management of safety and environmental hazards are addressed in design, construction, startup, operation, inspection, and maintenance of new, existing, and modified facilities. Pages: 41
Product Number: G07503 | Price: $92.00

RP 75 *
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities—Chinese
Chinese translation of RP 75.
3rd Edition | May 2004 | Product Number: G07503C | Price: $65.00

Bull 75L
Guidance Document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operations and Associated Activities
Provides general information and guidance for the development of a safety and environmental management system (SEMS) for onshore oil and natural gas operations, including drilling, production, and well servicing activities. Although there is an extensive amount of information that has been developed on the topic of safety and environmental management systems, this document focuses on this industry sector to help foster continuous improvement in the industry's safety and environmental performance. It is recognized that many onshore oil and natural gas companies have effective SEMS in place; however, the intent of this document is to provide an additional tool that can assist these and especially other operators in taking the next step toward implementing a complete system at a pace that complements their business plan. For those who already have a mature SEMS in place, this document can be used for continuous improvement of the system. Pages: 12
1st Edition | November 2007 | Product Number: G75L01 | Price: $34.00

RP 76
Contractor Safety Management for Oil and Gas Drilling and Production Operations
Intended to assist operators, contractors, and subcontractors (third parties) in the implementation of a contractor safety program and improve the overall safety performance while preserving the independent contractor relationship. It is intended for the Upstream Segment of the petroleum industry; however, since the operator requirements and the contracted work are diverse, this publication may not be applicable to all operations at each company or to all contract work performed in those operations. Many oil and gas exploration and production companies contract for equipment and personnel services for a wide range of activities, including drilling production, well servicing, equipment repair, maintenance, and construction. Certain activities of contractors have the potential to take place either contractor and/or operator personnel and/or equipment at risk. It is important that operators are carried out in a safe manner. Operators and contractors need to provide safe work places and to protect the safety of their work places and to protect the safety of their workforces and the general public. When they work together to improve safety, both benefit. Pages: 60
2nd Edition | November 2007 | Reaffirmed: January 2013
Product Number: G07602 | Price: $59.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Human Factors Tool for Existing Operations

Objectives of this tool include the following:
- provide a tool for operating crews to identify opportunities for latent conditions and human error, and
- improve how process hazards analysis/hazard evaluation/relativization process address human factors.

The scope of this tool includes existing operations and equipment and human tasks.

This tool is intended for use without specific training on human factors. This is a simple process for gathering a few operators and mechanics who are familiar with the equipment/process and who are qualified to identify where traps (latent conditions) in the equipment and tasks (error likely scenarios) exist that make it easy for people to do something wrong. Pages: 14

1st Edition | February 2006 | Product Number: IOHFO3 | Price: $64.00

RP 752

Management of Hazards Associated with Location of Process Plant Permanent Buildings

Provides guidance for managing the risk from explosions, fires and toxic material releases to on-site personnel located in new and existing buildings intended for occupancy. This RP was developed for use at refineries, petrochemical and chemical operations, natural gas liquids extraction plants, natural gas liquefaction plants, and other onshore facilities covered by the OSHA Process Safety Management of Highly Hazardous Chemicals, 29 CFR 1910.119.

Buildings covered by this RP are rigid structures intended for permanent use in fixed locations. Tents, fabric enclosures and other soft-sided structures are outside the scope of this document. This 3rd Edition of RP 752:2009 supersedes all previous editions, including the technical data provided in those documents.

Significant research and development of technology pertinent to building siting evaluations has been performed since the publication of the previous editions of RP 752. Examples of updated technology include prediction of blast damage to buildings, determination of occupant vulnerabilities, and estimates of event frequencies. Prior versions of RP 752 and the technical data included in them should not be used for building siting evaluations. The 2nd Edition of RP 752 covered all building types both permanent and portable. This 3rd Edition of RP 752 does not cover portable buildings.

Portable buildings are now covered by RP 753. It is recognized, however, that portable buildings specifically designed for significant blast loads represent a potential area of overlap between RP 753 and RP 752. In accordance with 1.3 of this document:

"Buildings described in API RP 753, Management of Hazards Associated with Location of Process Plant Portable Buildings, First Edition, June 2007, as ‘portable buildings specifically designed to resist significant blast loads’ and intended for permanent use in a fixed location are covered in this document (API RP 752). All other portable buildings are covered by API RP 753." Pages: 27

3rd Edition | December 2009 | Product Number: K75203 | Price: $145.00

RP 753

Management of Hazards Associated with Location of Process Plant Portable Buildings

Provides guidance for reducing the risk to personnel located in portable buildings from potential explosion, fire and toxic release hazards. While occupied permanent buildings (e.g. control rooms, operator shelters) located near covered process area are typically constructed to be blast and fire resistant, conventional portable buildings (i.e. light wood trailers) are typically not constructed to be blast and fire resistant. Past explosion accidents have demonstrated that occupants of conventional portable buildings are susceptible to injuries from structural failures, building collapse, and building debris and projectiles.

Guidance is provided based on the following principles.
- Locate personnel away from covered process areas consistent with safe and effective operations.
- Minimize the use of occupied portable buildings in close proximity to covered process areas.
- Manage the occupancy of portable building especially during periods of increased risk including unit start up or planned shut-down operations.
- Design, construct, install, and maintain occupied portable buildings to protect occupants against potential hazards.
- Manage the use of portable buildings as an integral part of the design, construction, and maintenance operation of a facility. Pages: 22

1st Edition | June 2007 | Reaffirmed: January 2012
Product Number: K75301 | Price: $145.00

RP 754

Process Safety Performance Indicators for the Refining and Petrochemical Industries

(ANSI/API RP 754)

Identifies leading and lagging process safety indicators useful for driving performance improvement. As a framework for measuring activity, status, or performance, this document classifies process safety indicators into four tiers of leading and lagging indicators. Tiers 1 and 2 are suitable for nationwide public reporting, and Tiers 3 and 4 are intended for internal use at individual facilities. Guidance on methods for development and use of performance indicators is also provided. This recommended practice (RP) was developed for the refining and petrochemical industries, but may also be applicable to other industries with operating systems and processes where loss of containment has the potential to cause harm. Applicability is not limited to those facilities covered by the OSHA Process Safety Management Standard, 29 CFR 1910.119, or similar national and international regulations. To enable consistent application of this RP to other refining and petrochemical industry sub segments, informative annexes have been created to define the Applicability and Process definition for those subsegments. The user would substitute the content of those annexes for the referenced sections of this RP: Annex A—Petroleum Pipeline and Terminal Operation, Annex B—Retail Service Stations, and Annex C—Oil and Gas Drilling and Production Operations. Performance indicators identified in this recommended practice are based on the following guiding principles.

- Indicators should drive process safety performance improvement and learning.
- Indicators should be relatively easy to implement and easily understood by all stakeholders (e.g. workers and the public).
- Indicators should be statistically valid at one or more of the following levels: industry, company, and facility. Statistical validity requires a consistent definition, a minimum data set size, a normalization factor, and a relatively consistent reporting pool.
- Indicators should be appropriate for industry, company, or facility level benchmarking. Pages: 118

2nd Edition | April 2016 | Product Number: K75402 | Price: $155.00

RP 755

Management of Hazards Associated with Location of Process Plant Portable Buildings

Provides guidance for reducing the risk to personnel located in portable buildings from potential explosion, fire and toxic release hazards. While occupied permanent buildings (e.g. control rooms, operator shelters) located near covered process area are typically constructed to be blast and fire resistant, conventional portable buildings (i.e. light wood trailers) are typically not constructed to be blast and fire resistant. Past explosion accidents have demonstrated that occupants of conventional portable buildings are susceptible to injuries from structural failures, building collapse, and building debris and projectiles.

Guidance is provided based on the following principles.
- Locate personnel away from covered process areas consistent with safe and effective operations.
- Minimize the use of occupied portable buildings in close proximity to covered process areas.
- Manage the occupancy of portable building especially during periods of increased risk including unit start up or planned shut-down operations.
- Design, construct, install, and maintain occupied portable buildings to protect occupants against potential hazards.
- Manage the use of portable buildings as an integral part of the design, construction, and maintenance operation of a facility. Pages: 22

1st Edition | June 2007 | Reaffirmed: January 2012
Product Number: K75301 | Price: $145.00
Designed for one-time compliance but instead provides a framework that will build upon on a regular and continuous basis. It is not a set of guidelines to be followed rigidly but rather a system meant to be improved (e.g., through a fatigue management system). One essential feature of FRMS is that it is a data-driven, risk-informed, safety performance-based system. The history of FRMS identification and explanation of scientific and operational issues considered during the preparation of RP 755. By providing the reasoning behind the specific wording in the RP 755 document, this document supports each key statement in RP 755 in sequence so that it can be used in parallel with the RP 755 text. To make this document accessible and manageable, key scientific sources and references are provided to help readers gain access to the scientific literature.

Fatigue Risk Management Systems (FRMS) have emerged and are being recognized as a more effective approach to managing and mitigating employee fatigue risk in the 24/7 workplace. The core feature of the FRMS is that it is a data-driven, risk-informed, safety performance-based system. The FRMS implementation process first identifies all sources of fatigue risk in the business operation, then introduces mitigating policies, technologies, and procedures to reduce the risk, and most importantly then maintains them in a proactively managed continuous improvement system. The history of FRMS was recently summarized.

This method represents a significant step change from the traditional approaches of either relying on maximum limits to hours of work or minimum limits to hours of rest (variously called Hours of Service, Work-Rest Rules, Working Time Directives), or adopting intermittent or piece-meal solutions (e.g., a fatigue training program or a shift schedule redesign), depending on the interests and initiative of local site managers. One essential feature of FRMS is that it is a system meant to be improved upon on a regular and continuous basis. It is not a set of guidelines designed for on-time compliance but instead provides a framework that will evolve over time, driven by the collection of data on fatigue risk and fatigue outcomes (e.g., fatigue-related incidents).
Safety and Fire Protection

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

RP 2001
Fire Protection in Refineries
Covers basic concepts of refinery fire protection. It reviews the chemistry and physics of refinery fires; discusses how the design of refinery systems and infrastructure impact the probability and consequences of potential fires; describes fire control and extinguishing systems typically used in refineries; examines fire protection concepts that should be covered in operating and maintenance practices and procedures; and provides information on organization and training for refinery emergency responders. Many of the concepts, systems and equipment discussed in this document are covered in detail in referenced publications, standard or governmental requirements. Pages: 75
9th Edition | April 2012 | Product Number: C200109 | Price: $118.00

RP 2003
Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents
Presents the current state of knowledge and technology in the fields of static electricity, and stray currents applicable to the prevention of hydrocarbon ignition in the petroleum industry and is based on both scientific research and practical experience. The principles discussed in this recommended practice are applicable to other operations where ignitable liquids and gases are handled. Their use should lead to improved safety practices and evaluations of existing installations and procedures. Pages: 76
8th Edition | September 2015 | Product Number: K20038 | Price: $196.00

RP 2009
Safe Welding, Cutting, and Hot Work Practices in the Petroleum and Petrochemical Industries
Provides guidelines for safely conducting welding, cutting or other hot work activities in refineries, gas plants, petrochemical plants, and other facilities in the petroleum and petrochemical industries. It provides specific guidance for evaluating procedures for certain types of work on equipment in service. It does not include guidance for compliance with regulations or codes; hot tapping; welding techniques, normal, “safe work” practices; or entry or work in inert environments. Pages: 23
Product Number: K20097 | Price: $81.00

RP 2027
Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service
Provides safe work practices for the prevention and control of vapor, ignition, and other potential hazards during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. It also provides assistance to employers in developing operating procedures that provide for hazard recognition to significantly reduce ignition risks during abrasive blasting of hydrocarbon storage tanks in service that may contain or have the potential to develop a flammable atmosphere in the vapor space. This RP applies to safe work practices required for abrasive blasting of exterior shells and exterior roofs of all aboveground atmospheric storage tanks in liquid hydrocarbon service. It also applies to safe work practices for abrasive blasting conducted on the roofs and inner portions of the exposed surfaces of shells (that portion of the shell above the roof level) on open-top (external) floating roof tanks. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static electricity, internal combustion engines, electric motors, friction sparks, hot metal surfaces, and external-to-the-work ignition sources. Pages: 27
4th Edition | November 2018 | Product Number: C20274 | Price: $125.00

RP 2028
Flame Arresters in Piping Systems
Covers the use and limitations of flame arresters installed in piping systems in the petroleum and petrochemical industries. It provides a general overview of flame arresters currently in use and some potential concerns or limitations. Applicable combustion and flame propagation parameters are discussed including the distinction between arresting flames versus arresting detonations. Pages: 12
3rd Edition | February 2002 | Reaffirmed: December 2010
2-Year Extension: February 2015 | Product Number: K20283 | Price: $61.00

RP 2030
Provides guidance for the petroleum industry and some petrochemical industry applications (for non-water-reactive petrochemicals with physical and combustion characteristics comparable to hydrocarbons) in determining where water spray systems might be used to provide protection from fire damage for equipment and structures. Pages: 21
4th Edition | September 2014 | Product Number: K20304 | Price: $108.00

RP 2201
Safe Hot Tapping Practices in the Petroleum and Petrochemical Industries
Discusses the benefits and detriments associated with the use of flame arresters on vents utilized on atmospheric fixed-roof tanks. Pages: 4
Product Number: K22103 | Price: $67.00

RP 2210
Flame Arresters for Vents of Tanks Storing Petroleum Products
Discusses the benefits and detriments associated with the use of flame arresters on vents utilized on atmospheric fixed-roof tanks. Pages: 4
Product Number: K22103 | Price: $67.00

RP 2216
Ignition Risk of Hydrocarbon Vapors by Hot Surfaces in the Open Air
Provides information concerning the potential for ignition of hydrocarbons that are exposed to hot surfaces in the open air. Hydrocarbon liquids, when heated sufficiently, can ignite without the application of a flame or spark. The ignition of hydrocarbons by hot surfaces may occur when oil is released under pressure and sprays upon a hot surface or is spilled and lies upon a hot surface for a period of time. Understanding the mechanism and dynamics of auto-ignition is an important step in preventing or controlling the ignition of hydrocarbons by hot surfaces in the open air. In addition to the information provided herein, appropriate industry standards and other information may assist users to understand the potential hazards of hydrocarbon auto-ignition (such as spontaneous combustion) not specifically covered by this publication and implement appropriate prevention and control measures. Pages: 5
3rd Edition | December 2003 | Reaffirmed: October 2010
Product Number: K22163 | Price: $61.00

This publication is a new entry in this catalog.
◆ This publication is related to an API licensing, certification, or accreditation program.
RP 2217A
Safe Work in Inert Confined Spaces in the Petroleum and Petrochemical Industries
Covers design, materials, face-to-face dimensions, pressure-temperature ratings, and examination, inspection, and test requirements for two types of check valves:

- Type ‘A’ check valves are short face-to-face and can be: wafer, lug, or double flanged; single plate or dual plate; gray iron, ductile iron, steel, nickel alloy, or other alloy designed for installation between Classes 125 and 250 cast iron flanges as specified in ASME B16.1, between Classes 150 and 300 ductile iron flanges as specified in ASME B16.42, between Classes 150 and 2500 steel flanges as specified in ASME B16.5, and between Classes 150 and 900 steel pipeline flanges as specified in MSS SP-44 or steel flanges as specified in ASME B16.47.
- Type ‘B’ bolted cover swing check valves are long face-to-face as defined in 5.1.2 and can be: flanged or buttwelded ends of steel, nickel alloy, or other alloy material. End flanges shall be as specified in ASME B16.5 or ends shall be butt-welding as specified in ASME B16.25. Pages: 34

5th Edition | July 2017 | Product Number: K2217A5 | Price: $149.00

RP 2218
Fireproofing Practices in Petroleum and Petrochemical Processing Plants
Intended to provide guidance for selecting, applying, and maintaining fireproofing systems designed to limit the extent of fire-related property loss from pool fires in the petroleum and petrochemical industries. Where comparable hazards exist, and to the extent appropriate, it may be applied to other facilities that could experience similar severe fire exposure and potential losses.

This RP identifies fireproofing needs for petroleum and petrochemical plants specifically focusing on property loss protection for pool fires scenarios in on-shore processing plants. Pages: 60

3rd Edition | July 2013 | Product Number: K22183 | Price: $185.00

RP 2219
Safe Operation of Vacuum Trucks Handling Flammable and Combustible Liquids in Petroleum Service
Provides information concerning the safe operation of vacuum trucks engaged in all aspects of handling flammable and combustible liquids, associated waste water, produced water, sour water, basic sediment and water (BS&W), caustics, spent acids, or other fluids stemming from petroleum operations, products, powders, and the hazard of dust explosions. This publication discusses the types of vacuum pumps and cargo tanks associated with vacuum truck operations, the common hazards associated with those vacuum truck operations, and representative safe work practices and precautions to help prevent accidents and injuries. Appendix G provides brief descriptions of a variety of incidents involving vacuum trucks, including offloading into open areas. These may be useful in reviewing specific operating procedures or developing materials for safety meetings or pre-job briefings. Pages: 60

Std 2220
Contractor Safety Performance Process
Assists owners and contractors in developing, improving, and maintaining their mutual safety programs. Widely diverse contractor functions and uses may include resident, non-resident, long-term, and short-term contractors. These have in common the need for effective safety programs to protect both owner and contractor personnel from workplace injury and illness, as well as from losses associated with incidents arising out of contractor work. This standard aims to help both owners and contractors improve the contractor's safety performance while preserving the independent contractor relationship. It was developed for the petroleum and petrochemical industries and the firms that perform contract work for them.

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This annual summary reports on cases recordable in 1996 under the U.S. Bureau of Labor Statistics' recordkeeping guidelines. The survey is based on data submitted to the American Petroleum Institute by 176 oil and gas companies, employing 285,885 persons. The report includes information regarding injuries, illnesses, fatalities, lost workday cases, and incidence rates by function.</td>
</tr>
<tr>
<td>June 1997</td>
<td>Product Number: K23751</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>June 1998</td>
<td>Product Number: K23761</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1999</td>
<td>Product Number: K23771</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2000</td>
<td>Product Number: K23781</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2001</td>
<td>Product Number: K23790</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2002</td>
<td>Product Number: K23801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2003</td>
<td>Product Number: K23811</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2004</td>
<td>Product Number: K23821</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2005</td>
<td>Product Number: K23831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2006</td>
<td>Product Number: K23841</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2007</td>
<td>Product Number: K23851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2008</td>
<td>Product Number: K23861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2009</td>
<td>Product Number: K23871</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2010</td>
<td>Product Number: K23881</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1989 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1989</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1990 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1991 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1992</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1992 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 1993</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1993 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1994</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1996</td>
</tr>
</tbody>
</table>
Safety and Fire Protection

Publ 2510A
Fire Protection Considerations for the Design and Operation of Liquefied Petroleum Gas (LPG) Storage Facilities
Supplements Std 2510 and addresses the design, operation, and maintenance of liquefied petroleum gas (LPG) storage facilities from the standpoint of prevention and control of releases, fire protection design, and fire control measures. The history of LPG storage facility safety experience, facility design philosophy, operating and maintenance procedures, and various fire protection and fire-fighting approaches are presented. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms. Pages: 45
Product Number: K2510A | Price: $104.00

STORAGE TANK SAFETY STANDARDS

Std 2015 ♦
Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks
Applicable to stationary atmospheric and low-pressure (up to and including 15 psig) aboveground petroleum storage tanks used in all sectors of the petroleum and petrochemical industry, including crude oil and gas production; refining; petrochemicals; pipelines and terminals; bulk storage; and ethanol facilities. This standard provides requirements for safely planning, coordinating, and conducting tank entry and cleaning operations, from removal from service through return to service. Pages: 146
8th Edition | January 2018 | Product Number: K20158 | Price: $204.00

RP 2021
Management of Atmospheric Storage Tank Fires
Provides experience-based information to enhance the understanding of fires in atmospheric storage tanks containing flammable and combustible materials. It presents a systematic management approach that can assist tank fire prevention. If fires do occur, this information can help responders optimize fire suppression techniques to reduce the severity of an incident and reduce the potential for escalation. Pages: 83
Product Number: K20214 | Price: $138.00

RP 2023
Guide for Safe Storage and Handling of Heated Petroleum Derived Asphalt Products and Crude Oil Residua
Describes phenomena that can occur and precautions to be taken in the storage and handling of asphalt products and residua derived from crude petroleum. It applies when these materials are stored in heated tanks at refineries and bulk storage facilities and transported in tank vehicles. Pages: 44
Product Number: K20233 | Price: $113.00

RP 2026 ♦
Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service
Provides information to enable safe access/egress involving floating roofs of storage tanks used in petroleum service and identifies common hazards and potentially hazardous conditions associated with these activities. The objective of this recommended practice (RP) is to establish general precautionary measures appropriate for individual situations. It provides the appropriate precautions for preventing accidents and injuries. This RP is intended primarily for those persons who are required to perform inspections, service, maintenance, and/or repair activities that involve descent onto floating roofs of in-service petroleum tanks. This RP does not cover general considerations that apply to climbing onto petroleum storage tanks and other structures. Pages: 28
3rd Edition | June 2017 | Product Number: K20263 | Price: $94.00

Publ 2027 ♦
Preparing Tank Bottoms for Hot Work
Provides information to assist safe performance of hot work on the bottoms of storage tanks that have been in service to store flammable products. This work activity has specific precautions and work practices. It also addresses the safety aspects of hot work performed on petroleum storage tank bottoms. It discusses safety precautions for preventing fires, explosions, and associated injuries. The term “hot work,” as used in this publication, is defined as an operation that can produce a spark or flame hot enough to ignite flammable vapors. This recommended practice does not contain all safety precautions and procedures that may be required prior to, during, or after a specific hot work activity. All hot work should be performed in compliance with applicable federal, state, and local regulatory requirements and recognized industry practices. Work practices of concern for working on tank bottoms include, but are not limited to, confined space entry, lockout/tagout, atmospheric testing, ventilation, and requirements for use of personal protective equipment (PPE). Pages: 27
7th Edition | June 2017 | Product Number: K22077 | Price: $104.00

Std 2350
Overfill Protection for Storage Tanks in Petroleum Facilities (ANSI/API Std 2350)
Applies to storage tanks associated with marketing, refining, pipeline, and terminals operations and with tanks containing Class I or Class II petroleum liquids and use is recommended for Class III petroleum liquids. This standard addresses overfill protection for petroleum storage tanks. It recognizes that prevention provides the most basic level of protection, thus while using both terms “protection” and “prevention,” the document emphasizes prevention. The standard’s scope covers overfill (and damage) prevention practices for aboveground storage tanks in petroleum facilities, including refineries, marketing terminals, bulk plants, and pipeline terminals that receive flammable and combustible liquids. The fourth edition continues to build on experience and new technology through the use of management systems. Since operations are the primary overfill prevention safeguard, new definitions and requirements are established for alarms. Risk reduction is also addressed by current and generally accepted industry practices.

The essential elements of this document are based on current industry safe operating practices and existing consensus standards. Federal, state, and local regulations or laws may contain additional requirements for tank overfill protection programs. For existing facilities, the results of a risk-based analysis of aboveground atmospheric petroleum storage tanks may indicate the need for more protection against overfilling. In such cases, some provisions from this standard may be suitable. The purpose of this standard is to assist owner/operators and operating personnel in the prevention of tank overfills by implementation of a comprehensive overfill prevention process (OPP). The goal is to receive product into the intended storage tank without overfill or loss of containment.

This standard does not apply to: underground storage tanks; aboveground tanks of 1320 U.S. gallons (5000 liters) or less; aboveground tanks that comply with PEI 600; pressure vessels; tanks containing non-petroleum liquids; tanks storing LPG and LNG; tanks at service stations; tanks filled exclusively from wheeled vehicles (i.e. tank trucks or railroad tank cars); and tanks covered by OSHA 29 CFR 1910.119 and EPA 40 CFR 68, or similar regulations. Pages: 47
4th Edition | May 2012 | Product Number: K235004 | Price: $117.00

This publication is related to an API licensing, certification, or accreditation program.
by 15% by 1996. Appendices provide a detailed analysis of costs, strategies and control measures can be developed to reduce VOC emissions and the potential for formation of ozone. Corresponding emission factors for each activity include a segment and for each country. Activity factors describe the activity level for a particular industrial activity. The menu provides a "menu" of possible control options using the most up-to-date information and accurate analyses for significant sources of volatile organic compounds (VOCs) and NOx. The menu provides a preliminary demonstration of how cost-effective packages of attainment strategies and control measures can be developed to reduce VOC emissions by 15% by 1996. Appendices provide a detailed analysis of costs, effectiveness, and application limitations. Pages: 354

EMISSIONS: GENERAL

Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry

API Tools for Estimating GHG Emissions

Accurate estimation of greenhouse gas emissions is indispensable to responsibly addressing climate change. Through API, the U.S. oil and natural gas industry has provided a suite of tools for estimating emissions. It includes API's updated 2009 compendium of estimations emission methodologies, software for emissions estimation and inventorying, and guidelines (created by the International Petroleum Industry Environmental Conservation Association) to assist in the accounting and reporting of emissions. Pages: 807

DR 76

Determination of Emissions from Retail Gasoline Outlets Using Optical Remote Sensing: Pilot Field Study at a Non-Vapor Recovery Site, Project Summary Report, Volume I

Results of this study are presented in a three-volume report. Volume I presents the results of a pilot study to evaluate the use of optical remote sensing (ORS) technology for determining emission factors as well as the dispersion of the emissions at an uncontrolled retail gasoline outlet (RGO). ORS techniques may be able to provide a direct method of determining the total emissions from an RGO under varied conditions and to provide this information with little interference with the operation of RGO. Pages: 50

November 1999 | Product Number: I00076 | Price: $126.00

DR 141

Global Emissions of Carbon Dioxide from Petroleum Sources

Describes carbon dioxide emission estimates developed for a broadly defined petroleum industry whose five segments include (1) exploration and extraction; (2) crude petroleum transportation to refineries; (3) refining operations; (4) refinery products transportation; and (5) end uses. Emission estimates for carbon dioxide have been developed for each industry segment and for each country. Activity factors describe the activity level for a particular industrial activity. Corresponding emission factors for each activity factor were developed from U.S. Environmental Protection Agency and industry documents. Pages: 91

July 1991 | Product Number: I00141 | Price: $61.00

Pub 326

The Cost Effectiveness of VOC and NOx Emission Control Measures

Provides air pollution control planners and other interested parties in ozone nonattainment areas with a "menu" of possible control options using the most up-to-date information and accurate analyses for significant sources of volatile organic compounds (VOCs) and NOx. The menu provides a preliminary demonstration of how cost-effective packages of attainment strategies and control measures can be developed to reduce VOC emissions by 15% by 1996. Appendices provide a detailed analysis of costs, effectiveness, and application limitations. Pages: 354

September 1994 | Product Number: J32600 | Price: $152.00

Pub 332

Comparison of Screening Values from Selected Hydrocarbon Screening Instruments

Describes a study carried out at two refineries to compare differences in equipment leak screening values obtained from four instruments commonly used to measure fugitive emissions. The effect of screening distance was also evaluated, and the results from the study were compared to those of an earlier study conducted in 1979. Adjustment factors to relate screening values from one instrument are presented, which are applicable to marketing, transportation, and exploration and production facilities as well as refineries. Pages: 128

August 1995 | Product Number: J33200 | Price: $93.00

Pub 342 and Pub 343

A number of federal, state, and local regulations are designed to control fugitive emissions of volatile organic compounds and hazardous air pollutants. API sponsored this project to present options and recommendations on procedures for obtaining inspection and maintenance data from certain process equipment with the potential to leak fugitive emissions. The two resulting manuals focus on the recommended fugitive emission practices in the petroleum industry, specifically for refineries, marketing terminals, and the oil and gas production industries. Pages: 204

June 1998

Product Number for Publ 342: J34200 | Price: $65.00

Product Number for Publ 343: J34300 | Price: $65.00

Pub 344

Critical Review of Source Sampling and Analysis Methodologies for Characterizing Organic Aerosol and Fine Particulate Source Emission Profiles

Intended for use in designing future measurement programs for characterizing emissions from stationary sources that contribute to fine particle concentrations in the atmosphere. The benefits and drawbacks of various measurement approaches are discussed, and a recommended approach for combustion sources is presented. Pages: 128

June 1998 | Product Number: J34400 | Price: $76.00

Pub 347

Hazardous Air Pollutant Emissions from Gasoline Loading Operations at Bulk Gasoline Terminals

Hazardous air pollutant (HAP) emission testing was conducted at 33 bulk gasoline terminals across the United States. Emissions were measured from the loading of gasoline cargo tanks at facilities with a vapor control system. Emission tests from 23 carbon adsorption units, 8 thermal oxidizers, and 2 refrigeration units were included. Control efficiencies for eight HAP compounds were derived for the carbon adsorption units and thermal oxidizers; no control efficiencies were reported from the refrigeration units due to the limited data collected. The HAP control efficiencies presented in this report have been used to develop HAP emission factors that can be used to determine HAP emissions based on the volume of gasoline loaded at a facility. Pages: 138

October 1998 | Product Number: J34700 | Price: $85.00
In 1997, the U.S. Environmental Protection Agency (EPA) promulgated new ambient air standards for particulate matter (PM) smaller than 2.5 micrometers in diameter (PM 2.5). Source emissions data are needed to assess the contribution of petroleum industry combustion sources to ambient PM 2.5 concentrations. This report presents particulate measurement results from a 114 million British thermal unit (MMBtu) per hour gas-fired refinery process heater. The particulate stack measurements were made using both a dilution tunnel research test method and traditional EPA sampling methods. Pages: 118

August 2001 | Product Number: I47040 | Price: $91.00

Publ 4712
Gas-Fired Steam Generator—Test Report Site C: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources
In 1997, the U.S. Environmental Protection Agency promulgated new ambient air standards for particulate matter (PM) smaller than 2.5 micrometers in diameter (PM 2.5). Source emissions data are needed to assess the contribution of petroleum industry combustion sources to ambient PM 2.5 concentrations. This report presents that the gas fired steam generator has a maximum heat input of 62.5 MMBtu/hr with an average rate of approximately 50 MMBtu/hr. Pages: 100

July 2001 | Product Number: I47120 | Price: $85.00

Publ 4720
Comparison of API and EPA Toxic Air Pollutant Emission Factors for Combustion Sources
Compares and explains differences in published toxic air pollutant emission factors for combustion sources and recommends priorities for gathering additional emission factor information. Pages: 50

September 2002 | Product Number: I47200 | Price: $95.00

Publ 4772
Measuring Particulate Emissions from Combustion Sources
Since the inception of the Clean Air Act, the petroleum refining industry has been faced with the need to determine criteria pollutant emissions from combustion sources. While some of these species, such as NOx, SO2, and CO remain in the vapor phase during and after combustion and are relatively simple to measure, particulate matter (PM) measurements are much more challenging. This is because while some PM such as fly ash or catalytic cracking catalyst fines is clearly solid material that is readily collected and measured on a sampling filter, other species that may exist in the vapor phase during combustion can later condense into aerosols downstream from the combustion zone. This can occur before or after any control devices, depending upon the temperature and composition of the combustion gases. Consequently, it has been customary to refer to PM as being composed of two PM components, filterable and condensable, the relative amounts of each depending on the stack gas composition and temperature, control devices in use at the unit, and the method for measuring PM. While measuring filterable PM is relatively straightforward (i.e., PM collected on a filter), condensable PM is a more esoteric quantity and its contribution to total PM emissions is very much dependent upon the choice of the measurement method. The U.S. Environmental Protection Agency apparently recognized this issue, and until the interest in measuring and controlling PM 2.5 emissions emerged in the 1990s, their PM sampling methods were centered on measuring only filterable PM. At the time that these methods were originally instituted, the best available pollution control devices were mainly limited to filterable PM and could not control a considerable portion of PM emissions. As interest in the health effects associated with PM emissions increased, efforts were centered on determining the contribution of the PM 2.5 fraction that was believed to most responsible for these effects and principally composed of condensable matter. This report will review the
conditions leading to the formation of condensable particulate matter from stack gas components along with the methods used to measure PM emissions from refinery combustion sources. Pages: 27

September 2008 | Product Number: I47720 | Price: $64.00

Publ 4775
Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings—Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plumes

Aerobic biodegradation can contribute significantly to the attenuation of petroleum hydrocarbon vapors in the unsaturated zone; however, most regulatory guidance for assessing potential human health risks via vapor intrusion to indoor air either neglect biodegradation or only allow for one order of magnitude additional attenuation for aerobically degradable compounds, which may be overly conservative in many cases. This paper describes results from three-dimensional numerical model simulations of vapor intrusion for petroleum hydrocarbons to assess the influence of aerobic biodegradation on the attenuation factor for a variety of source concentrations and depths for buildings with basements and slab-on-grade construction. Provided that oxygen is present in the vadose zone, aerobic biodegradation of petroleum hydrocarbon vapors in the unsaturated zone will reduce the soil gas concentrations and the potential risks from vapor intrusion to indoor air compared to nondegrading compounds. At lower source concentrations and/or deeper source depths, aerobic biodegradation may result in a reduction in vapor intrusion attenuation factors by many orders of magnitude. The magnitude of the reduction depends on site-specific conditions, which should be considered in the development of a conceptual site model for each site. However, oxygen supply and degradation rates are likely to be sufficient at many sites to mitigate potential risks from vapor intrusion for low vapor concentration sources (less than about 2 mg/L-vapor total hydrocarbons). The simulations conducted in this study provide a framework for understanding the degree to which bioattenuation will occur under a variety of scenarios and provide insight into site conditions that will result in significant biodegradation. This improved understanding may be used to select site-specific attenuation factors for degradable compounds and develop soil vapor screening levels appropriate for particular combinations of source concentrations, source depth, and building characteristics, which should be defined as part of a site conceptual model. Pages: 53

April 2009 | Product Number: I47750 | Price: $111.00

Publ 4776
A Guide to Understanding, Assessment and the Regulation of PAHs in the Aquatic Environment

Designed to be an introductory guide to understanding and assessing polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment (water and sediments). API prepared this guide primarily for refinery personnel and home office environmental staff who may have to address PAH issues. In addition, this guide may also be useful to staff in regulatory agencies that work with PAHs in wastewater discharge permits, waste load allocations (total maximum daily loadings), and sediment investigation and remediation.

The guide provides an overview on the chemistry, fate, and sources of PAHs in the environment and the regulatory implications. The guide also includes descriptions of the different sources of PAHs (petrogenic, pyrogenic, diagenic, biogenic) and techniques for differentiating these sources through their characteristic fingerprints, including straightforward ways to help identify or rule out potential sources. Pages: 60

September 2011 | Product Number: I47760 | Price: $110.00

EMISSIONS: EXPLORATION AND PRODUCTION

Publ 4589
Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations

The emission factors derived in this report indicate that fugitive emissions from production facilities are considerably lower than they were in the late 1970s. Investigators use portable detectors to screen more than 180,000 components at 20 offshore and onshore facilities. Mass emission rates from “bagged” emitters, valves, connectors, and other components, such as seals and vents, are used to develop emission factors for individual components and groups of components. A workbook included in the report provides site operators with three different options to calculate emissions from their facilities. See also Publ 4615. Pages: 263

December 1993 | Product Number: I45890 | Price: $146.00

Publ 4615
Emission Factors for Oil and Gas Production Operation

Supplements the information found in Publ 4589 and contains revised emission factors developed from 1993 API data using correlation equations established by the U.S. Environmental Protection Agency in 1994. The report contains emissions factors for five types of production operations—light crude production, heavy crude production, gas production, gas processing plants, and offshore production. It also contains profiles of specialized emissions including air toxics and assesses regional differences in fugitive emissions and control efficiency of inspection and maintenance programs. Component inventory data, screening data, and leak emission data are also included. See also Publ 4589. Pages: 56

January 1995 | Product Number: I46150 | Price: $63.00

Publ 4638
Calculation Workbook for Oil and Gas Production Equipment Fugitive Emissions

This workbook, which is the result of five years of field testing of equipment components at production facilities across the United States, is a valuable tool for petroleum producers who are interested in estimating fugitive emissions from their oil and gas production sites. Four methods of calculating fugitive emissions are presented: EPA average emission factor method, EPA screening value range emission method, EPA correlation method, and leak quantification method. Pages: 62

July 1996 | Product Number: I46380 | Price: $63.00

Publ 4644
A Methodology for Estimating Incremental Benzene Exposures and Risks Associated with Glycol Dehydrators

The U.S. Environmental Protection Agency and API collaborated to develop a methodology to estimate benzene exposures and associated risks under representative emission conditions applicable to glycol dehydrators. The result (spreadsheet program and Monte Carlo routine) was a PC-based model called SIMRISK. A simplified version was developed that could be incorporated into control applicability criteria for glycol dehydrator vent emissions. Pages: 84

February 1997 | Product Number: I46440 | Price: $81.00

Publ 4661
 Exploration and Production Emission Calculator II (EPEC II) User’s Guide

The Exploration and Production Emission Calculator Version 2.0 (EPEC II) is a software tool that can be used to estimate emissions for exploration and production facilities. EPEC II integrates user inputs, emission calculations, and groups of components. A workbook included in the report provides site operators with three different options to calculate emissions from their facilities. See also Publ 4615. Pages: 263

2nd Edition | January 2007 | Product Number: I46610 | Price: $129.00
Health and Environmental Issues

Publ 4662
Evaluation of a Petroleum Production Tank Emissions Model

E&P TANK was evaluated for petroleum production tanks in an emission measurement project sponsored by API and the Gas Research Institute. Emission testing was performed on storage tank vents located at seven sites in widely diverse oil and gas producing regions across the United States. Measured emissions were found to be in agreement with E&P TANK model predictions. Pages: 338

October 1997 | Product Number: I46620 | Price: $121.00

Publ 4679
Amine Unit Air Emissions Model and User’s Guide, AMINECalc Version 1.0

AMINECalc is a user-friendly Windows®-based software program that estimates hydrocarbon emissions from amine-based sour gas and natural gas liquid sweetening units. The output generated by the software can be used for regulatory reporting by unit operators according to the requirements of the Clean Air Act Amendments of 1990. AMINECalc performs three types of calculation options: (1) mass balance calculation, (2) gas process (gas feed) simulation, and (3) NGL process (liquid feed) simulation. Mass emission rates of hazardous air pollutants, including benzene, toluene, ethylbenzene, and xylene (BTEX), and volatile organic compounds can be estimated with the use of AMINECalc. System requirements for running AMINECalc Version 1.0 are IBM PC 486 compatible or higher, 8 MB RAM or more, and Windows® 95/98/NT. Approximately 2 MB of hard disk space are required to hold the program and its supporting run-time libraries. For better interface viewing, it is recommended that the user set the monitor to a high color 16 bit (or higher) resolution. See also Publ 4680. Pages: 76

January 1999 | Product Number: I46790 | Price: $509.00

Publ 4680
Amine Unit Air Emissions Model Evaluation

The implementation of the 1990 Clean Air Act Amendments in the United States has created the need for a reliable method to estimate and report hydrocarbon emissions from amine units. A simulation package, called Amine Unit Air Emission Model (AMINECalc) Version 1.0 was developed. This report evaluates the AMINECalc model by comparing the simulation results with field data collected from operating gas plants. It also recommends improvements and modifications to refine the predictions. See also Publ 4679. Pages: 96

December 1998 | Product Number: I46800 | Price: $124.00

Publ 4683
Correlation Equations to Predict Reid Vapor Pressure and Properties of Gaseous Emissions for Exploration and Production Facilities

Establishes simple techniques for exploration and production (E&P) operators of petroleum storage tank facilities to use for the preparation of site-specific emission inventories to meet environmental regulations. Analyses were performed of oil and gas sampling results and emissions modeling results for over 100 crude oil E&P storage tanks. Correlation equations or statistical averages were recommended to estimate Reid Vapor Pressure, vented flash gas molecular weight, vented working and standing gas molecular weight, hydrocarbon specification (including hazardous air pollutants), and separator gas specific gravity. Pages: 82

December 1998 | Product Number: I46830 | Price: $81.00

Publ 4697
Production Tank Emissions Model (E&P TANK, Version 3.0)

E&P TANKS (API Publ 4697) is a computer-based software designed to use site-specific information to predict emission from petroleum production storage tanks, now compatible with 32-bit and 64-bit Windows 7 as well as Windows 2000/XP/Vista. It estimates flashing, working, and standing losses and calculates losses using specific operations for each user’s tank. Cited by the Environmental Protection Agency (EPA), it allows the user to enter specific tank condition information to generate air emission reports. Visit www.epitanks.com for pricing and information.

Publ 4588
Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 1

To evaluate the accuracy of fugitive emission estimates for petroleum marketing terminals, a study was designed to determine average fugitive emission factors and fugitive emission correlation equations for components in light liquid and gas vapor services. Four marketing terminals were tested, and the results of the study are presented in this report. See also appendices to this document, Publ 45881. Pages: 146

May 1993 | Product Number: I45880 | Price: $127.00

Publ 45881
Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 2

This volume is the appendix to Publ 4588. Appendices include statistical analyses of data, field inventory sheet data, emitter data, nonaromatic speciation data, and aromatic speciation data. See also Publ 4588. Pages: 217

May 1993 | Product Number: I45881 | Price: $118.00

EMISSIONS: MARKETING

Publ 437
Analysis of Fugitive Emission Factors for Leaks in Refinery Components in Heavy Liquid Service

Estimating air pollutants from stationary sources is necessary for compiling emission inventories, determining emission fees, and meeting the conditions of various permits and compliances. This report provides revised emission factors applicable to refinery components in heavy liquid service, which were based on extensive field measurements. It also provides data analyses to determine whether the type of distillate or residual hydrocarbon in the stream would influence the emission factors. Pages: 68

October 1997 | Product Number: J31000 | Price: $59.00

Publ 436
Remote Sensing Feasibility Study of Refinery Fenceline Emissions

Reviews the state of the art of optical remote sensing (ORS) technology and examines the potential use of ORS systems combined with ancillary measurements, such as meteorological and tracer gas release data to determine fugitive emission rates. The report also highlights some issues to consider in planning an ORS field study and clarifies the attendant tradeoffs for issues such as selection of appropriate ORS systems, consideration of detection limits and beam placement, choice of dispersion models, use of tracer gas releases, time scale and timing of field studies, and the requisite meteorological measurements. Pages: 105

April 1994 | Product Number: I45870 | Price: $72.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Publ 4612
1993 Study of Refinery Fugitive Emissions from Equipment Leaks, Volumes I and II

Describes a study to document how fugitive emissions from equipment leaks have changed since the 1980s. Fugitive emissions from valves, pumps, connectors, and open-ended lines of five refineries were measured to develop new emission correlation equations and emission factors. Volume I contains the summaries and results of data analysis. Volume II contains descriptions of the testing approach, special studies to enhance data analysis, and documentation of quality control results. See also companion document Publ 4613. Pages: 248

April 1994 | Product Number: I46120 | Price: $146.00

Publ 4613
1993 Study of Refinery Fugitive Emissions from Equipment Leaks, Volume III

This volume is the appendix to Publ 4612. It contains raw data, in-depth discussions of calculations and statistics, and more complete, independent audit results. See also companion document Publ 4612. Pages: 307

April 1994 | Product Number: I46130 | Price: $100.00

Publ 4639
Estimation of Fugitive Emissions from Petroleum Refinery Process Drains

Presents a protocol to facilitate the measurement and modeling of volatile organic compound (VOC) emissions from refinery process drains. It includes a comprehensive literature review on fugitive emissions from refinery process drains, the results of a survey of process drains at three refineries, a review of models that describe VOC emissions from drain structures, and the results from a series of tests carried out to evaluate the suitability of the equipment and procedures that make up the protocol. Pages: 200

March 1996 | Product Number: I46390 | Price: $90.00

Publ 4677

Emissions from refinery process drains are under increasing scrutiny, particularly with regard to volatile organic compounds (VOCs) and hazardous air pollutants because of the Clean Air Act Amendments of 1990. This publication is volume one of a three-part study initiated by API to update the AP-42 emission factor for refinery process drains, which may overestimate refinery process drain fugitive emissions. This volume contains simplified emission factors that can be used to quickly estimate total VOC emissions from refinery process drains. See also Publ 4639, Publ 4678, and Publ 4681. Pages: 132

April 1999 | Product Number: I46770 | Price: $100.00

Publ 4678

Volume two of a three-part study initiated by API to update the AP-42 emission factor for refinery process drains, which may overestimate refinery process drain fugitive emissions. This volume describes theoretical concepts and equations that may be used in a model (APIDRAIN) to estimate speciated volatile organic compound emissions. The model can provide insight on how to change process drain variables (flow rate, temperature, etc.) to reduce emissions. See also Publ 4639, Publ 4677, and Publ 4681. Pages: 104

April 1999 | Product Number: I46780 | Price: $100.00

Publ 4681

Volume three of a three-part study—the computer model with user's guide to estimate emissions from refinery process drains. APIDRAIN is a user-friendly Windows®-based software program operating under the Microsoft Excel® for Windows® environment. The model allows the user to sum up the emissions from a refinery process unit area or from the entire refinery. The model user can quickly and easily predict the contribution of process drain emissions to the total emission inventory of a refinery. Unit operators can use the output generated by the software for regulatory reporting according to the requirements of the Clean Air Act Amendments of 1990. The minimum system requirements for running APIDRAIN Version 1.0 are PC 486 DX2 Windows® 3.11 platform, 8 MB RAM, and Windows 95®/Windows NT®. The user must have Windows® and Excel® installed on a personal computer to begin using the software. APIDRAIN model is enhanced with automatic functions that enable the user to easily summarize important reporting information and to generate tabular emissions totals for both specific refinery process units and for the entire refinery. It is not necessary for the user to possess a rigorous understanding of Excel® to use APIDRAIN; only a few common principles of the Windows® operating environment are needed (such as point-and-click and navigation of tab and arrow keys). See also Publ 4639, Publ 4677, and Publ 4678. Pages: 92

April 1999 | Product Number: I46810 | Price: $424.00

Publ 4713
Test Report: Fluidized Catalytic Cracking Unit at a Refinery (Site A), Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources

There are few existing data on emissions and characteristics of fine aerosols from petroleum industry combustion sources, and the limited information that is available is incomplete and outdated. API developed a test protocol to address this data gap, specifically to:

- develop emission factors and speciation profiles for emissions of primary fine particulate matter (i.e. particulate present in the stack flue gas including condensible aerosols), especially organic aerosols from gas-fired combustion devices, and
- identify and characterize secondary particulate (i.e. particulate formed via reaction of stack emissions in the atmosphere) precursor emissions.

This report presents the results of a pilot project to evaluate the test protocol on a refinery fluid catalytic cracking unit. Pages: 113

March 2002 | Product Number: I47130 | Price: $149.00

Publ 4723
Refinery Stream Speciation

Contains the results of a study to determine the range of compositions for a number of compounds in typical refinery process streams. Data representing 31 refineries, over 20 processes, and over 50 process streams was contributed by the project participants. The results of this project will be of use in estimating the emissions of specific compounds, in preparing permit applications and in other environmental control activities. Neither the Petroleum Environmental Research Forum or the project participants make any claims as to the suitability or acceptability of the stream composition data reported for specific reporting or regulatory purposes. Pages: 325

November 2002 | Product Number: I47230 | Price: $169.00

This publication is a new entry in this catalog.

◆ This publication is related to an API licensing, certification, or accreditation program.
A large database of records was collated for the current study, representing analyses better reflect changes in refinery operations over recent years. Due to improved sampling and analytical techniques and that these newer report. PERF members believe that the newer data are more representative emissions of specific chemical species, preparing permit applications, and streams.

Refinery Stream Composition Data—Update to Speciation Data in API 4723

Since the publication of API 4723 in 2002, new regulatory requirements have resulted in many changes in refinery processes that may have altered streams compositions. Changing feedstocks, new process additives, and new catalysts may also have affected the concentrations of chemical species present in specific process streams.

Based on an assessment of the range and depth of more recent stream speciation data, the Petroleum Environmental Research Forum (PERF) elected to update the stream speciation profiles in API 4723 using more recent composition sampling. The updated profiles are provided in this report. PERF members believe that the newer data are more representative due to improved sampling and analytical techniques and that these newer analyses better reflect changes in refinery operations over recent years.

A large database of records was collated for the current study, representing information from 25 refineries. The original study reported on 24 chemical species and the current study provides data on 89 species. The original study reported on 65 refinery process streams and the current project provides data on 68 process streams.

The material contained in this report will be of use in estimating the emissions of specific chemical species, preparing permit applications, and performing other environmental assessments, API, PERF, and the project participants make no claims as to the suitability or acceptability of the stream composition data reported herein for specific reporting or regulatory purposes. Pages: 278

December 2018 | Product Number: I4723A | Price: $150.00

EMISSIONS: VEHICLES

Publ 4605
Investigation of MOBILE5a Emission Factors: Evaluation of IM240-to-FTP Correlation and Base Emission Rate Equations

This detailed investigation and critique of the methodology used by the U.S. Environmental Protection Agency to construct the exhaust emission rate equations in MOBILE5a developed from data collected from an operating inspection and maintenance (I/M) program. It includes an extensive critique of the adjustments used to correct I/M program data for variations in fuel characteristics and temperature conditions and an assessment of the correlations developed to relate emissions data measured in an I/M program to that measured on the Federal Test Procedure. Pages: 45

June 1994 | Product Number: I46050 | Price: $63.00

Publ 4637
Analysis of Causes of Failure in High Emission Cars

Describes an investigation to evaluate the primary causes of high exhaust emissions from light-duty vehicles on the road. It is an analysis of emissions data from tests previously conducted by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board, and one joint EPA-industry program. The analysis involves a comparison of emissions test data collected both before and after the performance of repairs on 1981 and newer cars and trucks. Emission control defects, their prevalence and overall contribution to fleet emissions are described. Pages: 104

February 1996 | Product Number: I46370 | Price: $72.00

Publ 4642
A Study to Quantify On-Road Emissions of Dioxins and Furans from Mobile Sources: Phase 2

Presents the results of a study to assess on-road emissions of dioxins and furans from light- and heavy-duty vehicles in the United States. This study was conducted in response to the U.S. Environmental Protection Agency's (EPA) draft dioxin reassessment document, which was based on data developed from studies conducted outside of the United States. Emissions were measured in the Fort McHenry Tunnel in Baltimore, MD, based on

Publ 4646
Evaluation of Fuel Tank Flammability of Low RVP Gasolines

Twenty-two test fuels were varied with respect to Reid vapor pressure (RVP), pentane-to-butane ratio, and addition of ethanol and methyl tert-butyl ether (MTBE), to evaluate the conditions under which vapors from reformulated gasoline contained in automobile fuel tanks become flammable. The results show that temperature limits of flammability correlate with RVP; the addition of ethanol or MTBE or both affects the upper flammability limits; and the ratio of pentane to butane has no consistent effect at similar RVP levels.

December 1996 | Product Number: I46420 | Price: $134.00

Publ 4650
Analysis of High-Mileage-Vehicle Emissions Data from Late-Model, Fuel-Injected Vehicles

Seventy-five light-duty vehicles were procured and tested over the Federal Test Procedure to assess whether the U.S. Environmental Protection Agency's (EPA) MOBILE5a on-road emission factors model overpredicted the exhaust emissions of newer-model, fuel-injected vehicles with high mileage. A comparison of the results from vehicles tested in this program to estimates from the EPA MOBILE5a model suggested that the latter may be overpredicting exhaust emissions. This report presents an analysis of the data collected during this project.

February 1997 | Product Number: I46500 | Price: $71.00

EXPOSURE: ASSESSMENT AND MONITORING

Publ 4617
A Monte Carlo Approach to Generating Equivalent Ventilation Rates in Population Exposure Assessments

Describes a study to improve breathing rate simulations in computer-based models used to estimate the exposures of urban populations to ozone and carbon monoxide. Algorithms producing equivalent ventilation rate values according to age, gender, activity, activity duration, and breathing rate category were developed from measured rates in primary-school children, high-school children, outdoor adult workers, and construction workers. Seven additional time/activity databases not used in the current pNEM methodology are described as well as models simulating maximum sustainable ventilation rates as a function of exercise duration, age, and gender.

March 1995 | Product Number: I46170 | Price: $81.00

Publ 4619
A Study to Characterize Air Concentrations of Methyl Tertiary Butyl Ether (MTBE) at Service Stations in the Northeast

Describes a study to measure air concentrations of MTBE; total hydrocarbons; carbon monoxide; formaldehyde; and benzene, toluene, ethylbenzene, and xylenes at 10 service stations in the New York area. Researchers assessed concentrations of MTBE in the areas around gas pumps, at the station perimeters, and in the breathing zones of motorists and attendants. Meteorological parameters, gasoline composition, sales, and deliveries were also monitored.

February 1995 | Product Number: I46190 | Price: $81.00
PUB 4622

Describes the results of a survey of API member companies to acquire data relating to occupational exposure to MTBE for various activities associated with petroleum facilities. It provides a detailed description of the survey questionnaire as well as a statistical analysis of some 1,833 workplace concentration measurements associated with potential occupational exposures. Pages: 105

August 1995 | Product Number: I46220 | Price: $63.00

PUB 4625
Service Station Personnel Exposures to Oxygenated Fuel Components

Describes a study in four ozone nonattainment areas to measure exposures of refueling attendants and mechanics to fuel oxygenate species—methyl tertiary butyl ether, tertiary amyl methyl ether, tertiary butyl alcohol, ethanol, and butyl alcohol—at service stations. The aromatics—benzene, toluene, xylene, para-xylene, and ethylbenzene—were also measured. Full shift (approximately 8-hour time-weighted average) and short-term (15–20 minutes) samples were collected at each station. Volatility and meteorological measurements were also taken. Pages: 144

August 1995 | Product Number: I46250 | Price: $67.00

PUB 4629
Hexavalent Chromium Exposures During Hot Work

Details the findings from an air sampling survey contracted by API to evaluate inhalation exposures to hexavalent chromium [chromium (VI)] during seven types of hot work: carbon arc cutting (CAC), flux cored arc welding (FCAW), gas metal arc welding (GMAW or MIG), grinding, gas tungsten arc welding (GTAW or TIG), oxyfuel gas cutting (OFC or torch cutting), and shielded metal arc welding (SMAW or stick). After the First Edition of this report was published, it was determined that 15 samples from one of the projects were listed as carbon steel base metal and should have been listed as stainless steel. While the original report was careful to point out the use of electrodes typical for stainless steel. While the original report was careful to point out the use of electrodes typical for stainless steel. While the original report was careful to point out the use of electrodes typical for stainless steel.

June 2007 | Product Number: I46290 | Price: $88.00

MODELING

PUB 4546

Contains an evaluation of a group of 14 hazardous gas dispersion models. All available measurement programs were considered for the evaluation, covering both the releases of dense gases and non-dense tracer gases; eight data sets are used in the evaluation. The models are reviewed for their scientific validity. Statistical procedures and residual plots are used to characterize performance. A number of the models give predictions that reasonably match field data. Pages: 351

October 1992 | Product Number: I45460 | Price: $146.00

PUB 4628
A Guidance Manual for Modeling Hypothetical Accidental Releases to the Atmosphere

Presents methods for modeling hypothetical accidental releases of fluids and gases into the atmosphere from process operations. Given a particular type of release and the chemicals or petroleum fractions involved, methods for modeling the release and subsequent dispersion phenomena are treated in a step-wise, comprehensive manner. Detailed simulation of eight hypothetical release scenarios are presented to demonstrate how the modeling procedures can be implemented. Pages: 212

November 1996 | Product Number: I46280 | Price: $146.00

PUB 4669
Review of Air Quality Models for Particulate Matter

API has published a review of existing source and receptor models available for analyzing particulate matter (PM) concentrations. This report critically reviews existing air modeling tools for PM, recommends models for State Implementation Plan applications, and identifies areas where the models need improvement. If you would like API to provide you with a hard copy of this publication for a cost of $43.00, please contact the Intellectual Property Department at API, 1220 L Street, NW, Washington, DC 20005; e-mail: appubs@api.org; phone: 202-682-8156. Pages: 311

March 1998

OZONE

PUB 305
Protecting Agricultural Crops from Ozone Exposures—Key Issues and Future Research Directions

Identifies and reviews some of the key issues related to assessing the effects of ozone exposure on vegetation. This report analyzes information on components of ozone exposure that elicit adverse effects on vegetation; ways to describe these components in the form of ozone exposure indices that may be useful in the standard-setting process for protecting vegetation; the change in nonattainment status that may occur should the existing ozone national ambient air quality standards be modified; and the need for future research efforts to explore the development of a suitable multiparameter index to protect vegetation. Pages: 156

August 1991 | Product Number: J30500 | Price: $85.00

PUB 309
Current Status and Research Needs Related to Biogenic Hydrocarbons

Describes the literature on the state of science on biogenic hydrocarbons. Among the areas covered are biogenic emission measurements, ambient concentration measurements, emission inventories, chemical kinetics, and modeling studies from 1960 to 1992. The results of the review are used to identify areas of understanding as well as uncertainty in present-day knowledge. A list of references with 163 abstracts is included. Pages: 240

June 1992 | Product Number: J30900 | Price: $116.00

PUB 4616
The Importance of Using Alternative Base Cases in Photochemical Modeling

A series of Urban Airshed Model sensitivity studies were conducted using two summer O3 episodes. Plausible alternative conditions were established to define acceptable base cases, some of which provided model performance comparable to the best achieved for the episodes. The alternative base cases used in this study produced significant differences in estimates of the air quality benefits of hypothetical emissions reductions. The study strongly recommends that current photochemical modeling practices include this type of analysis to reduce the risk of focusing on the wrong ozone precursor, underestimating control requirements, or incurring costs to implement unnecessary controls. Pages: 364

September 1994 | Product Number: I46160 | Price: $141.00
Environment and Safety Data

The following summaries report on cases that are recorded under the U.S. Bureau of Labor Statistics' recordkeeping guidelines. The surveys are based on data submitted to API by oil and gas companies. The reports include information regarding injuries, illnesses, fatalities, lost workday cases, and incidence rates by function.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Summary of Occupational Injuries, Illnesses, and Fatalities in the Petroleum Industry</td>
<td>August 1993</td>
<td>K19986</td>
<td>$95.00</td>
</tr>
<tr>
<td>2010</td>
<td>A Guide to Polycyclic Aromatic Hydrocarbons for the Non-Specialist</td>
<td>April 2010</td>
<td>K23891</td>
<td>$106.00</td>
</tr>
<tr>
<td>2011</td>
<td>A Guide to Polycyclic Aromatic Hydrocarbons for the Non-Specialist</td>
<td>April 2011</td>
<td>K23901</td>
<td>$106.00</td>
</tr>
</tbody>
</table>
abnormalities. The number and distribution of live young as well as the signs of toxicity. On day 20, the females were sacrificed and examined for number of fetal deaths and abnormalities were also recorded. See related document TR 400. Pages: 215

TR 400
Toluene: A Preliminary Study of the Effect of Toluene on Pregnancy of the Rat

Describes a preliminary experiment performed on the pregnant rat to determine appropriate exposure levels of toluene, for future investigation of embryofetal toxicity in the rat when administered via the inhalation route from days 5 to 15 of pregnancy inclusive. The inhalation route of administration was chosen as the most likely route of exposure in humans. The exposure levels were chosen following a review of currently available information. See related document TR 401. Pages: 113

June 1993 | Product Number: I00400 | Price: $63.00

TR 401
Toluene: The Effect on Pregnancy of the Rat

Describes a study to assess the toxicity of toluene on the pregnant rat as well as on the developing fetus. Pregnant rats were exposed to 250, 750, 1500, and 3000 ppm toluene via inhalation for 6 hours a day from days 6 to 15 of pregnancy. Control rats were exposed to filtered air for the same length of time. Throughout the exposure period, animals were observed for clinical signs of toxicity. On day 20, the females were sacrificed and examined for abnormalities. The number and distribution of live young as well as the number of fetal deaths and abnormalities were also recorded. See related document TR 400. Pages: 215

June 1993 | Product Number: I00401 | Price: $90.00

TR 403
Closed-Patch Repeated Insult Dermal Sensitization Study of TAME in Guinea Pigs

Describes a study to evaluate the allergic contact sensitization potential of tert-amyl methyl ether (TAME) in guinea pigs. Observations for mortality were made daily. Body weights were obtained and general health monitored weekly. Dermal evaluations were made approximately 24 and 48 hours after exposure. Pages: 32

February 1995 | Product Number: I00403 | Price: $63.00

TR 404
An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part I—Rats

This abridged report, the first part of a two-part set, evaluates the oncogenic potential of commercial hexane administered to four groups of 50 Fischer 344 rats at concentrations of 0, 900, 3000 and 9000 ppm in air. Summary text as well as pertinent data on changes in body weight, pathology, and overall tumor incidence including differences in survivorship between control and exposed groups are provided. The amendment and table of contents to the unabridged final report are included. Pages: 152

January 1995 | Product Number: I00404 | Price: $81.00

TR 405
An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part II—Mice

This abridged report, the second part of a two-part set, evaluates the oncogenic potential of commercial hexane administered to four groups of 50 Fischer 344 mice at concentrations of 0, 900, 3000 and 9000 ppm in air. Summary text and pertinent data on differences in survivorship between control and exposed groups, changes in body weight, and pathology are provided. The table of contents to the unabridged final report is included. Pages: 106

January 1995 | Product Number: I00405 | Price: $63.00

TR 409
Primary Skin Irritation Study in Rabbits of API 91-01 and PS-6 Unleaded Test Gasolines

Describes a study conducted to assess primary dermal irritation data for two motor fuels according to Toxic Substances Control Act and Federal Hazardous Substances Act guidelines. Test rabbits were exposed dermally to unleaded gasoline according to a specified protocol and observed daily for signs of skin irritation. Such information is valuable for accurate hazard assessment and first aid treatment. Pages: 58

March 1995 | Product Number: I00409 | Price: $63.00

TR 410
Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells Exposed to Tertiary Amyl Methyl Ether (TAME)

Evaluates the clastogenic potential of TAME using CHO cells compared to the solvent control group. Based on the findings of this study, TAME was concluded to be positive for the induction of structural chromosome aberrations in CHO cells. Pages: 56

December 1996 | Product Number: I00410 | Price: $90.00

TR 411
Chinese Hamster Ovary (CHO) HGPRT Mutation Assay of Tertiary Amyl Methyl Ether (TAME)

Describes a study conducted to evaluate the mutagenic potential of the test article, TAME based on quantitation of forward mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus of CHO cells. Under the conditions of this study, TAME was concluded to be negative in the CHO/HGPRT mutation assay. Pages: 46

December 1996 | Product Number: I00411 | Price: $90.00
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 412 and TR 414</td>
<td>A Range-Finding Developmental Inhalation Toxicity Study of Unleaded Gasoline Vapor Condensate in Rats and Mice via Whole-Body Exposure and an Inhalation Developmental Toxicity Study of Unleaded Gasoline Vapor Condensate in the Rat via Whole-Body Exposure</td>
</tr>
<tr>
<td>Publ 4592</td>
<td>Odor Threshold Studies Performed with Gasoline and Gasoline Combined with MTBE, ETBE and TAME</td>
</tr>
<tr>
<td>Publ 4623</td>
<td>Anecdotal Health-Related Complaint Data Pertaining to Possible Exposures to Methyl Tertiary Butyl Ether (MTBE): 1993 and 1994 Follow-Up Surveys</td>
</tr>
<tr>
<td>Publ 4634</td>
<td>Index and Abstracts of API Health-Related Research</td>
</tr>
<tr>
<td>Publ 4647</td>
<td>Brain Glial Fibrillary Acidic Protein (GFAP) as a Marker of Neurotoxicity During Inhalation Exposure to Toluene</td>
</tr>
</tbody>
</table>

Hazard Narrative for Tertiary-Butyl Alcohol (TBA), CAS Number 75-65-0

The purpose of this investigation was to conduct a quantitative risk assessment according to U.S. Environmental Protection Agency guidelines in which data on the mode of action by which TBA induced renal tumors in rats and thyroid tumors in mice was considered. When data from animal studies, such as the TBA bioassays, are extrapolated to humans to provide estimates of lifetime cancer risks, then potential differences in pharmacokinetics (metabolism) and pharmacodynamics (sensitivity and mode of action) between the animal species and humans is considered in the estimation of human equivalent doses and in extrapolation from high doses typically used in the animal bioassays to low doses to which humans may be potentially exposed. Pharmacokinetic, toxicity, and mode of action data for TBA were reviewed and data selected for quantitative dose-response modeling.

<table>
<thead>
<tr>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1996</td>
<td>I46480</td>
<td>$100.00</td>
</tr>
<tr>
<td>August 2001</td>
<td>I46890</td>
<td>$85.00</td>
</tr>
<tr>
<td>November 2005</td>
<td>I47430</td>
<td>$153.00</td>
</tr>
<tr>
<td>January 1995</td>
<td>I45592</td>
<td>$81.00</td>
</tr>
</tbody>
</table>

Index and Abstracts of API Health-Related Research

This compendium of health-related research provides author, organization, and subject indices for research investigations and scientific reviews conducted for API between 1959 and 1994. It covers industrial hygiene and exposure assessment, toxicology, environmental biology, product safety, and community and occupational health research areas. Informative abstracts provide useful background on each study and give information on publication availability.

<table>
<thead>
<tr>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1995</td>
<td>I46230</td>
<td>$63.00</td>
</tr>
<tr>
<td>September 1995</td>
<td>I46340</td>
<td>$81.00</td>
</tr>
</tbody>
</table>

Brain Glial Fibrillary Acidic Protein (GFAP) as a Marker of Neurotoxicity During Inhalation Exposure to Toluene

Evaluates the concentration of GFAP in the rat’s brain as a practical biomarker of toluene-induced neurotoxicity. Adult male rats received inhalation exposure to toluene scromediated to approximate occupational exposure for up to 42 days. During and after exposure, the concentration of GFAP was determined in four brain regions and compared with standard criteria of neurotoxicity: behavioral or neuropathological changes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1997</td>
<td>I46470</td>
<td>$81.00</td>
</tr>
</tbody>
</table>
Natural Resource Damage Assessment

Publ 304
Evaluation of Restoration Alternatives for Natural Resources Injured by Oil Spills

Builds upon previous work in the field of oil spill impact assessment and habitat restoration to assess the technical feasibility and practicality of proactive restoration following oil spills and presents an approach for evaluating tradeoffs between natural recovery and active restoration. The scenarios developed to represent a broad spectrum of possible oil spills were based on selected case studies. The report concludes that in general, available restoration techniques are not very effective for enhancing natural recovery and may, in certain cases, cause more severe impacts than the oil spill alone. Pages: 171

October 1991 | Product Number: J30400 | Price: $85.00

Pollution Prevention

Publ 300
The Generation and Management of Waste and Secondary Materials in the Petroleum Refining Industry

In 1989, API initiated a census survey of domestic refineries to document the management of waste and secondary materials in 1987 and 1988. Outstanding responses by the refineries (115 out of the total U.S. population of 176 refineries participated) aided in making confident estimates of the amount of waste managed by the U.S. refining industry. Pages: 184

February 1991 | Product Number: J30000 | Price: $76.00

Publ 302

In early 1988, API undertook a project to develop a compendium of the waste minimization practices for several different segments of the petroleum industry. The compendium discusses a large variety of practices that can and are being utilized by the industry to reduce both the volume and toxicity of wastes. From "good housekeeping practices" for marketing facilities to the recycling of solvents, stormwater, and other traditional waste streams at refineries, the compendium illustrates the various practices available to minimize wastes in the industry. Pages: 152

November 1991 | Product Number: J30200 | Price: $93.00

Publ 303

This report is a follow-up to Publ 300 and documents the results of the 1989 Refining Solid Waste Survey. The quantitative results of the generation of the 28 waste and residual streams and their management according to the environmental management hierarchy (i.e. source reduction, recycling, treatment, and disposal) are presented. In addition, the document contains a discussion of the state of source reduction activities underway within the industry, including a quantitation of source reduction achievements on the 28 streams, and the methods used to calculate source reduction. Pages: 93

June 1992 | Product Number: J30300 | Price: $93.00

Environmental Design Considerations for Petroleum Refining Processing Units

This report is a follow-up to Publ 301 and documents the results of the 1989 Refining Solid Waste Survey. The qualitative results of the generation of the 28 waste and residual streams and their management according to the environmental management hierarchy (i.e. source reduction, recycling, treatment, and disposal) are presented. In addition, the document contains a discussion of the state of source reduction activities underway within the industry, including a quantitation of source reduction achievements on the 28 streams, and the methods used to calculate source reduction. Pages: 93

January 1995 | Product Number: J30100 | Price: $152.00

Executive Summary: Environmental Design Considerations for Petroleum Refining Crude Processing Units

Executive summary to Publ 311. Pages: 13

February 1993 | Product Number: J31101 | Price: $60.00

In early 1988, API undertook a project to develop a compendium of the waste minimization practices for several different segments of the petroleum industry. The compendium discusses a large variety of practices that can and are being utilized by the industry to reduce both the volume and toxicity of wastes. From "good housekeeping practices" for marketing facilities to the recycling of solvents, stormwater, and other traditional waste streams at refineries, the compendium illustrates the various practices available to minimize wastes in the industry. Pages: 152

November 1991 | Product Number: J30200 | Price: $93.00

Environmental Design Considerations for Petroleum Refining Processing Units

This report is a follow-up to Publ 311 and documents the results of the 1989 Refining Solid Waste Survey. The qualitative results of the generation of the 28 waste and residual streams and their management according to the environmental management hierarchy (i.e. source reduction, recycling, treatment, and disposal) are presented. In addition, the document contains a discussion of the state of source reduction activities underway within the industry, including a quantitation of source reduction achievements on the 28 streams, and the methods used to calculate source reduction. Pages: 93

June 1992 | Product Number: J30300 | Price: $93.00

In early 1988, API undertook a project to develop a compendium of the waste minimization practices for several different segments of the petroleum industry. The compendium discusses a large variety of practices that can and are being utilized by the industry to reduce both the volume and toxicity of wastes. From "good housekeeping practices" for marketing facilities to the recycling of solvents, stormwater, and other traditional waste streams at refineries, the compendium illustrates the various practices available to minimize wastes in the industry. Pages: 152

November 1991 | Product Number: J30200 | Price: $93.00

Environmental Design Considerations for Petroleum Refining Processing Units

This report is a follow-up to Publ 311 and documents the results of the 1989 Refining Solid Waste Survey. The qualitative results of the generation of the 28 waste and residual streams and their management according to the environmental management hierarchy (i.e. source reduction, recycling, treatment, and disposal) are presented. In addition, the document contains a discussion of the state of source reduction activities underway within the industry, including a quantitation of source reduction achievements on the 28 streams, and the methods used to calculate source reduction. Pages: 93

June 1992 | Product Number: J30300 | Price: $93.00

This document and accompanying 3.5-in. diskette provide a review of the literature (post-1970) on the toxicity of crudes and oil products in aquatic environments. Some 748 toxicity values for fish, invertebrates, and algae are assembled into a database--OLITOX. LC50 values can be identified as well as information on taxonomic groups and toxicity endpoints of interest. Key methodological aspects of toxicity tests can be made as well as determinations of which test procedures have a significant impact on results. Users need 640 KB RAM, DOS 2.0 or higher, and at least a 2 MB hard disk. Text may be downloaded onto a diskette and stored as a file or printed. Pages: 196

January 1995 | Product Number: J45940 | Price: $121.00
PUB 317
Industry Experience with Pollution Prevention Programs

The API Pollution Prevention Task Force has been actively involved in promoting pollution prevention within the industry since 1990. Members of the Task Force have accumulated a comprehensive body of knowledge on the subject of pollution prevention and have compiled a resource brochure on the key elements that make pollution prevention programs successful. Pages: 4

June 1993 | Product Number: J31700 | Price: Free*

PUB 324

This document is third in a series that presents the results of API's annual survey of the types and amounts of wastes and residuals generated and managed by the petroleum refining industry. For 1990, source reduction activities doubled over the previous year. The quantity of residuals generated increased to 18.2 million wet tons as compared to 16.3 million wet tons in 1989. Much of the increased quantity reflects generation peaks associated with construction and remediation activities. Two long-term trends are worth noting: (1) the amount of total residuals being recycled continues to rise, and (2) the amount of hazardous wastes going to land treatment and disposal continues to fall. Pages: 123

August 1993 | Product Number: J32400 | Price: $92.00

PUB 329

This document is the fourth in a series that describes the 1991 data from API's annual survey of the types and amounts of residual materials generated and managed by the refining industry. In 1991, the industry generated 14.8 million wet tons of residual materials—the smallest quantity generated since API began this collection effort in 1987. The industry also reported that pollution prevention activities accounted for a reduction in 715,000 wet tons of materials. A trend analysis was performed on the last five years. Oil companies can use the data in this report to compare their residual generation and management practices with the rest of the industry. Pages: 172

June 1994 | Product Number: J32900 | Price: $103.00

PUB 331
Environmental Performance Indicators: Methods for Measuring Pollution Prevention

Presents methods that can be used to measure progress toward pollution prevention. It investigates a series of measurement parameters presented in five categories: program-based, activity-based, mass-based, normalized efficiency, and concentration-based. Within each category of measures, the benefits and limitations are discussed and illustrated with industry examples. Pages: 30

September 1994 | Product Number: J33100 | Price: $65.00

PUB 333
Generation and Management of Residual Materials

This report is the fifth in a series of reports detailing waste and residual and management practices in the refining sector. It presents the results of the 1992-1993 survey and includes information on how the industry has achieved compliance with the land disposal restrictions on Resource Conservation and Recovery Act (RCRA) listed hazardous K-wastes (40CFR494-4052). It also documents the influence of the primary sludge rule and new toxicity characteristic under RCRA. Pages: 170

February 1995 | Product Number: J33300 | Price: $103.00

PUB 336

This report is the sixth in a series of reports presenting the results of API's Annual Refining Residual Survey. It provides a detailed assessment of the size of refinery throughput, the types of crude oil utilized, the regions in which the refineries are located, the types of wastewater treatment processes used, the amounts of different residual streams produced and how the industry trend towards increased recycling of residuals has continued. In 1995, over half of the refinery residuals generated were recycled rather than being treated or disposed. Pages: 106

August 1996 | Product Number: J33600 | Price: $103.00

PUB 339

This report is the seventh in a series of reports presenting the results of the API's Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 individual and 2 combined residual streams, trends in management practices, average costs for selected residual stream management, types of wastewater treatment systems employed at refineries, pollution prevention activities, refinery capacities, and regions in which refineries are located. The data in this report indicate a decrease of greater than 25% in the quantity of residuals generated by the refining industry from 1994 to 1995. Further, the industry trend towards increased recycling of residuals has continued. In 1995, over half of the refinery residuals generated were recycled rather than being treated or disposed. Pages: 106

July 1997 | Product Number: J33900 | Price: $103.00

PUB 345

This report is the eighth in a series of reports presenting the results of the API's Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 residual streams representing approximately 80% of all residuals managed at U.S. refineries. Industry trend towards increased recycling of residuals has continued. In 1996, well over half of the refinery residuals generated were recycled rather than being treated or disposed. Pages: 106

June 1998 | Product Number: J34500 | Price: $103.00

SOIL and GROUNDWATER RESEARCH

https://www.api.org/groundwater

PUB 4722

API and the California MTBE Research Partnership have produced a new software utility to help site managers, water purveyors, and regulators evaluate the sensitivity of a groundwater resource to a potential release of compounds of concern [e.g., a methyl tertiary-butyl ether (MTBE)-oxygenated fuel]. The toolkit examines three aspects of sensitivity: resource, receptor vulnerability, and natural sensitivity. The user supplies site-specific information, and the toolkit returns a "scorecard" addressing the three aspects of sensitivity. Although this utility was designed with petroleum hydrocarbon releases in mind, it can be used when dissolved chlorinated and inorganic compounds are the chemicals of concern. The toolkit runs on Microsoft Excel® and comes with a user's guide. Pages: 51

August 2002 | Product Number: I47220 | Price: $61.00
API Soil and Groundwater Research Bulletins

API Soil and Groundwater Research bulletins summarize research results from project overseen by API's Soil and Groundwater Technical Task Force. The Task Force disseminates information and research results through publications, presentations, and interaction with industry clients and regulatory agencies.

The bulletins listed below can be downloaded at https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/bulletins.

<table>
<thead>
<tr>
<th>Bulletin No.</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Processes, Human Exposures and Remediation Technologies Applicable to Low Permeability Soils</td>
<td>September 1996</td>
</tr>
<tr>
<td>3</td>
<td>Ten Frequently Asked Questions About MTBE in Water</td>
<td>March 1998</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation of Sampling and Analytical Methods for Measuring Indicators of Intrinsic Bioremediation</td>
<td>March 1998</td>
</tr>
<tr>
<td>8</td>
<td>Characteristics of Dissolved Petroleum Hydrocarbon Plumes: Results from Four Studies</td>
<td>December 1998</td>
</tr>
<tr>
<td>9</td>
<td>Non-Aqueous Phase Liquid (NAPL) Mobility Limits in Soil</td>
<td>June 2000</td>
</tr>
<tr>
<td>10</td>
<td>Simulation of Transport of Methyl Tert-Butyl Ether (MTBE) to Ground-Water from Small-Volume Releases of Gasoline in the Vadose Zone</td>
<td>June 2000</td>
</tr>
<tr>
<td>11</td>
<td>Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE</td>
<td>August 2000</td>
</tr>
<tr>
<td>12</td>
<td>No-Purge Sampling: An Approach for Long-Term Monitoring</td>
<td>October 2000</td>
</tr>
<tr>
<td>13</td>
<td>Dissolution of MTBE from a Residually Trapped Gasoline Source</td>
<td>September 2001</td>
</tr>
<tr>
<td>14</td>
<td>Predicting the Effect of Hydrocarbon and Hydrocarbon-Impacted Soil on Groundwater</td>
<td>September 2001</td>
</tr>
<tr>
<td>15</td>
<td>Vadose Zone Natural Attenuation of Hydrocarbon Vapors: An Emperical Assessment of Soil Gas Vertical Profile Data</td>
<td>December 2001</td>
</tr>
<tr>
<td>16</td>
<td>Migration of Soil Gas Vapors to Indoor Air: Determining Vapor Attenuation Factors Using a Screening-Level Model and Field Data from the CDOT-MTL</td>
<td>April 2002</td>
</tr>
<tr>
<td>17</td>
<td>Identification of Critical Parameters for the Johnson and Ettinger (1991) Vapor Intrusion Model</td>
<td>May 2002</td>
</tr>
<tr>
<td>18</td>
<td>Answers to Frequently Asked Questions About Managing Risk at LNAPL Sites</td>
<td>June 2018</td>
</tr>
<tr>
<td>19</td>
<td>Evaluation of Small-Volume Releases of Ethanol-Blended Gasoline at UST Sites</td>
<td>October 2003</td>
</tr>
<tr>
<td>20</td>
<td>Answers to Frequently Asked Questions About Ethanol Impacts to Groundwater</td>
<td>December 2003</td>
</tr>
<tr>
<td>21</td>
<td>Evaluation of Potential Vapor Transport to Indoor Air Associated with Small-Volume Releases of Oxygenated Gasoline in the Vadose Zone</td>
<td>January 2005</td>
</tr>
<tr>
<td>22</td>
<td>Maximum Potential Impacts of Tertiary Butyl Alcohol (TBA) on Groundwater from Small-Volume Releases of Ethanol-Blended Gasoline in the Vadose Zone</td>
<td>January 2005</td>
</tr>
<tr>
<td>23</td>
<td>The Impact of Gasohol and Fuel-Grade Ethanol on BTX and Other Hydrocarbons in Ground Water: Effect on Concentrations Near a Source</td>
<td>December 2005</td>
</tr>
<tr>
<td>24</td>
<td>Downward Solute Plume Migration: Assessment Significance and Implications for Characterization and Monitoring of “Diving Plumes”</td>
<td>April 2006</td>
</tr>
<tr>
<td>25</td>
<td>Remediation Progress at California LUFT Sites: Insights from the GeoTracker Database</td>
<td>February 2012</td>
</tr>
<tr>
<td>26</td>
<td>Tertiary Butyl Alcohol (TBA) Biodegradation: Some Frequently Asked Questions</td>
<td>March 2012</td>
</tr>
</tbody>
</table>
CONTAMINANT FATE AND TRANSPORT

Publ 4531
Chemical Fate and Impact of Oxygenates in Groundwater: Solubility of BTEX from Gasoline-Oxygenate Mixtures

Oxygenated hydrocarbon compounds may be added to gasoline mixtures to improve emission quality and octane ratings or to conserve petroleum resources, which may alter the behavior of dissolved organic compounds in groundwater following a fuel spill. This study evaluates the effects of oxygenate additives such as methanol or methyl tertiary-butyl ether on the aqueous solubility of dissolved aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes) from gasoline. It also explores the nature of the dissolved contaminant plumes that could develop from a spill of gasoline containing methanol.

Pages: 110

August 1991 | Product Number: I45310 | Price: $63.00

Publ 4593
Transport and Fate of Non-BTEX Petroleum Chemicals in Soils and Groundwater

This literature survey documents available information on the chemical composition of petroleum products and the subsurface fate and transport of selected non-BTEX (benzene, toluene, ethylbenzene, and xylenes) constituents of these products. The evaluation focuses on a representative group of 12 hydrocarbons and hetero-organic compounds based on their abundance in petroleum products and anticipated future interest from regulatory agencies.

Pages: 200

September 1994 | Product Number: I45930 | Price: $67.00

Publ 4601
Transport and Fate of Dissolved Methanol, MTBE and Monoaromatic Hydrocarbons in a Shallow Sand Aquifer

Describes a field investigation into the effect of oxygenates methanol and methyl tertiary-butyl ether (MTBE) on the fate and transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater. Natural gradient tracer experiments were conducted to simulate the transport of dissolved plumes resulting from subsurface releases of oxygenated fuels. In these experiments, methanol, MTBE, and BTEX concentrations were monitored by sampling from a dense network of multilevel piezometers, and plume contours were mapped through application of moment analysis. A laboratory study on the effects of methanol and MTBE on the biodegradation of BTEX in groundwater was also conducted. The relative mobility and persistence of BTEX and the oxygenates were characterized based on field and laboratory study data.

Pages: 338

April 1994 | Product Number: I46010 | Price: $127.00

Publ 4627

Reviews more than 200 technical articles published between 1988 and 1991 in the area of on-site and in-situ bioremediation of petroleum hydrocarbons. It focuses specifically on current field and laboratory research related to petroleum hydrocarbon biodegradation including biodegradation of crude oil and solvents. Recent work in fate and transport modeling that can be applied to petroleum hydrocarbon contamination in groundwater is also covered. The review is designed to complement an earlier (pre-1988) review published by the U.S. Navy.

Pages: 146

June 1995 | Product Number: I46270 | Price: $63.00

Publ 4633
Barium in Produced Water: Fate and Effects in the Marine Environment

Provides a summary of what is currently known about the physical and chemical behavior of barium in produced water and in the ocean. It discusses the factors that influence the rate of precipitation of barium as barite. The toxicity of barium to marine and freshwater organisms and humans is discussed in relation to the concentrations and forms in which it occurs in aquatic environments.

Pages: 68

September 1995 | Product Number: I46330 | Price: $61.00

Publ 4643
Estimation of Infiltration and Recharge for Environmental Site Assessment

A risk-based corrective action analysis of a site suspected of chemical contamination requires site-specific knowledge of the rate water infiltrates through the soil to the water table. A comprehensive discussion of the current physical/chemical methods and mathematical models available to quantify these rates along with suggestions for selecting an appropriate technique, depending on site conditions, are provided in this report.

Pages: 204

July 1996 | Product Number: I46430 | Price: $100.00

Publ 4654
Field Studies of BTEX and MTBE Intrinsic Bioremediation

A gasoline release field site in the Coastal Plain of North Carolina was monitored for more than three years to allow calculation of in-situ biodegradation rates. Laboratory microcosm experiments were performed to further characterize the biodegradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) under ambient, in-situ conditions. Finally, groundwater modeling studies were conducted to facilitate the interpretation of field data and to evaluate various approaches for predicting the fate and effects of these gasoline constituents in the subsurface.

Pages: 244

October 1997 | Product Number: I46540 | Price: $78.00

Publ 4674
Assessing the Significance of Subsurface Contaminant Vapor Migration to Enclosed Spaces—Site-Specific Alternative to Generic Estimates

Vapors in enclosed spaces pose two levels of concern. First, enclosed-space vapors may be found at concentrations near those that pose immediate flammability and/or health risks. These sites warrant immediate attention and response as required by most state and federal regulatory guidance. In the second class of sites, concentrations are lower and the concern is for longer term health risks. This report focuses exclusively on this second class of sites, where advection and diffusion occur through a soil layer and into an enclosed space, and time is available to adequately address the problem on a site-specific basis. The options considered in this document include the following:

- direct measurement through sampling of enclosed-space vapors,
- use of near-foundation or near-surface soil gas sampling results,
- use of site-specific homogeneous and layered soil diffusion coefficients in generic algorithms, and
- assessment of biotreatment potential.

Pages: 56

December 1998 | Product Number: I46740 | Price: $81.00

Publ 4734
Modeling Study of Produced Water Release Scenarios

Provides a scientific basis for operators, regulators, and landowners to determine if assessment or remediation of produced water releases will provide a meaningful environmental benefit.

The two principal research objectives of this study are (1) the identification of produced water release scenarios that have a potential to cause groundwater quality impairment in homogeneous subsurface geologic profiles and (2) the prediction of chloride movement through the vadose zone for different release scenarios. Secondary objectives of the study included evaluation of the effect of heterogeneity on the migration of chloride through the vadose zone, the impact of repeat releases, and the effect on groundwater quality of surface soil restoration by revegetation and soil leaching.

The sensitivity analysis performed in this study provides an overview of the likelihood of groundwater impairment for large release volumes (100 bbls and
October 1998 | Product Number: I00225 | Price: $100.00

ethylbenzene, and xylene compounds was biodegraded. Pages: 220

mass balance data, a significant portion of the benzene, toluene, operation. Following active remediation, primarily low-volatility compounds flushing technologies, soil vapor extraction and in-situ air sparging, were able establish the three-dimensional distribution of the release. Conventional air Samples were collected and analyzed for gasoline range organics to practitioners to help plan, design, and implement NSZD monitoring

This document provides practical guidance on NSZD theory, application, subsurface.

aqueous phase liquid (LNAPL) petroleum hydrocarbon constituents from the test site located in Canada near Sarnia, Ontario. A synthetic gasoline blend of known mass, volume, and composition was released into a test cell. Experiments at Sarnia, Ontario Remediation of a Fractured Clay Till Using Air Flushing: Field

DR 225 Remediation of a Fractured Clay Till Using Air Flushing: Field Experiments at Sarnia, Ontario

This study was conducted over a three-year period at a well-characterized test site located in Canada near Sarnia, Ontario. A synthetic gasoline blend of known mass, volume, and composition was released into a test cell. Samples were collected and analyzed for gasoline range organics to establish the three-dimensional distribution of the release. Conventional air flushing technologies, soil vapor extraction and in-situ air sparging, were able to remove ~40% of the spilled mass during the initial two months of operation. Following active remediation, primarily low-volatility compounds remained in the soil and almost no benzene or toluene remained. Based on mass balance data, a significant portion of the benzene, toluene, ethylbenzene, and xylene compounds was biodegraded. Pages: 220

October 1998 | Product Number: I00225 | Price: $100.00

Publ 4525 A Compilation of Field-Collected Cost and Treatment Effectiveness Data for the Removal of Dissolved Gasoline Components from Groundwater

Documents, summarizes, and evaluates cost and treatment effectiveness data for air stripping and carbon adsorption systems designed to remove dissolved petroleum hydrocarbons from groundwater. The compounds of primary interest were benzene, toluene, ethylbenzene, and xylene isomers (BTEX) as well as the oxygenates methyl tertiary-butyl ether and isopropyl ether. Operating data were gathered from 57 field sites throughout the United States, and treatment system profiles were generated for each site. The data will be used to assist companies in planning pump-and-treat remediation systems for removal of BTEX and oxygenates from groundwater. Pages: 240

November 1990 | Product Number: I45250 | Price: $81.00

Publ 4609 In-Situ Air Sparging: Evaluation of Petroleum Industry Sites and Considerations for Applicability, Design and Operation

Describes the important literature findings as well as the hands-on experiences of the petroleum industry at 59 air sparging sites. Design and operational data are analyzed for relationships that can be used to optimize the technology or provide a better understanding of its fundamental processes. Topics covered include: site characterization; pilot testing; system design and installation; and system operation, monitoring, and performance. Pages: 132

May 1995 | Product Number: I46090 | Price: $100.00

Publ 4631 Petroleum Contaminated Low Permeability Soil: Hydrocarbon Distribution Processes, Exposure Pathways and In-Situ Remediation Technologies

Presents a set of 10 papers on light nonaqueous phase liquids (LNAPLs) in low permeability soils. Collectively, the papers address four key areas: (1) processes affecting the migration and removal of LNAPLs; (2) exposure potential posed by clay soil and hydrocarbons via soil, groundwater, and air pathways; (3) models for predicting LNAPL removal; and (4) techniques of remediation. Pages: 298

September 1995 | Product Number: I46310 | Price: $90.00

Publ 4655 Field Evaluation of Biological and Non-Biological Treatment Technologies to Remove MTBE/Oxygenates from Petroleum Product Terminal Wastewaters

A pilot/demonstration study was conducted on three treatment technologies—the fluidized bed biological reactor process, the activated sludge process incorporated with iron flocculation, and the ultraviolet light/hydrogen peroxide process—to evaluate their effectiveness in the treatment of petroleum marketing terminal wastewater contaminated with methyl tertiary-butyl ether (MTBE). Contaminated groundwater, which also contained benzene, toluene, ethylbenzene, and xylenes (BTEX). All three technologies were able to remove at least 95 % of the MTBE and BTEX in the feed waters. Pages: 194

August 1997 | Product Number: I46550 | Price: $127.00

Publ 4671 Technical Bulletin on Oxygen Releasing Materials for In-Situ Groundwater Remediation

Oxygen releasing materials (ORMs) are commercially available materials that are being used to enhance bioremediation treatment of petroleum hydrocarbon contaminated groundwater aquifers. This technical bulletin provides a systematic approach for evaluating the utility of ORM treatment and for designing ORM installations. It summarizes the current state of understanding of this technology to provide guidance for site managers evaluating options for enhanced groundwater remediation. Pages: 52

July 1998 | Product Number: I46710 | Price: $72.00
Health and Environmental Issues

Publ 4715
Evaluating Hydrocarbon Removal from Source Zones and its Effect on Dissolved Plume Longevity and Concentration

Provides valuable information and utilities for regulators and practitioners interested in understanding the possible benefits of free-product removal. This report provides theory and concepts needed to evaluate light nonaqueous phase liquid (LNAPL) source distribution, chemistry, dissolution, and the effects various remediation strategies may have on risk reduction for the groundwater and vapor exposure pathways. The companion software, API-LNAST, links the multiphase and chemical processes controlling in-situ LNAPL distribution, mobility, and cleanup to quantify estimates of the time-dependent concentrations within the LNAPL source and the down-gradient dissolved plume. API-LNAST users can screen whether incremental LNAPL removal provides any risk-reduction benefit over a time frame of interest, e.g. 30 years. September 2002 | Software and documentation can be downloaded at https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnapl/evaluating-hydrocarbon-removal.

Publ 4730
Groundwater Remediation Strategies Tool

Provides strategies for focusing remediation efforts on (1) the change in contaminant mass flux in different subsurface transport compartments (e.g. the vadose zone, smear zone, or a zone within an aquifer of interest) and (2) the change in remediation timeframe. In this approach, groundwater flow and contaminant concentration data are combined to estimate the rate of contaminant mass transfer past user-selected transport sections across a contaminant plume. The method provides the user with a means to estimate the baseline mass flux and remediation timeframe for various transport compartments and then evaluate how different remedies reduce the mass flux and the remediation timeframe in each transport compartment. Pages: 71 December 2003 | Product Number: I473000 | Price: $131.00

Publ 4760
LNAPL Distribution and Recovery Model (LDRM)

Simulates the performance of proven hydraulic technologies for recovering free-product petroleum liquid releases to groundwater. The LDRM provides information about light nonaqueous phase liquid (LNAPL) distribution in porous media and allows the user to estimate LNAPL recovery rates, volumes, and times. Documentation for the LDRM is provided in two volumes: Volume 1—Distribution and Recovery of Petroleum Hydrocarbon Liquids in Porous Media—documents the LDRM and provides background information necessary to characterize the behavior of LNAPL in porous media with regard to performance of LNAPL liquid recovery technologies. Volume 2—User and Parameter Selection Guide—provides step-by-step instructions for the LDRM software. Four example problem applications are presented which highlight model use, parameter estimation using the API LNAPL Parameters Database, and limitations of scenario-based models. January 2007 | Software and documentation can be downloaded at https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnapl/ldrm.

Publ 4762
API LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis-User Guide

LNAPL transmissivity is a measure of lateral mobility of free-product hydrocarbon liquid within the groundwater environment. The magnitude of LNAPL transmissivity has been suggested as a possible endpoint criterion for LNAPL mass removal using LNAPL hydraulic recovery systems. Such hydraulic recovery systems include skimmer wells, single-pump wells, dual-pump wells, and trenches. Coupled with the LNAPL CSM, the magnitude of LNAPL transmissivity will assist in the selection of recovery system. As such, methods and their consistent application for estimating LNAPL transmissivity are significant. Perhaps the simplest methods for estimating LNAPL transmissivity are borehole slug test methods, or baildown tests, in which a volume of LNAPL is rapidly removed from a well and the rate of fluid-level recovery (water and LNAPL) is measured and analyzed. Several analytical methods are available to analyze the data from baildown tests to estimate LNAPL transmissivity and described herein. Following a brief description of suggested well configuration, pre-test and test measurements and methods, application of the spreadsheet tool is discussed. Subsequent sections provide a more detailed discussion of significant parameters and basis for the various analysis procedures. A number of example applications are presented. Further details on the different methods are provided in the appendices. Pages: 40 April 2016 | Product Number: I47620 | For a free copy of this document, please visit https://www.api.org/~media/4762%20LNAPL%20Tn%20wkbk%20Baildown%20Userguide%20Apr%2016%20(2).pdf.

SITE CHARACTERIZATION

Publ 4599
Interlaboratory Study of Three Methods for Analyzing Petroleum Hydrocarbons in Soils

Presents the results of an interlaboratory study of three methods—dielectric-range organics, gasoline-range organics, and petroleum hydrocarbons—used to analyze hydrocarbons in soils. Each method is validated, its performance judged from measurements of accuracy and precision, and practical qualification levels are estimated for each method. The full text of each method is included in the report. Pages: 166 July 1994 | Product Number: I47990 | Price: $100.00

Publ 4635
Compilation of Field Analytical Methods for Assessing Petroleum Product Releases

Presents a compilation of the most widely used field analytical methods available to perform on-site analyses of organic compounds in soil and groundwater. These methods include total organic vapor analyzers, field gas chromatography, immunoassay, infrared analyzers, and dissolved oxygen/oxidation-reduction potential electrodes. Practical applications and limitations of each method are discussed and an objective-oriented data quality classification scheme is presented to assist in selecting an appropriate method. Information is also presented on emerging technologies. Pages: 100 December 1996 | Product Number: I46350 | Price: $90.00

Publ 4657
Effects of Sampling and Analytical Procedures on the Measurement of Geochemical Indicators of Intrinsic Bioremediation: Laboratory and Field Studies

Evaluates the effects of various sampling and analytical methods of collecting groundwater geochemical data for intrinsic bioremediation studies. Sampling and analytical methods were tested in the laboratory and in the field. Several groundwater sampling and analytical methods may be appropriate for measuring geochemical indicators of intrinsic bioremediation. The methods vary in accuracy, level of effort, and cost. Pages: 86 November 1997 | Product Number: I46570 | Price: $63.00

Publ 4658
Methods for Measuring Indicators of Intrinsic Bioremediation: Guidance Manual

Intended to be a resource for practitioners of intrinsic bioremediation in allowing selection of sampling and analytical methods that meet project-specific and site-specific needs in scoping field investigations, providing procedures that will improve the representative quality of the collected data, and considering potential biases introduced into data through the sampling and analytical techniques employed in the site investigation. Pages: 96 November 1997 | Product Number: I46580 | Price: $72.00
Publ 4659

The DAF plays a key role in assessing potential impact from the soil-to-groundwater pathway at sites where groundwater quality is, or may be, affected by a leak, spill, or other accidental release of hydrocarbons or other chemicals of concern. A simplistic, graphically-based approach for determining generic and site-specific DAFs was developed, allowing for varying levels of site specificity. Currently, to develop a DAF, one must make complicated calculations by hand or use computer-based modeling software. This publication consists of two documents. The first document describes the technical basis for the graphical approach for determining site-specific dilution attenuation factors. The second document, the user's guide, provides a concise set of instructions for use of the graphical approach.

Pages: 233
February 1998 | Product Number: I46590 | Price: $121.00

Publ 4668
Delineation and Characterization of the Borden MTBE Plume: An Evaluation of Eight Years of Natural Attenuation Processes

In 1988, a natural gradient tracer test was performed in the shallow sand aquifer at Canada Forces Base Borden to investigate the fate of a methyl tertiary-butyl-ether (MTBE) plume introduced into the aquifer. Solutions of groundwater mixed with oxygenated gasoline were injected below the water table along with chloride (Cl\textsuperscript–), a conservative tracer. The migration of benzene, toluene, ethylbenzene, and xylenes (BTEX); MTBE; and Cl\textsuperscript– was monitored in behavior of MTBE and other oxygenated fuel additives. It also provides an overview of characterization monitoring issues at oxygenate release sites, as well as a detailed review of the tools and techniques used for subsurface assessment. The expedited site assessment process and the use of modern direct-push tools are particularly emphasized, since these approaches are especially well suited for use at MTBE-affected sites.

Pages: 209

Publ 4709
Risk-Based Methodologies for Evaluating Petroleum Hydrocarbon Impacts at Oil and Natural Gas E&P Sites

The process of calculating human health risk-based screening levels for total petroleum hydrocarbons (TPH) is described in an easy-to-understand question and answer format. Risk-based screening levels (RBSLs) for TPH in crude oil and condensates obtained from around the world. These methodologies were also applied to polyaromatic hydrocarbons, metals, and benzene in TPH. Additional resources contained in this manual include a description of the physical and chemical characteristics of crude oil, condensate, and exploration and production (E&P) wastes (contrasted with refined products), a summary of the federal regulatory status of E&P wastes, and a listing of key equations used for calculating RBSLs.

Pages: 100
February 2001 | Product Number: I47090 | Price: $85.00

Publ 4711
Methods for Determining Inputs to Environmental Petroleum Hydrocarbon Mobility and Recovery Models

This publication is an invaluable reference for operators, consultants and regulators responsible for cleanup of subsurface petroleum releases. Important fluid and soil property parameters are explained. Methods to measure each parameter are presented in order of relevance for use in environmental free-product mobility/recovery assessments. Fluid property parameters covered include density, viscosity, surface tension, and interfacial tension. Laboratory-scale soil property parameters include: capillary pressure vs. saturation, relative permeability vs. saturation, water and nonaqueous phase liquid saturation, and Brooks-Corey and van Genuchten model parameters. Field-scale bail-down and production tests are explained and cited. Sample collection and handling procedures are summarized. A listing and abstract of relevant ASTM methods are provided in the appendix.

Pages: 72
July 2001 | Product Number: I47110 | Price: $115.00

Publ 4731
Light Non-Aqueous Phase Liquid (LNAPL) Parameters Database—Version 2.0—Users Guide

A collection of information about samples that have had their capillary parameters determined, as well as other physical parameters measured. Capillary properties are critical in multiphase calculations, and those results have very high sensitivity to these properties. The primary purpose of this database is to provide information to users who are trying to characterize the movement and distribution of LNAPL within a site that has a limited set of direct observations of the capillary properties of the site. Other databases of related parameters have typically been derived from measurements in the agricultural or the petroleum extraction industries; neither being necessarily representative of near-surface environmental conditions. This database gives the user the opportunity to understand the range of capillary characteristics observed at sites that are geologically similar, but where there are more direct and laboratory observations available.

December 2003 | Product Number: I47310 | Price: $131.00

The database is available from API's website: https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnap/parameter-database.
Health and Environmental Issues

Publ 4739
API Interactive LNAPL Guide—Version 2.0.4
A comprehensive and easy-to-use electronic information system and screening utility. The guide is designed to provide an overall approach for evaluating light nonaqueous phase liquid (LNAPL) at a site, assessing its potential risk, quantitatively defining mobility and recoverability, developing remedial strategies, and examining methods to enhance site closure opportunities.

The guide includes the following:

- 11 primers covering all aspects of LNAPL from LNAPL basics to remediation;
- 14 assessment tools, including API-LNAST Version 2.0, “Charbeneau” spreadsheets for LNAPL recovery (August 2003), the API LNAPL Parameter Database;
- LNAPL decision-making frameworks;
- videos and animated figures; and
- an extensive reference list.

Publ 4761
Technical Protocol for Evaluating the Natural Attenuation of MtBE
Addresses data collection, evaluation, and interpretation procedures that consider the physical, chemical, and biological properties of methyl tert-butyl ether (MtBE) and other oxygenates and degradation byproducts. A tiered approach is provided that can be used by stakeholders to interpret several lines of evidence to evaluate natural attenuation on a site-specific basis. Several resources are provided to support an MNA evaluation, including the following:

- a review of basic scientific principles relevant to the evaluation of MtBE natural attenuation, including biodegradation and physicochemical attenuation mechanisms;
- a discussion of data that can be used to assess MtBE (and other oxygenates or degradation byproducts) natural attenuation;
- technical references for relevant chemical properties, analytical methods, and field sampling techniques;
- guidance for data quality assurance and interpretation, including statistical analysis; and
- guidance on the presentation of natural attenuation data/information to facilitate regulatory and other stakeholder review and acceptance of MNA remedies. Pages: 186

Environmental Stewardship Program Publications

RP 75
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities
Provides guidance for use in preparing safety and environmental management programs for oil, gas, and sulphur operations and facilities located on the outer continental shelf (OCS). These guidelines are applicable to well drilling, servicing, and production and pipeline facilities and operations that have the potential for creating a safety or environmental hazard at OCS platform sites. Eleven major program elements are included for application to these facilities and operations. Identification and management of safety and environmental hazards are addressed in design, construction, start-up, operation, inspection, and maintenance of new, existing, and modified facilities Pages: 41

Product Number: G07503 | Price: $92.00

RP 75 *
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities—Chinese
Chinese translation of RP 75.

3rd Edition | May 2004 | Product Number: G07503C | Price: $65.00

Publ 9100
Model Environmental, Health and Safety (EHS) Management System and Guidance Document
Comes with a binder complete with both Publ 9100A and Publ 9100B—see descriptions listed below. Pages: 65

October 1998 | Product Number: R9100S | Price: $162.00

Publ 9100A
Model Environmental, Health and Safety (EHS) Management System
Intended to be used as a voluntary tool to assist companies interested in developing an EHS management system or enhancing an existing system. The model, which applies a quality systems approach to managing EHS activities, focuses on people and procedures by pulling together company EHS policies, legal requirements, and business strategies into a set of company or facility expectations or requirements.

Please refer to the companion document Publ 9100B for additional information. Publ 9100A and Publ 9100B are intended to be companion documents and can be purchased as a set or individually. Pages: 20

October 1998 | Product Number: R9100A | Price: $78.00

Publ 9100B
Guidance Document for Model EHS Management System
Provides assistance to corporate and operating organization employees who are developing, implementing, and assessing environmental, health and safety management systems. It intends to serve as self-study source material that enhances efficiency of interchange among employees by use of common terminology, clarifies relationships between operating and other systems, describes how to evaluate effectiveness of an EHS management system and its elements, and facilitates system continuity over time.

Those using this guidance document should be familiar with Publ 9100A. Publ 9100A, and Publ 9100B are intended to be companion documents and can be purchased as a set or individually. Pages: 43

October 1998 | Product Number: R9100B | Price: $112.00

Storage Tank Research

Publ 301
Aboveground Storage Tank Survey: 1989
Presents a survey of petroleum aboveground storage tanks. Estimates are made of the number, capacity, and age of the tanks in each sector of the petroleum industry. Survey forms and statistical extrapolations methodology are included in the report. Pages: 44

April 1989 | Product Number: J30100 | Price: $65.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations.Translations may not include any Addenda or Errata to the document. Please check the English-language versions for any updates to the documents.
conventional level and temperature measurement systems. The features of a
applicability of a general leak detection methodology involving multiple tests
petroleum fuels, and operational conditions. This study also assesses the
leak detection test needed for high performance are also explored. Pages: 43

January 1994 | Product Number: J30600 | Price: $76.00

Publ 307
An Engineering Assessment of Volumetric Methods of Leak Detection in
Aboveground Storage Tanks
Provides the results of a leak detection project in aboveground storage tanks
that utilized volumetric methods to detect leaks. A series of field tests were
conducted on a 114-ft diameter tank that contained a heavy naphtha
petroleum product. The analytical and experimental results of this project
suggest that volumetric leak detection methods can be used to detect small
leaks in aboveground storage tanks. Pages: 76

January 1992 | Product Number: J30700 | Price: $76.00

Publ 315
Assessment of Tankfield Dike Lining Materials and Methods
To assess tankfield materials and methods of containment, API commissioned
a review of environmental regulations as well as a survey of candidate lining
materials and installation methods to explore the technology base. The study
was limited to diked areas surrounding storage tanks. Liner installations for
secondary containment underneath tanks were excluded. Pages: 50

July 1993 | Product Number: J31500 | Price: $76.00

Publ 322
An Engineering Evaluation of Acoustic Methods of Leak Detection in
Aboveground Storage Tanks
Describes a set of controlled experiments conducted on a 40-ft diameter
refinery tank to determine the nature of acoustic leak signals and ambient
noise under a range of test conditions. The features of a leak detection test
needed for high performance are explored. The report concludes that
accurate and reliable leak detection of aboveground storage tanks can be
achieved through the use of acoustic methods. Pages: 80

January 1994 | Product Number: J32200 | Price: $76.00

Publ 323
An Engineering Evaluation of Volumetric Methods of Leak Detection in
Aboveground Storage Tanks
Two volumetric approaches to detecting leaks from aboveground storage tanks—precision temperature sensors and mass measurement approaches—are evaluated in this report. A set of controlled experiments on a 117-ft diameter refinery tank is used to examine the effects of differential pressure on conventional level and temperature measurement systems. The features of a leak detection test needed for high performance are also explored. Pages: 86

January 1994 | Product Number: J32300 | Price: $76.00

Publ 325
An Evaluation of a Methodology for the Detection of Leaks in
Aboveground Storage Tanks
Describes the results of the fourth phase of a program to define and advance
the state of the art of leak detection for aboveground storage tanks (ASTs).
Three leak detection technologies are examined—passive-acoustic, soil
vapor monitoring, and volumetric—over a wide range of tank types,
petroleum fuels, and operational conditions. This study also assesses the
applicability of a general leak detection methodology involving multiple tests
and product levels as well as determines the integrity of 14 ASTs using two
or more test methods. Pages: 94

May 1994 | Product Number: J32500 | Price: $93.00

Publ 327
Aboveground Storage Tank Standards: A Tutorial
Presents procedures and examples to help designers, owners, and operators
of aboveground storage tanks understand and comply with API's
recommended practices, standards, and specifications concerning leak
prevention. These API documents provide requirements designed to
minimize environmental hazards associated with spills and leaks. The tutorial
also shows how the API inspection and maintenance requirements influence
the design of such tanks. It does not attempt to address additional rules and
requirements imposed by individual jurisdictions or states. Pages: 70

September 1994 | Product Number: J32700 | Price: $76.00

Publ 328
Laboratory Evaluation of Candidate Liners for Secondary
Containment of Petroleum Products
Provides comparative data on the physical properties of liner materials as a
function of their controlled exposure to fuels and/or additives. Six membrane
two clay liners were tested. Project test results were used to rank the
liners in terms of vapor permeation and relative changes in properties such
as chemical resistance and liquid conductivity measured after immersion.
Pages: 142

July 1995 | Product Number: J32800 | Price: $85.00

Publ 334
A Guide to Leak Detection for Aboveground Storage Tanks
Written for terminal managers, tank owners, operators, and engineers, this
report provides useful background on leak detection technologies—
volumetric, acoustic, soil-vapor monitoring, and inventory control—for
aboveground storage tanks. Characteristics affecting the performance of each
technology are discussed. Pages: 38

September 1992 | Product Number: J33400 | Price: $76.00

Publ 340
Liquid Release Prevention and Detection Measures for Aboveground
Storage Facilities
Written for managers, facility operators, regulators, and engineers involved in
the design and selection of facility components and prevention of liquid
petroleum releases, this report presents an overview of available equipment
and procedures to prevent, detect, or provide environmental protection from
such releases. Also presented are the advantages, disadvantages, and
relative costs, as well as maintenance and operating parameters of various
control measures. Pages: 116

October 1997 | Product Number: J34000 | Price: $85.00

Publ 341
A Survey of Diked-Area Liner Use at Aboveground Storage Tank
Facilities
In 1997, API conducted a survey designed to evaluate the effectiveness of
diked-area liner systems and to document operational problems involved
with their use. The survey data indicated that the effectiveness of liners in
protecting the environment is limited because liner systems frequently fail.
The data further showed that there are few releases from aboveground
storage tanks that would be addressed by diked-area liners. Because there
were few releases, the data do not directly demonstrate the effectiveness or
ineffectiveness of liner systems in containing releases; however, it was
concluded that measures that prevent aboveground storage tank releases
are more effective in protecting the environment and are more cost-effective
in the long run. Pages: 32

February 1998 | Product Number: J34100 | Price: $76.00
Health and Environmental Issues

Publ 346
Results of Range-Finding Testing of Leak Detection and Leak Location Technologies for Underground Pipelines
This study reviewed the current leak detection and leak location methods for pressurized underground piping commonly found at airports, refineries, and fuel terminals. Four methods for testing underground pipes of 6 in. to 18 in. in diameter and 250 ft to 2 miles in length were selected for field demonstration. These technologies were constant-pressure volumetric testing, pressure-decay testing, chemical tracer testing, and acoustic emission testing. No single leak detection system was found to work in all situations; site-specific conditions may affect any method, and combinations of methods may provide the most effective approach. Pages: 252
November 1998 | Product Number: J34600 | Price: $85.00

Publ 353
Managing Systems Integrity of Terminal and Tank Facilities
Although the risk management principles and concepts in this document are universally applicable, this publication is specifically targeted at integrity management of aboveground liquid petroleum storage facilities. The applicable petroleum terminal and tank facilities covered in this document are associated with distribution, transportation, and refining facilities as described in Std 2610 and Publ 340.
This document covers the issues of overall risk management, risk assessment, risk ranking, risk mitigation, and performance measures applicable to an overall integrity management program. The appendices include two possible methodologies for conducting a risk assessment and a workbook that can be used to perform the risk assessment method outlined in Appendix A. Pages: 316
1st Edition | October 2006 | Product Number: J35300 | Price: $150.00

Publ 4716
Buried Pressurized Piping Systems Leak Detection Guide
Analyses of the performance of different types of leak detection technologies that were applied to buried pressurized piping systems used in airport hydrant fueling and petroleum product terminals. The study was conducted by Argus Consulting and Ken Wilcox Associates on behalf of the Air Transport Association of America and API. This report is intended to provide an overview of the study methodology and results. Pages: 47
April 2002 | Product Number: I47160 | Price: $97.00

Surface Water Research

DR 342
Toxicity Bioassays on Dispersed Oil in the North Sea: June 1996 Field Trials
The purpose of the study described in this report was to gain more information on water column impacts by taking advantage of the ongoing efficacy and monitoring studies done by the Norwegian Clean Seas Association for Operating Companies (NOFO) in order to conduct field toxicity tests.
The goal of this study was to obtain field effects data using shipboard, real-time toxicity tests with field water. These data can then be used in the future to link field effects to laboratory toxicity data. Pages: 108
June 2002 | Product Number: I34200 | Price: $143.00

Publ 4676
Automated Validation System for the Offshore Operations Committee Mud and Produced Water Discharge Model
Describes the development of an automated validation system for the Offshore Operators Committee Mud and Produced Water Discharge Model (the "OOC Model"), a computer program that predicts the initial fate of drilling fluids, drill cuttings, and produced water discharged into the marine environment. The system automates the process of validating OOC Model predictive capabilities by comparing model predictions with the results of laboratory and field studies of plume behavior. The system was developed to automate the laborious process of confirming that model code enhancements do not degrade the predictive abilities of the OOC Model. The automated validation system approach described here also serves as a template for routine documentation of discharge model performance that could be applied to other models used by industry, consultants, or regulatory agencies. Two of relevant studies found in a literature search were incorporated into the suite of automated test cases for the OOC Model. Summaries of the data sets used for OOC Model validation were prepared in such a way that they could be used conveniently outside of the automated system to validate of any relevant discharge model.
November 2002 | CD-ROM Only

Publ 4676
The Use of Treatment Wetlands for Petroleum Industry Effluents
Treatment wetlands are becoming widely used for cleansing some classes of wastewater effluents. Although the use of treatment wetlands is well established for wastewater categories such as municipal waste, stormwater, agricultural wastewater, and acid mine drainage water, their use in treating a variety of industrial wastewaters is less well developed. Constructed treatment wetlands hold considerable promise for managing some wastewaters generated by the petroleum industry. Several large-scale wetland projects currently exist at oil refineries, and numerous pilot studies of constructed treatment wetlands have been conducted at terminals, gas and oil extraction and pumping stations, and refineries. This report summarizes current information about the use of treatment wetlands for managing petroleum industry wastewaters and also presents background information on the general performance, design, and operation of treatment wetlands based on experience with a variety of wastewater types. Pages: 222
October 1998 | Product Number: I46720 | Price: $100.00

Publ 4676
Arsenic: Chemistry, Fate, Toxicity, and Wastewater Treatment Options
Arsenic is a naturally occurring element in rocks, soils, water, sediments, and biological tissues. It is also present in fossil fuels. Arsenic in the environment has both anthropogenic and natural sources, and certain anthropogenic sources have caused localized adverse effects on ecological systems and human health. Based on extensive review of the literature, this monograph is intended to serve as a reference volume on the sources of arsenic in the environment, the chemistry and fate of arsenic compounds, biomedical effects, the toxicity of arsenic to aquatic and terrestrial species, wastewater treatment options, and regulatory standards for arsenic in the environment. Pages: 196
October 1998 | Product Number: I46760 | Price: $100.00
Publications

Publ 4688
Temporary Treatment Options for Petroleum Distribution Terminal Wastewaters

Provides guidance to terminal operators and engineers in evaluating mobile treatment systems for wastewater generated at petroleum distribution terminals. Some of the variables that must be considered include the characteristics of the wastewater, the permitting process, and contractor experience. This document provides sufficient information to guide an operator/engineer through evaluation of mobile treatment systems, including problem definition, treatment technology selection, contractor selection, and implementation. Pages: 73

November 1999 | Product Number: I46880 | Price: $126.00

Publ 4694
Laboratory Analysis of Petroleum Industry Wastewaters

Assists in arranging for and understanding laboratory analysis of petroleum industry wastewaters. Designed for environmental coordinators, managers, corporate staff, and others who must address environmental compliance reporting and regulatory issues. It is also useful for field personnel responsible for obtaining wastewater sample analyses to fulfill environmental regulatory requirements. Guidance and information are provided for setting data quality objectives; planning analyses; selecting a laboratory; and reviewing laboratory reports, detection and quantification limits, quality assurance/quality control practices, method references, method-defined analytes, and statistical calculations. Examples of case studies, laboratory reports, and data calculations are given throughout the manual. Checklists are provided to help users understand, plan, and review laboratory data. Pages: 175

December 1999 | Product Number: I46940 | Price: $126.00

Publ 4695
Understanding and Preparing Applications for Petroleum Facility NPDES Discharge Permits

Assists member companies and others in preparing applications and negotiating with permit authorities for National Pollutant Discharge Elimination System (NPDES) permits for wastewater discharges. The manual is intended to help permittees and permit applicants to understand the permit process from application to final permit and to provide tools and strategies for assuring that the permit is fair and properly implements the applicable regulations. Much of the information in this manual is based on practical experience with many NPDES permits and applications. Examples and case histories are provided to help the user understand the permit application process. Pages: 220

December 1999 | Product Number: I46950 | Price: $133.00

Publ 4698
A Review of Technologies to Measure the Oil and Grease Content of Produced Water from Offshore Oil and Gas Production Operations

Identifies and evaluates practical alternative methods for routine monitoring of oil and grease in produced waters. Traditional monitoring methods relied on Freon-113 extraction of oil and grease; however, owing to the phase-out of Freon-113 these methods can no longer be used, and new methods must be sought. This study evaluates two infrared detection methods and one fluorescence detection method for identifying and measuring oil and grease in produced waters. Performance information and the correlation of analytical results with the U.S. Environmental Protection Agency’s hexane extraction method, Method 1664, are provided. Pages: 138

November 1999 | Product Number: I46980 | Price: $126.00

Publ 4717
Predictors of Water-Soluble Organics (WSOs) in Produced Water—A Literature Review

Reviews the scientific literature on the identity and physical/chemical characteristics of the WSOs in produced water in relation to characteristics of fossil fuels and their reservoirs. Pages: 24

March 2002 | Product Number: I47170 | Price: $76.00

Publ 4721
Analytical Detection and Quantification Limits: Survey of State and Federal Approaches

The purpose of this review was to determine the analytical detection and quantification limit policies of various state agencies. Of particular interest were policies for setting wastewater discharge permit limits at or below detection or quantification limits, for determining compliance with such limits, and for using alternative approaches to determining detection or quantification limits. Although the main focus of this review was on state policies involving water quality issues, included in the review were the policies of programs in other environmental areas as well as in federal regulations and statutes. Pages: 129

June 2002 | Product Number: I47210 | Price: $143.00

Publ 4736
Identification of Key Assumptions and Models for the Development of Total Maximum Daily Loads

Provides the reader with an understanding of the use of models in the development and implementation of total maximum daily loading (TMDL) studies. The report focuses on the types of models used for TMDLs, the key assumptions underlying the models, how models are selected for specific surface waters and impairments, the data required to apply the models to a specific surface water and impairment, and how the predictive capability of the models is assessed. Pages: 64

November 2006 | Product Number: I47360 | Price: $153.00

Publ 4750
Cyanide Discharges in the Petroleum Industry: Sources and Analysis

Because both industrial and municipal dischargers have been issued National Pollutant Discharge Elimination System permits with low (5–20 μg/L) effluent limits for cyanide, there has been considerable interest in the reliability of the available test methods at these low concentrations. This report provides guidance on the measurement, as well as the presence and environmental fate, of cyanide compounds and related chemical species in petroleum industry wastewater effluents. Pages: 42

November 2008 | Product Number: I47500 | Price: $97.00

Publ 4751
Evaluation of Water Quality Translators for Mercury

Discusses the technical issues and constraints associated with translation of a mercury fish tissue concentration into a water quality criterion, in the use and implementation of the U.S. Environmental Protection Agency’s fish-tissue-based criterion for methylmercury. The report focuses on available analytical methods for evaluating mercury in fish and water; proposed methods for translating a fish tissue concentration for mercury into a water quality criterion, in the development of total maximum daily loads and water quality-based effluent limits. Pages: 37

1st Edition | December 2005 | Product Number: I47510 | Price: $72.00

Publ 4756
Interim Permitting Manual—Navigating NPDES Permit Issues on Impaired Waters

Addresses many water quality standards issues that facilities may encounter, including existing uses, use attainability analyses to revise designated uses, fish consumption advisories, whole effluent toxicity criteria, and sediment criteria. The manual will provide guidance on a number of listing issues, including listings due to violations of narrative criteria and fish consumption advisories, delisting, listing waters that are impaired but do not need a total maximum daily loading (TMDL) because they are expected to meet standards through other means, and challenging an erroneous listing determination. The second part of this manual will discuss permitting discharges to impaired waters during the interim period before TMDLs are developed. The manual will describe the development of water quality-based effluent limitations on...
impaired waters and will also discuss a number of issues for affected facilities to consider during the permitting process, including timing (when the permit should be issued), watershed permitting, verifying the impairment determination before the permit is issued, other controls available to bring the water to attainment, reasonable potential calculations, voluntary reduction measures, nonnumeric effluent limitations, and calculating numeric effluent limitations. Pages: 41

November 2006 | Product Number: I47560 | Price: $78.00

Publ 4782 Petroleum Refining Industry Contribution to Nationwide Surface Water Nutrient Loadings

This analysis was commissioned by API to provide member companies and the public with a better understanding of the water quality problems associated with nutrient discharges to the nation’s surface waters, the current federal and state regulatory responses to nutrient-related water quality problems, the scientific and implementation challenges of nutrient controls, and the petroleum refining industry’s relative contribution to nationwide nutrient discharges to surface waters. This study is based on using available published data on nutrient enrichment of U.S. surface waters; the U.S. Environmental Protection Agency (EPA) and state nutrient control guidance, policy, and water quality standards; prior analysis performed for API by a third-party consultant; petroleum refinery effluent quality data from the EPA Integrated Compliance Information System/National Pollutant Discharge Elimination System (ICIS-NPDES); and permit data collected from the files of the Texas Commission on Environmental Quality (TCEQ). Pages: 35

August 2016 | Product Number: I47820 | Price: $77.00

Publ 4783 Water Management and Stewardship in Midstream, Downstream, and Delivery Operations in the Oil and Gas Industry

This report uses the oil and gas (petroleum) life cycle as an organizing framework for explanation and discussion. The scope of this study is focused on the midstream, downstream, and delivery components of the oil and gas life cycle. Upstream components of the life cycle will be addressed in a framework for explanation and discussion. The scope of this study is focused on the midstream, downstream, and delivery components of the oil and gas life cycle. Upstream components of the life cycle will be addressed in a future report. This study is intended to inform stakeholders about how the oil and gas industry uses water in the midstream, downstream, and delivery phases of the petroleum life cycle and the various industry-led and regulatory practices employed to conserve and protect water resources. Pages: 46

December 2016 | Product Number: D47830 | Price: $77.00

BIOMONITORING

TR 402 Toxicity to Freshwater Alga, Selenastrum apricornutum

Describes a study conducted to assess the effect of tert-amyl methyl ether on the growth of the freshwater alga, Selenastrum capricornutum. At 24-hour intervals, cell counts and observations of the health of the cells were recorded. EC10, EC50, and EC90 values (the concentration of test material that reduced cell densities by 10%, 50%, and 90%, respectively) were calculated based on cell density 72 and 96 hours after exposure. Pages: 76

February 1995 | Product Number: I00402 | Price: $63.00

TR 406 TAME—Acute Toxicity to Daphnids Under Flow-Through Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to daphnids under flow-through conditions. Nominal concentrations of TAME—690, 410, 250, 150, and 89 mg A.I./L—were maintained in exposure vessels and mean exposure concentrations calculated. Biological observations and physical characteristics were recorded at test initiation and at 3, 6, 24, and 48 hours. Pages: 76

February 1995 | Product Number: I00406 | Price: $63.00

TR 407 TAME—Acute Toxicity to Mysid Shrimp (Mysidopsis bahia) Under Static Renewal Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to mysid shrimp under static renewal conditions. Nominal concentrations of TAME—1.6, 4.0, 7.3, 15, 30, and 60 mg A.I./L—were maintained by renewing solutions at 24, 48, and 72 hours of exposure. Observations were recorded at test initiation and every 24 hours until the test was terminated. Pages: 84

February 1995 | Product Number: I00407 | Price: $63.00

TR 408 TAME—Acute Toxicity to Rainbow Trout Under Flow-Through Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to rainbow trout under flow-through conditions. During the test, nominal concentrations of TAME—950, 570, 340, 210, and 120 mg A.I./L—were maintained and mean exposure concentrations calculated. Biological observations and physical characteristics were recorded at test initiation and every 24 hours thereafter until test termination. Pages: 80

February 1995 | Product Number: I00408 | Price: $64.00

Publ 4610 Critical Review of Draft EPA Guidance on Assessment and Control of Bioconcentratable Contaminants in Surface Waters

Reviews the U.S. Environmental Protection Agency’s proposed methods and underlying assumptions for assessing bioconcentratable contaminants in petroleum industry effluents. It focuses on the effluent option and its application to National Pollutant Discharge Elimination System (NPDES)-permitted discharges from oil refineries, petroleum product marketing terminals, and oil/gas production platforms. The review also includes a general evaluation of the suitability of the tissue residue option for evaluating oil industry effluents. Pages: 134

January 1995 | Product Number: I46100 | Price: $72.00

Publ 4656 Bioaccumulation: How Chemicals Move from the Water into Fish and Other Aquatic Organisms

Provides an intermediate-level primer on the accumulation of chemicals by aquatic organisms with emphasis on polycyclic aromatic hydrocarbons. Key factors governing bioaccumulation are described to enhance understanding of this complex phenomenon. Approaches for assessing the bioaccumulation potential of chemicals are examined and an evaluation of each method’s advantages and shortcomings is offered. Pages: 54

May 1997 | Product Number: I46560 | Price: $90.00

Publ 4666 The Toxicity of Common Ions to Freshwater and Marine Organisms

Whole effluent toxicity (WET) tests have become a common tool in the evaluation of effluent for discharge acceptability. Recent investigations have indicated that deficiencies or excesses of “common” ions (inorganic ions that are nearly always present in most aquatic systems at nontoxic concentrations) can cause significant acute or chronic toxicity in WET tests. This report presents the results of a review of toxicological and physiological data on inorganic ions that have been implicated in causing significant toxicity—bicarbonate, borate, bromide, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate. Pages: 114

April 1999 | Product Number: I46660 | Price: $100.00
Health and Environmental Issues

Publ 4701
Bioaccumulation: An Evaluation of Federal and State Regulatory Initiatives
August 2000 | Product Number: I47010 | Price: $91.00

EFFLUENTS: EXPLORATION AND PRODUCTION

DR 351
Proceedings: Workshop to Identify Promising Technologies for the Treatment of Produced Water Toxicity
Presents the discussions, conclusions and recommendations of an API workshop held in October 1994 to identify technologies that could potentially be used for the treatment of produced water toxicity offshore. Background information on the candidate technologies; information on produced water toxicity limitations, characteristics, and composition; results of toxicity identification evaluations; and a discussion of the engineering restrictions imposed by offshore platforms are included. Pages: 122
June 1996 | Product Number: I00351 | Price: $75.00

Publ 4611
Interlaboratory Study of EPA Methods 1662, 1654A and 1663 for the Determination of Diesel, Mineral and Crude Oils in Drilling Muds from Offshore and Gas Industry Discharges
Describes an interlaboratory round-robin study to validate the tiered approach of the U.S. Environmental Protection Agency’s three methods—1662, 1654A, and 1663—for monitoring diesel oil in drilling muds. Various extraction methods were evaluated and analytical measurement techniques were tested for measuring diesel oil. Pages: 106
April 1995 | Product Number: I46110 | Price: $75.00

Publ 4633
Barium in Produced Water: Fate and Effects in the Marine Environment
Provides a summary of what is currently known about the physical and chemical behavior of barium in produced water and in the ocean. It discusses the factors that influence the rate of precipitation of barium as bate. The toxicity of barium to marine and freshwater organisms and humans is discussed in relation to the concentrations and forms in which it occurs in aquatic environments. Pages: 68
September 1995 | Product Number: I46330 | Price: $61.00

Publ 4641
Summary of Produced Water Toxicity Identification Evaluation Research
Summarizes the results of a three-part study to evaluate the ability of U.S. Environmental Protection Agency proposed toxicity identification evaluations (TIEs) to determine the potential toxicants in produced water from oil and gas production operations in various locations. Factors affecting the results of the TIEs were identified as well as potential toxicants. Suggestions for improving TIE procedures are included. Pages: 102
June 1996 | Product Number: I46410 | Price: $91.00

Publ 4702
Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal
Technologies to reduce oil and grease content of well treatment, well completion, and workover fluids for overboard disposal. Pages: 54
March 2001 | Product Number: I47020 | Price: $126.00

EFFLUENTS: MARKETING

Publ 4602
Minimization, Handling, Treatment and Disposal of Petroleum Products Terminal Wastewaters
Intended to be a basic guide and information resource for all wastewater operators at petroleum product terminals. It includes the regulatory framework for wastewater issues, a detailed description of the sources of terminal wastewater and associated contaminants as well as guidance on means for analyzing the wastewater situation at a terminal, for minimizing wastewater flow contamination, and for wastewater handling and disposal. Pages: 120
September 1994 | Product Number: I46020 | Price: $134.00

Publ 4665
Analysis and Reduction of Toxicity in Biologically Treated Petroleum Product Terminal Tank Bottoms Water
Objectives of this study were to measure toxicity in biologically treated petroleum product terminal tank bottoms waters, identify the chemical constituents causing that toxicity, identify treatment options, and measure the effectiveness of the treatment techniques in removing the constituents and reducing toxicity. Nine gasoline and two diesel tank bottoms water samples were collected from petroleum product terminals at various geographical locations. The samples were normalized to a fixed chemical oxygen demand, then subjected to biological treatment. Treated samples were tested for acute toxicity in 24-hour exposure tests using Mysidopsis bahia and for chronic toxicity in 7-day static renewal toxicity tests also using Mysidopsis bahia. Biological treatment was observed to effectively remove metals but produced highly variable degrees of chemical oxygen demand, biochemical oxygen demand, and total organic carbon. Pages: 84
April 1998 | Product Number: I46650 | Price: $81.00

Publ 4673
Impacts of Petroleum Product Marketing Terminals on the Aquatic Environment
Examines the potential impact of petroleum product marketing terminal (PPMT) wastewater discharges to aquatic environments to ascertain if there is a need for more stringent regulations. Wastewater discharges by PPMTs were evaluated, the constituents normally present in these waste streams were identified, and their possible aquatic impacts were investigated. It was determined that PPMT wastewater discharges pose little environmental risk; therefore, stricter regulations for PPMT dischargers are unwarranted. Pages: 52
April 1999 | Product Number: I46730 | Price: $100.00

Publ 4690
A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants
Provides basic information and guidance on SPMD technology and its appropriate use in aquatic systems. Emphasis is given to methods, applications, and theoretical issues related to the use of SPMDs for monitoring priority pollutant polycyclic aromatic hydrocarbons, but other classes of hydrophobic organic contaminants are covered as well. This document includes key information on SPMD background, rationale, theory and modeling, technical considerations, suppliers/source, chemical analysis and quality control, bioassay screening, comparability to biomonitors, examples of use, and sources of addition information. However, covering all potential environmental applications (e.g. vapor phase sampling) and relevant research results is beyond the scope of this work. Finally, use of this guide does not obviate the need for proper review and oversight procedures prior to the initiation of a project with SPMDs. Pages: 172
March 2002 | Product Number: I46900 | Price: $136.00
Publ 4700
Primer for Evaluating Ecological Risk at Petroleum Release Sites

Designed to help site and facility managers acting as site investigators decide how and to what extent to address ecological risks that may result from a release of petroleum products. The focus is on “downstream” operations related to transportation, distribution, or marketing of petroleum products, but the general principles may be adapted to other parts of the industry as well. The ecological risk assessment process is briefly described, and guidance is given about the preliminary investigation to assess the possible nature and extent of risk. This information is an initial part of a tiered decision-making process used to determine the depth and breadth of the site investigation. Pages: 52

May 2001 | Product Number: 147000 | Price: $106.00

EFFLUENTS: REFINING

DR 148
Identification of Organic Toxicants in Treated Refinery Effluents

Effluents from five oil refineries were examined for the presence of chronic toxicity caused by nonpolar, organic compounds. U.S. Environmental Protection Agency (EPA) guidelines for Phase I toxicity characterization procedures were used. The refinery effluent containing the most nonpolar toxicity was selected for more detailed analyses and identification of the nonpolar toxicants using Phase II procedures. Extraction and elution conditions were modified to increase chronic toxicity recovery and also reduce the complexity of the nonpolar organic effluent fraction containing toxicity. Results showed that simple modifications of EPA guidance for C18 solid phase extraction procedures, combined with proper toxicity testing conditions, successfully tracked and isolated toxicity in an effluent fraction. Findings also indicated that sources of refinery effluent toxicants were a phenol associated with a jet fuel additive, and two brominated organics believed to be reaction products of cooling tower water treatment chemicals, rather than from crude oil constituents. Pages: 64

December 1997 | Product Number: 100148 | Price: $63.00

Publ 352

This report is the ninth in a series of reports presenting the results of the API Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 residual streams representing approximately 80% of all residuals managed at U.S. refineries. Prior to the 1997 survey, the management techniques had included recycling to the cat cracker, which referred to routing a residual to a catalytic cracking unit. Further study revealed that the quantity for residuals annually recycled to a cracking unit was very small—perhaps nonexistent—and was therefore deleted from the 1997 survey. Data for prior years were adjusted. Industry trend toward increased recycling of residuals has continued. Pages: 108

September 1999 | Product Number: J35200 | Price: $126.00

OIL SPILLS

Bull D16
Suggested Procedure for Development of a Spill Prevention Control and Countermeasure Plan

Assists the petroleum industry in understanding the Spill Prevention, Control, and Countermeasure (SPCC) regulation in light of the latest rule (40 CFR Part 112) and to offer guidance for developing SPCC plans wherever they are needed. Included is a template for developing SPCC plans (i.e. onshore excluding production; onshore oil production, oil drilling, or workover; or offshore oil drilling, production, or workover) in accordance with the regulation and guidance, instruction, and clarification for completing each section of the template. The purpose of this rulemaking was to establish procedures, methods, and equipment to prevent and contain discharges of oil from non-transportation-related onshore and offshore facilities, thus preventing pollution of navigable waters of the United States. The development of this bulletin was commissioned by API and performed by Response Management Associates, Inc. The purchase of D16 includes Bull D16, the Plan Template, and a CD-ROM with the Microsoft® Word version of the Plan Template. 5th Edition | April 2011 | Product Number: GD1605 Price: $266.00 | Template Only: Price: $98.00

DR 145
Identification of Oils that Produce Non-Buoyant In-Situ Burning Residues and Methods for Their Recovery

There is an environmental concern about the possibility of sinking residues from in-situ burns (ISBs), leading to the potential for damage to the aquatic bottom zone. The objective of the study presented in this publication was to start the process of establishing operational tools and procedures for dealing with such nonbuoyant burn residues. There were two tasks: develop protocols for identifying ISB residues likely to sink, and evaluate options for dealing with those residues in the field. Pages: 62

February 2002 | Product Number: IDR1450 | Price: $97.00

TR 425
Options for Minimizing Environmental Impacts of Inland Spill Response

The purpose of this guide is to support contingency planners and emergency responders in evaluating response techniques and selecting those techniques that will most effectively prevent or minimize adverse environmental impacts from inland spills. In this guide, inland spills are defined as those that affect terrestrial and freshwater habitats, whereas coastal and marine spills affect water bodies and habitats that are under the influence of tides and marine waters. Inland spills have unique characteristics and behavior, may have the potential to pose greater risks to the public, and often necessitate more intensive removal methods, compared to coastal and marine spills. Therefore, choosing the best response options and implementing these in the most environmentally appropriate manner can minimize adverse impacts of a response. Pages: 102

TR 1149-3
Canine Oil Detection: Field Trials Report

Field trials were undertaken in June 2015 to evaluate the applicability of canine oil detection teams (referred to as K9-SCAT) to support assessment surveys to locate and delineate the horizontal extent of subsurface oil for shoreline and inland spills response operations. The study is part of the American Petroleum Institute (API) Joint Industry Task Force (JITF) Shoreline Protection & Clean-Up Technical Working Group within the Oil Spill Preparedness and Response program. Pages: 59

TR 1149-4
Canine Oil Detection (K9-SCAT) Guidelines

The purpose of these Guidelines is to provide information on the potential for detection canines to support a shoreline or inland oiled area assessment (SCAT) program. This information includes how oil detection dogs use their sense of smell and what they can do to locate and delineate surface and subsurface oil, the current state of knowledge regarding situations and types of support surveys that a K9-SCAT team can undertake as part of a SCAT program, and how to plan and design a K9-SCAT survey and collect the appropriate data to document that mission. Pages: 81

TR 1151-4
Mechanical Treatment of Sand Beaches Historical Library Report

This report describes the Mechanical Treatment Library, which represents part of a multiphase study conducted by the American Petroleum Institute to improve the mechanized treatment of spilled oil on sand beaches. Pages: 5

TR 1153-1
Tidal Inlet Protection Strategies (TIPS): Phase 1—Final Report

This report presents an approach for the development of Tidal Inlet Protective Strategies (TIPS) that are based on knowledge of the physical systems involved and feasibility of tactical options. Strategies and tactics identified using the results of this study are subject to real-time conditions and pre-spill planned strategies should be re-evaluated during a response. The report considers potential tactics at a level appropriate for strategic planning, but is not intended to provide instructions for the implementation of those tactics. The guide is intended to be used by strategic planners and responders, and may be appropriate for inclusion in an Area Contingency Plan (ACP) or a Geographic Response Plan (GRP). Pages: 53

TR 1153-2
Tidal Inlet Protection Strategies (TIPS) Field Guide

This field guide is intended to be used by strategic planners and responders with the purposes of explaining the physical dynamics and characterization of a tidal inlet, identifying oil transport and operational constraints and opportunities for tidal inlet protection, identifying potential strategies for protection, and providing considerations and checklists for tidal inlet protection. Pages: 27

TR 1154-1
Sunken Oil Detection and Recovery

The purpose of this report is to identify and document current best practices and proven technologies possessing the potential to more effectively (1) detect, delineate, and characterize; (2) contain, and (3) recover sunken oil, defined as the accumulation of bulk oil on the bottom of a water body; and recommend research and development for the highest potential new technologies. Pages: 116

TR 1154-2
Sunken Oil Detection and Recovery Operational Guide

This operational guide is a companion document to the technical report, Sunken Oil Detection and Recovery, which identifies and documents current best practices and alternative technologies possessing the potential to more effectively detect, contain, and recover sunken oil, defined as the accumulation of bulk oil on the bottom of a water body. The technical report includes summaries and lessons learned for 36 case studies of oil spills where a significant amount of the oil sank. For each technology, it includes a detailed description of the method, advantages and disadvantages, and summary tables—the kind of information needed to select the most effective approaches to sunken oil detection and recovery. Please refer to the technical report for supporting information not in this guide. Pages: 28
February 2016 | Product Number: I115420 | For a free copy of this document, please visit http://www.oilspillprevention.org/~media/Oil-Spill-Prevention/spillprevention/r-and-d/inland/sunken-oil-ops-guide.pdf.

TR 1155-1
Shoreline In Situ Treatment (Sediment Mixing and Relocation) Library Report

The American Petroleum Institute (API) completed a study to improve the knowledge and understanding of shoreline sediment mixing and relocation techniques. The objective of the study is to provide the following tools: (1) Shoreline In Situ Treatment Library: an online library containing academic, scientific, technical, and operational literature, including links to electronic documents, where available; (2) Shoreline In Situ Treatment Fact Sheet: a non-academic educational guide, providing an overview of in situ treatment and Oil Particle Aggregate (OPA) formation for training and planning (TR 1154-2); and (3) Shoreline In Situ Treatment Job Aid: a non-academic operations tool for use during a response by Operations, the Environmental Unit (EU), and Shoreline Cleanup Assessment Technique (SCAT) teams for in situ treatment planning and operations, and to demonstrate to agencies how effectiveness and effects would be monitored (TR 1154-3). This report describes the first item of this program, the Shoreline In Situ Treatment Library, which is intended to locate and make available documents relevant to shoreline in situ (sediment mixing and relocation) treatment techniques. The library is provided in simple MS Excel spreadsheet and MS Access database formats, which are described in this report. Pages: 5

TR 1155-2
Shoreline In Situ Treatment (Sediment Mixing and Relocation) Fact Sheet

This fact sheet explains the use of shoreline in situ techniques, including wet and dry mixing (also known as tilling or aeration) and sediment relocation (also known as surf washing or berm relocation) for oil spill cleanup. Burning is outside the scope of this fact sheet. Pages: 20

TR 1155-3
Shoreline In Situ Treatment (Sediment Mixing and Relocation) Job Aid

The purpose of this job aid is to provide:

- a non-technical tool for planning and conducting shoreline in situ treatment for use by Shoreline Cleanup Assessment Technique (SCAT) teams as they develop shoreline treatment recommendations (STRs); Environmental Unit personnel and planners during the decision process; and Shoreline Operations to implement the treatment tactics.
- Decision guides and checklists to assist in understanding the advantages and consequences of shoreline in situ treatment options, and the decision, review, and approval process for shoreline in situ treatment.

This job aid provides guidance for the planning and implementation of in situ techniques on shorelines and rivers, including wet and dry mixing (also known as tilling or aeration) and sediment relocation (also known as surf washing or berm relocation) for oil spill cleanup. Burning on the shoreline is outside the scope of this job aid. Pages: 26
TR 1253
API Selection and Training Guidelines for In Situ Burning Personnel

This guidance is intended to be international in its scope with United States regulatory requirements used as exemplars that may be replaced by applicable jurisdictional requirements. References to the Hazardous Waste Operations and Emergency Response (HAZWOPER) regulation (29 CFR 1910.120) and the Incident Command System (ICS) may be replaced by local jurisdictional requirements outside of the United States. In the absence of applicable local requirements, HAZWOPER and ICS should be considered as a recognized standard of practice. This guidance is not intended to instruct the reader on how to conduct an in situ burn, or overlap with either of the in situ burn manuals (TR 1251 and TR 1252). The purpose of this guidance is to provide a systematic approach to assist users in the selection of responder qualifications and the training requirements for responders to in situ burning of spilled oil in the open water environment, ice conditions on water bodies, and the inland environment, including spills affecting wetlands and those lakes not considered open water. It is not intended to describe when to use in situ burning. Pages: 84

TR 1254
In-Situ Burning Guidance for Safety Officers and Safety and Health Professionals

Supports the incident Safety Officer (SOFR) and other safety and health professionals involved or having responsibilities in the incident response during oil spills where the strategy of controlled in-situ burning (ISB) can be used. Typically, oil spill response operations, including those involving ISB, are conducted using the organization structure prescribed by the National Incident Management System Incident Command Systems (NIMS/ICS) (DHS, 2009). The SOFR is position appointed as part of the Command Staff. As stated in NIMS/ICS guidance, the SOFR's function “is to develop and recommend measures for ensuring personnel safety and to assess and/or anticipate hazardous and unsafe situations.” (DHS, 2009). This would include operations relating to ISB if this response action is selected for use during an oil spill. Pages: 114

TR 1256
In Situ Burning: A Decision Maker's Guide

This report is intended to describe the use of and requirements for in situ burning (ISB) as an effective response technology for oil spills on land (including wetlands), on water, or in ice and snow. It was developed to serve as a reference for oil spill response policy makers and decision makers (government, industry, and other stakeholders). This report discusses requirements for ISB and includes a summary of oil chemistry, behavior, and weathering, which are important factors when making decisions to use ISB. Further, it allows decision makers to better understand the anticipated benefits and limitations to be considered when using this technology for an oil spill. Pages: 74

Publ 4558
Options for Minimizing Environmental Impacts of Freshwater Spill Responses

Developed for contingency planners and field responders, this guide provides information on 29 response methods and classifies their relative environmental impact for combinations of 4 oil types and 12 freshwater environments and habitats. Spill topics of concern in freshwater settings are discussed, including public health, conditions under which oil might sink in freshwater, oil behavior in ice conditions, permafrost, and firefighting foam use. Pages: 146

February 1995 | Product Number: I45580 | Price: $90.00

Publ 4640

The growing concern for petroleum contamination in freshwater ecosystems led API to generate an annotated bibliography to serve as a valuable resource of existing literature on petroleum and its impact on the freshwater environment. It cites literature from 1946 through 1993 on the impact of petroleum products and oil spill cleanup agents on the biota of freshwater ecosystems, on the chemistry and fate of petroleum and cleanup agents in freshwater, and on the review of cleanup methods in freshwater systems. The electronic companion infobase has been prepared in two versions to enhance the value of the annotations: (1) the VIP editable version of the infobase allows the user to add new references, make personal annotations (e.g., bookmarks, notes, highlights, and pop-ups), and delete unwanted references, and (2) the standard noneditable version is read-only. Both versions are completely searchable; each word in the bibliography is indexed. Pages: 224

March 1997 | (noneditable) Product Number: I46400 | Price: $62.00
(VIP editable) Product Number: I46401 | Price: $77.00

Publ 4649
The Use of Chemical Countermeasures Product Data for Oil Spill Planning and Response, Volumes I and II

Addresses many of the issues related to potential uses of chemical countermeasure products in mitigating the environmental impacts of spilled oil. Volume I summarizes workshop deliberations and presents consensus recommendations from the sessions on environmental effects, effectiveness, and decision making. Volume II contains 13 background papers for workshop participants on various scientific and operational topics, e.g., aquatic toxicity, oil weathering, and decision making. Pages: 380

April 1995 | Product Number: I46490 | Price: $59.00

Publ 4675
Fate and Environmental Effects of Oil Spills in Freshwater Environments

Provides basic information necessary for the formulation of spill response strategies that are tailored to the specific chemical, physical, and ecological constraints of a given spill situation. It summarizes environmental effects from inland oil spills into fresh surface waters. It provides technical information for persons responsible for inland spill response and cleanup, for researchers, and for others dealing with protection of the environment from possible oil spill hazards. This research identifies, describes, and compares the behavior, fate, and ecological implications of crude oil and petroleum products in inland waters. Pages: 160

December 1999 | Product Number: I46750 | Price: $146.00

Publ 4684
Compilation and Review of Data on the Environmental Effects of In-Situ Burning of Inland and Upland Oil Spills

Burning of spilled oil provides a relatively easy, low-cost cleanup method by reducing removal, transportation, and disposal costs as well as reducing the time required for cleanup. This study was commissioned by API to identify those environmental conditions under which burning should be considered as a response option for oil spilled in inland and upland habitats. This report presents a summary of the case histories and lessons learned from previous uses of burning in inland environments, with and without oil. While some information on human health and safety is included, the focus of this report is on the environmental fate and effects of in-situ burning. Pages: 198

March 1999 | Product Number: I46840 | Price: $121.00

This publication is related to an API licensing, certification, or accreditation program.
Health and Environmental Issues

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Publ 4689

Chemical Human Health Hazards Associated with Oil Spill Response

Contains an overview of human health hazards that could be encountered by personnel involved with spills or leaks of petroleum products. The discussion includes potential risks of basic components and products of concern. Environmental factors that may affect exposure and a brief summary of other exposure considerations are also included. Pages: 51

August 2001 | Product Number: I46890 | Price: $85.00

Publ 4691

Fate of Spilled Oil in Marine Waters: Where Does It Go? What Does It Do? How Do Dispersants Affect It?

This is the first of three short summary publications commissioned for preparation by API for oil spill response decision-makers to provide concise easy-to-use information on understanding the fate of spilled oil and dispersants, their use, effectiveness, and effects. When making decisions regarding dispersant use, or any other oil spill response countermeasure, it is important to have a clear understanding of the overall fate of the oil entering the environment. With this publication you will receive a complete yet concise review of oil chemistry and oil weathering. Also provided is information on how to interpret dispersant information more effectively and how dispersants alter or affect the weathering processes of oil. Pages: 30

March 1999 | Product Number: I46910 | Price: Free*

Publ 4692

A Decision-Maker's Guide to Dispersants: A Review of the Theory and Operational Requirements

This is the second of three short summary publications commissioned for preparation by the API for oil spill response decision-makers to provide concise easy-to-use information on understanding the fate of spilled oil and dispersants, their use, effectiveness, and effects. This publication provides a summary of dispersant technology. It focuses on chemical dispersant technology and the information needs of decision-makers regarding the use of chemical dispersants and their potential benefits and risks. A reference that every oil spill response decision-maker must have! Pages: 52

March 1999 | Product Number: I46920 | Price: Free*

Publ 4693

Effects of Oil and Chemically Dispersed Oil in the Environment

Crude oil is a complex, highly variable mixture of hydrocarbons and other trace compounds, and exposure may cause a variety of adverse effects. Dispersants are mixtures of chemicals, solvents, and surfactants used to reduce oil viscosity and help the oil break up and disperse into the water column. This booklet is intended to help bridge the gap in understanding information about exposure and effects of untreated oil and chemically dispersed oil in the marine environment. Pages: 50

May 2001 | Product Number: I46930 | Price: Free*

Publ 4706

Environmental Considerations for Marine Oil Spill Response

API is offering a new revision of Environmental Considerations for Marine Oil Spill Response, generally known as the “Marine Manual.” API, the National Oceanographic and Atmospheric Administration, the U.S. Coast Guard and the U.S. Environmental Protection Agency developed the Marine Manual for oil spill contingency planners and field responders. The information allows both planners and responders to identify techniques that minimize the ecological impact of both the response action and the spilled oil. Matrix tables allow comparison of 28 different methods for response, and classify their relative environmental impacts for combinations of 5 different oil types and 25 marine habitats. Pages: 322

July 2001 | Product Number: I47060 | Price: $78.00

Publ 4724

Recovery of Four Oiled Wetlands Subjected to In-Situ Burning

Four sites, including a diversity of oil types burned and habitats, were selected for follow-up review and evaluation of the effects of in-situ burning (ISB): Mosquito Bay spill in Louisiana, burned in April 2001; Lakehead Pipe Line spill in Ruffy Brook, Minnesota, burned in July 2000; Louisiana Point pipeline spill, burned in February 2000; and Chevron Pipe Line Milepost 68 near Corinne, Utah, burned twice, in March and April 2000. Site visits were conducted in July (Minnesota and Utah) and October (two sites in Louisiana). All available data on each site were collected from those involved in the burns and the post-burn monitoring. State and local monitoring data provided additional information. The site was photographed from the same position and perspective as photographs taken during and shortly after the spill and burn, creating time-series photography as a visual record of the use of in-situ burning and vegetative recovery. In combination with quantitative field measurements, photography provides an excellent understanding of the specific site conditions and how the results might apply to other sites. Because this report includes a large number of color photographs for the sites, which would make traditional printing of hardcopy reports very expensive, the report is being published in digital format on CD-ROM.

June 2003 | Product Number: I47240 | Price: $88.00

Publ 4735

In-Situ Burning: The Fate of Burned Oil

The in-situ burn (ISB) is an oil spill response option that has been used far less frequently than mechanical countermeasures (booms, skimmers, etc.), and consequently, familiarity with ISB operations is limited. Decision-makers need a comprehensive understanding of the oil, how it acts in the environment, and aspects of the burn process in order to understand the behavior of any ISB by-products and the potential impacts from an in-situ burn. This document was designed to capture that knowledge and present it clearly and concisely so you will have the necessary information to understand issues associated with fate and effects of oil to which ISB has been applied. It is not a set of instructions for carrying out a specific ISB. Pages: 54

April 2004 | Product Number: I47351 | Price: Free*

Publ 4740

In-Situ Burning—A Decision-Maker's Guide to In-Situ Burning

This scenario is fictitious, but the circumstances are possible. In-situ burning (ISB) is a response option that has been used less frequently than chemical countermeasures like booms and skimmers or contaminated soil removal. Consequently, familiarity with the pros and cons of this option is limited. There are ISB “experts” in the United States and internationally, but the practical information of this response tool remains relatively limited for both on-water and on-land situations. This booklet is the second in a series that were developed as reference documents for oil spill response decision-makers. It provides the reader with a comprehensive, concise, yet clear summary of the operational requirements and limitations for ISB and allows decision-makers to better understand the function of in-situ burning and the tradeoffs facing decision-makers in smitthies technology when responding to an oil spill on land or on water. Pages: 76

Health and Environmental Issues

<table>
<thead>
<tr>
<th>TR 91-001</th>
<th>Priority Topics for Research and Development in Oil Spill Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 92-001</td>
<td>An Analysis of Historical Oil Spills and Current Cleanup Requirements to Aid in Selecting New Technologies for Spill Cleanup Operations</td>
</tr>
<tr>
<td>TR 92-002</td>
<td>Airborne Surveillance Technology Options for Improving Oil Spill Cleanup and Response</td>
</tr>
<tr>
<td>TR 92-003</td>
<td>Tenyo Maru Oil Spill (Remote Sensing Data Analysis)</td>
</tr>
<tr>
<td>TR 92-004</td>
<td>Oil Spill Detection Using Satellite-Based SAR</td>
</tr>
<tr>
<td>TR 92-006</td>
<td>Incorporation of State of the Art Technologies to Oil Spill Modeling</td>
</tr>
<tr>
<td>TR 93-001</td>
<td>Evaluation of Marine Post-Spill Sites for Long-Term Recovery Studies</td>
</tr>
<tr>
<td>TR 93-002.1</td>
<td>ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 1)</td>
</tr>
<tr>
<td>TR 93-002.2</td>
<td>ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 2) (Hydrocarbon Chemistry Analytical Results for Year One)</td>
</tr>
<tr>
<td>TR 93-002.3</td>
<td>ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 3) (Remote Sensing Derived Habitat Classification and Error Evaluation for Year One)</td>
</tr>
<tr>
<td>TR 93-003.1</td>
<td>Interlaboratory Calibration Testing of Dispersant Effectiveness: Phase 1</td>
</tr>
<tr>
<td>TR 93-003.2</td>
<td>Interlaboratory Calibration Testing of Dispersant Effectiveness: Phase 2</td>
</tr>
<tr>
<td>TR 93-004</td>
<td>Oil Spill Detection: Documentation of Historical Remote Sensing Projects and Status</td>
</tr>
<tr>
<td>TR 93-006</td>
<td>MSRC Oil Spill Response Vessel Recovered Oil Systems Tests</td>
</tr>
<tr>
<td>TR 93-007</td>
<td>Occupational Health Implications of Crude Oil Exposure: Literature Review and Research Needs</td>
</tr>
<tr>
<td>TR 93-009.1</td>
<td>Aerial Dispersant Application: Assessment of Sampling Methods and Operational Altitudes, Vol. 1</td>
</tr>
</tbody>
</table>

TR 93-012	MSRC Workshop Report: Research on Worker Health & Safety
TR 93-013	MSRC Workshop Report: Research on Bioremediation of Marine Oil Spills
TR 93-014	MSRC Workshop Report: Research on the Ecological Effects of Dispersants and Dispersed Oil
TR 93-018	Formation and Breaking of Water-in-Oil Emulsions: Workshop Proceedings
TR 93-019	Mesocosm Test Facility Strawman Design
TR 93-023	Seminar on Software for Oil Spill Response and Contingency Planning
TR 93-024	Summary Report MSRC/IKE Flume Design Workshop
TR 93-026	Demulsification by Use of Heat and Emulsion Breaker
TR 93-027	Transfer of Crude Oil Weathering Technology
TR 93-028	Evaluation of a Toxicity Test Method Used for Dispersant Screening in California
TR 93-029	Technical Evaluation of the Coastal Oil Spill Simulation System Prototype
TR 93-030	Determination of Oil and Emulsions Viscosity and Interfacial Tension
TR 93-031	Recovered Oil and Oily Debris Handling to Facilitate Disposal
TR 93-032	Weathering Properties and Chemical Dispersibility of Crude Oils Transported in U.S. Waters
TR 94-001	In-Situ Burning of Water-in-Oil Emulsions
TR 94-003	Waterbird Deterrent Techniques
TR 94-004	A Review of the Methods and Ecological Consequences of Substrate Aeration for the Enhancement of Oil Bioremediation in Wetlands
TR 94-005	Coastal Oil Spill Simulation System Prototype Testing Program
TR 94-006	MSRC Workshop Report: Research on Waterbird Deterrents at Marine Oil Spills
TR 94-007	Phase 1: Oil Containment Boom at Sea Performance Test
Health and Environmental Issues

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

TR 94-008
Rheological Correlation Studies on Water-in-Oil Emulsions

TR 94-010
Dispersed Oil and Dispersant Fate and Effects Research, California Program Results for 1993–94

TR 94-011
Toxicity Bioassays on Dispersed Oil in the North Sea: August 1994 Field Trials

TR 94-012
Demulsification by Use of Heat and Emulsion Breakers, Phase 2

TR 94-013
The Science, Technology and Effects of Controlled Burning of Oil Spills at Sea

TR 94-015
Comparison of Physically and Chemically Dispersed Crude Oil Toxicity Under Continuous and Spiked Exposure Scenarios

TR 94-018
Potential Use of the Microtox Assay as an Indicator of the Toxicity of Dispersed Oil

TR 94-019
Aerial Dispersant Application: Field Testing Research Program (Alpine, Texas)

TR 95-001
Phase 2: At Sea Towing Tests of Fire Resistant Oil Containment Booms

TR 95-002
Isolation and Identification of Compounds and Mixtures Which Promote and Stabilize Water-in-Oil Emulsions

TR 95-003
Phase 3: Oil Containment Boom at Sea Performance Tests

TR 95-004
Utility of Current Shoreline Cleaning Agent Tests in Field Testing

TR 95-005
An Analysis of Historical Opportunities for Dispersant and In-Situ Burning Use in the Coastal Waters of the United States Except Alaska

TR 95-007
Field Evaluation of Bioremediation in Fine Sediments

TR 95-010
Laboratory Studies of the Properties of In-Situ Burn Residues

TR 95-011
Formulation of New Fireproof Boom Designs

TR 95-012
Dispersed Oil and Dispersant Fate and Effects Research: California Program Results for 1994–1995

TR 95-014
The Effects of Oil and Chemically Dispersed Oil in Tropical Ecosystems: 10 Years of Monitoring Experimental Sites

TR 95-015
Reduction in the Toxicity of Crude Oil During Weathering on the Shore

TR 95-017
Mesoscale In-Situ Burn Aeration Test

TR 95-018
Proceedings of the Third Meeting of the Chemical Response to Oil Spills: Ecological Effects Research Forum

TR 95-019
A Mental Models Approach to Preparing Summary Reports on Ecological Issues Related to Dispersant Use

TR 95-020.1
Development of Protocols for Testing Cleaning Effectiveness and Toxicity of Shoreline Cleaning Agents (SCAs) in the Field

TR 95-020.2
Test Cleaning Effectiveness and Toxicity of Shoreline Cleaning Agents (SCAs): Data Report

TR 95-021
New Brunswick Bird Deterrent Study

TR 95-022
Proceedings of the Workshop on Technical Issues Related to Mesocosm Research in the Coastal Oil Spill Simulation System Facility

TR 95-024
Oil Weathering Study of the Morris J. Berman No. 6 Cargo Oil

TR 95-025
Oil Weathering Study of Arabian Light Crude Oil

TR 95-026
Oil Weathering Study of Maya Crude Oil

TR 95-027
Weathering Characterization of Heavy Fuels

TR 95-029
Dispersant Effectiveness: Phase 3

TR 95-030
Standard Method for Viscosity Measurement of Water-in-Oil Emulsions

TR 95-031
Toxicity Assessment of Oiled and Treated Sediments from and Experimental Bioremediation Site in Delaware Bay, USA

TR 95-033
Large Scale Testing of the Effect of Demulsifier Addition to Improve Oil Recovery Efficiency

TR 95-034
Evaluation of Oil Spill Cleanup Techniques in Coastal Environments

TR 95-038
Key Factors that Control the Efficiency of Oil Spill Mechanical Recovery Methods
Health and Environmental Issues

BIENNIAL OIL SPILL CONFERENCE PROCEEDINGS

These conferences are sponsored by API, the U.S. Environmental Protection Agency, the U.S. Coast Guard, the International Petroleum Industry Environmental Conservation Association, and the International Maritime Organization. They address oil-spill prevention, behavior, effects, control, and cleanup.

Publ 4452
1987 Oil Spill Conference Proceedings
Product Number: I44520 | Price: $59.00

Publ 4479
1989 Oil Spill Conference Proceedings
Product Number: I44790 | Price: $59.00

Publ 4529
1991 Oil Spill Conference Proceedings
Product Number: I45290 | Price: $59.00

Publ 4575
Proceedings of the 1991 Oil Spill Conference Infobase
The Proceedings of the 1991 Oil Spill Conference are available on 3.5-in. or 5.25 in. computer diskette. More than 700 pages of proceedings, including hundreds of illustrations, can be loaded onto IBM or IBM-compatible personal computers. The minimum requirements of 512 KB RAM, hard disk drive, VGA monitor, and DOS 3.0 or higher, are listed in the reference manual that gives complete instructions for operating the infobase. A tutorial and glossary are included.
January 1993 | Product Number: I45751 | Price: $67.00

Publ 4580
1993 Oil Spill Conference Proceedings
Product Number: I45800 | Price: $61.00

Publ 4620
1995 Oil Spill Conference Proceedings
Product Number: I46200 | Price: $61.00

Publ 46201
1995 Abstracts to Oil Spill Conference Proceedings
Product Number: I46201 | Price: $61.00

Publ 4621
1995 Oil Spill Conference White Papers
Three white papers—(1) “Implementing an Effective Response Management System,” (2) “The Use and Misuse of Science in Natural and Resource Damage Assessment,” and (3) “Perspectives on Establishing and Maintaining Oil Pollution Capabilities”—were prepared for the 1995 Oil Spill Conference to address issues of varying scientific and sociopolitical importance to the oil spill community. During the 1995 conference, each white paper was the topic of a special panel session. Pages: 199
Product Number: I46210 | Price: $61.00

Publ 4651
1997 Oil Spill Conference Proceedings
April 1997 | Product Number: I46510 | Price: $61.00

Publ 4652
1997 Oil Spill Conference Issue Papers
Three issue papers—(1) “Putting Dispersants to Work: Overcoming Obstacles;” (2) “International Responsibilities: Are We Our Brothers’ Keeper?;” and (3) “Differences in Risk Perception: How Clean is Clean?”—were prepared for the 1997 Oil Spill Conference to address issues of varying scientific and socio-political importance to the oil spill community. During the 1997 conference, each issue paper was the topic of a special panel session. Pages: 196
April 1997 | Product Number: I46520 | Price: $61.00

Publ 4675
Fate and Environmental Effects of Oil Spills in Freshwater Environments
Provides basic information necessary for the formulation of spill response strategies that are tailored to the specific chemical, physical, and ecological constraints of a given spill situation. It summarizes environmental effects from inland oil spills into fresh surface waters. It provides technical information for persons responsible for inland spill response and cleanup, for researchers, and for others dealing with protection of the environment from possible oil spill hazards. This research identifies, describes, and compares the behavior, fate, and ecological implications of crude oil and petroleum products in inland waters. Pages: 160
December 1999 | Product Number: I46750 | Price: $146.00

Publ 4684
Compilation and Review of Data on the Environmental Effects of In-Situ Burning of Inland and Upland Oil Spills
Burning of spilled oil provides a relatively easy, low-cost cleanup method by reducing removal, transportation, and disposal costs as well as reducing the time required for cleanup. This study was commissioned by API to identify those environmental conditions under which burning should be considered as a response option for oil spilled in inland and upland habitats. This report presents a summary of the case histories and lessons learned from previous uses of burning in inland environments, with and without oil. While some information on human health and safety is included, the focus of this report is on the environmental fate and effects of in-situ burning. Pages: 198
March 1999 | Product Number: I46840 | Price: $121.00

Publ 4686
1999 Oil Spill Conference Proceedings
1999 | CD-ROM Product Number: I4686A | Price: $61.00
Hard Copy Product Number: I4686B | Price: $61.00

Publ 4687
1999 International Oil Spill Conference Issue Papers
Two issue papers: (1) “Myths and Realities of Oil Spill Planning and Response: The Challenges of a Large Spill”—This paper reviews the myths and realities of spill preparedness and response—where improvements have occurred, which elements have been most or least effective, and where future investment should concentrate. Too many myths remain, and too few realities are understood; (2) “Judging Oil Spill Response Performance: The Challenge of Competing Perspectives”—This paper explores the roles of various participants and interested observers in a spill response and the criteria by which they judge it. Recommendations are offered to move toward a more systematic approach based on teamwork and guided by goals and performance criteria that have been accepted in advance by all stakeholders. These papers were prepared for the 1999 Oil Spill Conference to address issues of varying scientific and sociopolitical importance to the oil spill community. Pages: 106
January 1999 | Product Number: I46870 | Price: $61.00

Publ 4710
2003 Oil Spill Conference Proceedings
CD-ROM Product Number: I4701A | Price: $317.00
Hard Copy Product Number: I4701B | Price: $317.00

Publ 4718
2005 Oil Spill Conference Proceedings
CD-ROM Product Number: I47180A | Price: $317.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

SEDIMENTS

Publ 4607
Serves as a comprehensive guide for the selection of sediment toxicity tests. It compares the types of tests available, specific test methods, and selection of species for their strengths and weaknesses for a particular kind of habitat. Descriptions are provided on test types, test species, and sediment preparations. This publication additionally includes a user's guide for readers unfamiliar with sediment toxicity testing. See also Publ 4608. Pages: 236
November 1994 | Product Number: I46070 | Price: $112.00

Publ 4608
User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs
Provides an introduction to sediment toxicity testing and presents to those unfamiliar with such testing how the resource manual (Publ 4607) can be used. The document contains descriptions of habitat type, sediment test systems, and biological endpoints. Site-specific concerns are identified to aid in test selection. Brief summaries of sampling and data analysis issues are also presented. Pages: 34
November 1994 | Product Number: I46080 | Price: $61.00

Publ 4632
Reducing Uncertainty in Laboratory Sediment Toxicity Tests
Evaluates some of the critical components of laboratory experiments that need to be considered to obtain accurate sediment toxicity assessments. The report describes the formulation and evaluation of a reference sediment, it examines the tolerances of common testing species to sediment characteristics, evaluates copper sulfate as a reference toxicant by determining the relative sensitivities of freshwater testing organisms, and evaluates potential sublethal endpoints for sediment potency. Pages: 152
September 1995 | Product Number: I46320 | Price: $63.00

Waste Research

Guidelines for Commercial Exploration and Production Waste Management Facilities
Provides guidelines for the design and operations of commercial E&P waste management facilities to allow operators to identify areas where their facility could have impacts on the surrounding community and environment, and gives options for preventing/reducing those impacts. The guidelines are not meant to supersede any applicable local, state, or federal requirements. Pages: 80

Overview of Exploration and Production Waste Volumes and Waste Management Practices in the United States
Presents the results of a survey of the industry covering 1995 that describes current volumes of wastes generated from the production of oil and gas, describes how those wastes are managed, and identifies changes in waste management practices over the past decade. The report includes numerous tables presenting the results from the survey.
May 2000

DR 53
Characterization of Exploration and Production Associated Wastes
Approximately 0.1 % of the total volume of exploration and production wastes generated annually by the oil and gas industry is classified as associated waste. This report presents the analytical characterization of 120 samples representing 12 different associated waste categories. Fate and transport modeling of the characterization data are also included. The modeling suggests that associated wastes do not pose a threat to groundwater when managed in accordance with API guidance on landspreading, roadspreading, and burial. Pages: 160
November 1996 | Product Number: I00053 | Price: $140.00

Publ 351
Overview of Soil Permeability Test Methods
The determination of soil permeability is one of the most important items in assessing aboveground storage tank facilities' secondary containment areas. This publication outlines various methods to test the permeability of soil and distinguishes between laboratory and field methods, though it does not supply an exhaustive list of all available permeability methods. These methods are identified according to their applicability to particular soil types. The methods presented in this report are applicable to fine-grained soils (sands and gravels), but may not be appropriate to organic soils, such as peat, or to materials such as construction and demolition debris. All methods should be fully investigated for appropriateness and to determine its suitability to a particular situation. Pages: 60
April 1999 | Product Number: J35100 | Price: $93.00

Publ 4465
Evaluation of the Treatment Technologies for Listed Petroleum Refinery Wastes
Evaluated the efficacy of five treatment methods, alone and in combination, for listed petroleum refinery wastes: mechanical treatment (filtration), solvent extraction, thermal treatment (drying), chemical fixation, and pyrolysis. The use of all the methods resulted in wastes of substantially reduced hazard, as measured by total and leachable concentration of residues in the product solid. Pages: 200
December 1987 | Product Number: I44650 | Price: $72.00

Publ 4527
Evaluation of Limiting Constituents Suggested for Land Disposal of Exploration and Production Wastes
Describes a study to develop salinity and petroleum hydrocarbon threshold guidance values that typically should not be exceeded for one-time land application of exploration and production wastes. Definition, technical justification, and guidance for application of threshold values are provided. Measurable parameters that serve as indices for proper environmental management of salinity and petroleum hydrocarbons include: electrical conductivity, sodium adsorption ratio and exchangeable sodium percentage for salinity, and oil and grease for petroleum hydrocarbons. Pages: 66
August 1993 | Product Number: I45270 | Price: $63.00

Publ 4600
Provides scientifically defensible guidelines for land management of exploration and production wastes containing metals. It provides the technical support for recommended maximum concentrations of 12 metals. The guidance values for arsenic, cadmium, chromium, copper, lead, mercury molybdenum, nickel, selenium, and zinc were adopted directly from sewage sludge regulations promulgated by the U.S. Environmental Protection Agency in 1993. A risk-based approach was used to develop guidance values for barium and boron. The report also provides practical information on sample collection, analyses, and calculation of waste application rates. Pages: 56
January 1995 | Product Number: I46000 | Price: $61.00
Publ 4618
Characteristics and Performance of Supercritical Fluid Extraction (SFE) in the Analysis of Petroleum Hydrocarbons in Soils and Sludges
Summarizes the results of a study to evaluate and improve SFE methods and instrumentation for analytical-scale extractions of petroleum hydrocarbons from soils and sludges. The study determines which types of samples and waste are best suited for analysis by SFE and optimal conditions for complete extraction. Pages: 24
May 1995 | Product Number: I46180 | Price: $61.00

Publ 4663
Remediation of Salt-Affected Soils at Oil and Gas Production Facilities
Water separated from oil and gas during production contains dissolved solids, including salt. If improperly handled, produced water with sufficient salt concentrations can damage plants and soils. Therefore, this manual was designed to assist the oil and gas environmental professional and field personnel to (1) assess sites with salt-affected soils; (2) evaluate remedial alternatives; and (3) conduct remedial activities, if necessary. It provides forms for organizing assessment information and conducting sample collection and analysis. Remediation options are divided into three primary groupings: natural remediation, in-situ chemical amendment remediation, and mechanical remediation. A decision tree and worksheets are provided to aid in the selection of a remedial option(s). Technical approaches for applying each group of remedial options are discussed. A number of appendices provide supplementary information on various aspects of salt-affected soil remediation.
October 1997 | Product Number: I46630 | Price: $113.00

Publ 4733
Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons
The purpose of this study was to develop toxicity values and screening guidelines for evaluating risks to livestock from exposure to petroleum hydrocarbons. This report addresses how to determine whether livestock should be included in a risk evaluation, and estimate risks of petroleum hydrocarbon exposures to livestock. Pages: 50
July 2004 | Product Number: I47330 | Price: $95.00

Publ 4734
Modeling Study of Produced Water Release Scenarios
Provides a scientific basis for operators, regulators, and landowners to determine if assessment or remediation of produced water releases will provide a meaningful environmental benefit.
The two principal research objectives of this study are (1) the identification of produced water release scenarios that have a potential to cause groundwater quality impairment in homogeneous subsurface geologic profiles and (2) the prediction of chloride movement through the vadose zone for different release scenarios. Secondary objectives of the study included evaluation of the effect of heterogeneity on the migration of chloride through the vadose zone, the impact of repeat releases, and the effect on groundwater quality of surface soil restoration by revegetation and soil leaching.
The sensitivity analysis performed in this study provides an overview of the likelihood of groundwater impairment for large release volumes (100 bbls and 10,000 bbls). Assuming homogeneous unsaturated zone soil profiles, the results of over 1000 modeled release scenarios reveal that 49% of single-event releases do not cause impairment of groundwater above drinking water standards for chloride (250 mg/L) in a monitoring well that is adjacent to the edge of the release. In 70% of these scenarios, chloride concentrations in groundwater do not exceed 1000 mg/L. Although these numbers give no information about the fate of chloride from a specific produced water release, they do indicate that a release does not necessarily cause groundwater impairment.
Pages: 124
January 2005 | Product Number: I47340 | Price: $127.00

Publ 4758
Strategies for Addressing Salt Impacts of Produced Water Releases to Plants, Soil, and Groundwater
The exploration and production industry uses great care during the handling and disposal of the produced water that is generated as part of oil and gas production. However, unintentional releases can occur. Depending on the chemical composition of the produced water and the nature of the local environment, salts associated with such releases can impair soils, vegetation, and water resources.
Provides a collection of simple rules of thumb, decision charts, models, and summary information from more detailed guidance manuals to help you address the following assessment and response issues:
• Will a produced water release cause an unacceptable impact on soils, plants, and/or groundwater?
• In the event of such an impact, what response actions are appropriate and effective?
Pages: 29
1st Edition | September 2006 | Product Number: I47580 | Price: $72.00
For more information, visit www.api.org/data.

Product Number: T00050 | Price: $12,772.00

API's WSB Data is timely and accurate information currently available for historical data are also available in electronic format. The second week of each month, containing data from 2 months earlier (e.g. August report is published at the end of September). Please visit www.api.org/data, or contact apiwsb@api.org. To obtain information on subscribing to the Weekly Statistical Bulletin, please visit www.api.org/data, or contact apiwsb@api.org.

Facts and figures fly back and forth, and if you are in the right place at the right time, you get the information you need. Nowadays, the oil and natural gas industry moves, quite literally, at the speed of light. Information races around the globe in the blink of an eye. The oil and natural gas industry moves, quite literally, at the speed of light. Information races around the globe in the blink of an eye. Now, we can access the latest data and statistics related to energy production, consumption, and trends with just a few clicks.

Your Portal for Petroleum Statistics and Information www.api.org/data

API is the premier source for petroleum industry data and information. API's data and statistics are accurate, comprehensive, timely, and quoted widely.

API Data is a service that provides industry statistics to its data subscribers. For more information, visit www.api.org/data. For technical inquiries, contact apiwsb@api.org.

Weekly Statistical Bulletin (WSB)
Where Traders Around the World Get Their Data
API's weekly data bulletin reports total U.S. and regional data relating to refinery operations and the production of the four major petroleum products: motor gasoline; kerosene jet fuel; distillate (by sulfur content); and residual fuel oil. These products represent more than 85% of total petroleum industry. Inventories and imports data of these products as well as of crude oil and unfinished oils are also included in the weekly report. Refinery inputs and utilization data are also included in the weekly report.

Published weekly every Tuesday afternoon (or every Wednesday afternoon in the event of a Monday U.S. Federal holiday).
API's WSB Data is timely and accurate information currently available for futures commodities trading and analysis through authorized API redistributors. Contact apidata@api.org for more information.

To obtain information on subscribing to the Weekly Statistical Bulletin, please visit www.api.org/data, or contact apiwsb@api.org.

Monthly Statistical Report
Contains timely interpretation and analysis of recent developments on major products' production, imports, refinery operations, and inventories. This report includes API's estimates of these data for the most recent month and graphs of major series, including product deliveries, crude oil production, imports, refinery activity, and inventories for the past 24 months.
In addition, the December issue, published in mid-January, presents year-end supply/demand estimates and summarizes developments of the year. Quarterly estimates are also included 4 times per year. API's Monthly Statistical Report is published 2 to 3 weeks following the end of the month.

To obtain a copy of this report, please visit www.api.org/data.

Imports and Exports of Crude Oil and Petroleum Products (12 Issues)
Published monthly by the API, the imports report contains detailed company level data on the imports of crude oil and petroleum products. Details include: record on importer, port of entry, country of origin, recipient, destination, quantity and API gravity (except residual fuel oil), and sulfur content (for crude oil and residual fuel oil).

The imports report is based on reports published by the U.S. Department of Energy's Energy Information Administration; however, it is presented in a more user friendly and easier reporting layout. The report is available by the second week of each month, containing data from 2 months earlier (e.g. August imports report is published around the second week of October).

To obtain a copy of this report, please visit www.api.org/data.

Inventories of Natural Gas Liquids and Liquefied Refinery Gases
Presents data on the inventory levels of ethane, propane, isobutane, normal butane, and pentanes plus. These inventories, located at natural gas plants, at refineries, at bulk terminals, and in underground storage, are grouped into eight regional areas. The report is issued at the end of each month, containing data from the prior month (e.g. August report is published at the end of September).

Single Subscriber
Product Number: T00004 | Price: $4,326.00

Quarterly Well Completion Report (QWCR)
The QWCR provides detailed information on reported drilling activity and estimates the total number of wells and footage drilled. The estimates of quarterly completions and footage are displayed by well type, well class, and quarter for the 10 years prior. More detailed estimates of quarterly completions and footage are disaggregated by well type, depth interval, and quarter for the current year and 2 years prior. In addition, well reports to API (not estimates) are listed on a state and regional level, disaggregated by well class, well type, and quarter, for the current year and 2 years prior. The report is available within 2 weeks following the end of a quarter.

Single Subscriber
Product Number: T00006 | Price: $3,193.00

Sales of Natural Gas Liquids and Liquefied Refinery Gases
This report presents the results of the annual survey, published in December, jointly sponsored by the American Petroleum Institute (API), Gas Processors Association (GPA), National Propane Gas Association (NPGA), and Propane Education & Research Council (PERC). This publication reports estimated sales of propane gas broken down by end use on a state and PADD basis. The Summary section presents the sales of butane, ethane, pentanes plus, and propane broken down by product type and PADD.

As of 2017, API no longer publishes this report. Historical editions are available for years 2016 and prior.

Joint Association Survey on Drilling Costs (JAS)
The JAS is an annual survey, published in December, that contains the only long-term source of information of detailed U.S. drilling expenditures on wells, and footage. An Analysis & Trends section provides detailed information and graphs about offshore and onshore wells, shale wells, coalbed methane wells, and sidetrack wells. The data presented in the U.S. Summary Tables section are broken down by well type (oil wells, gas wells, and dry holes) and by depth interval. Additionally, the data in these tables are disaggregated by well class (exploratory wells and development wells) and well location (offshore and onshore).

Single Subscriber
(2017 Data) Product Number: T00007 | Price: Call for quote.

Basic Petroleum Data Book (2 Issues)
It provides valuable domestic and world statistical background information, beginning in most instances with 1947. Included are data on energy, reserves, exploration and drilling, production, finance, prices, demand, refining, imports, exports, offshore transportation, natural gas, Organization of Petroleum Exporting Countries, and environment.

The printed Data Book is updated and published twice a year, in June and December. Each report is issued in a self-contained, bound volume and is no longer needed once the next issue is published.

Both the electronic and printed versions also include a glossary of definitions and a source list (names, telephone numbers) for references in the Data Book.

Single Subscriber
Electronic Product Number: T00008 | Price: $5,047.00
Hard Copy (2 Issues Only) Product Number: 05400 | Price: $1,751.00
For more information on all API documents relating to policy and economic studies, call (202) 682-8166.

DISCUSSION PAPERS

DP 074
Current Status of Watershed Management in the United States
To understand the current status of watershed programs, this paper reviews watershed approaches of individual watershed programs and institutions. Each case study also discusses, in a general manner, the impact on petroleum industry activity within the watershed. Background information is also provided on the Clean Water Act, the nonpoint source pollution problem in the United States, and the current emphasis on watershed management approaches.
November 1993

DP 077
Alternative Wetland Mitigation Programs
The Corps of Engineers and EPA have issued memoranda of agreement and guidance that restrict the petroleum industry’s ability to explore for and produce oil and natural gas in wetlands. In particular, federal agency rules require wetland mitigation banks—that could be used to compensate for possible wetland losses—to be fully functional before industry can use them. However, state and local governments often allow for concurrent and in lieu fee banking arrangements; these allow for payments to a group or agency that will undertake wetland restoration or preservation in lieu of managing such activities directly. This study examines those programs, their relationship to the federal permitting process, how they assure mitigation is successful, and how they achieve no overall net loss of wetlands.
February 1995

DP 081
Are We Running Out of Oil?
Since the dawn of the petroleum industry in the mid-19th century, there have been recurrent waves of concern that exhaustion of the world’s petroleum resource base was imminent. This study examines carefully both the historical record and the most prominent recent geological assessments. The analysis shows that the obvious concern—that of imminent exhaustion of world oil resources—is actually the most easily dismissed. Nature continues to be quite generous in providing oil resources for development. However, there is a danger that attempts by government to address the non-problem of resource exhaustion will distract from or even aggravate the challenge of removing institutional barriers to supply development.
December 1995

DP 084R
Analysis of the Costs and Benefits of Regulations: Review of Historical Experience
Recent legislative proposals to reform the regulatory process have included the use of benefit cost analysis to decide whether or not a regulation should be implemented. The purpose of this paper is to assess the current practices of benefit cost analysis, primarily through examination of the series of regulatory impact analyses mandated by presidential executive orders. While the record is mixed, it shows that in many, but perhaps not all, cases it is possible to develop a reasonable estimate of the benefits and costs of proposed regulations and to decide among regulatory alternatives on the basis of these analyses.
December 1996

DP 086
Opposition to OCS Development, Historical Context and Economic Considerations
This paper reviews the history of offshore leasing, focusing on the long conflict between the federal government and the states over control of the leasing process. The paper then examines economic aspects of leasing and relates these to the controversy surrounding leasing. The conclusions of the analysis suggest that consideration should be given to sharing a portion of federal offshore revenues with affected coastal communities. This sharing has the potential to reduce opposition to offshore leasing and allow the nation to realize more of the net benefits from tapping offshore oil and natural gas resources.
November 1996

DP 088
Restoring Natural Resources: Legal Background and Economic Analysis
This paper reviews the legislative and legal history behind the resource damage restoration regulations under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Oil Pollution Act (OPA). The damage restoration debate is whether the objective is to restore a natural resource’s lost services or whether to restore the exact chemical, biological, and physical characteristics. This paper reviews the debate over these approaches to restoration and the economic implications of adopting one approach over another. This paper supports a services approach and suggests modifications to the current interpretation of restoration requirements.
October 1997

RESEARCH STUDIES

RS 032
An Empirical Analysis of the Determinants of Petroleum Drilling
December 1983

RS 051
The Use of Economic Incentive Mechanisms in Environmental Management
June 1990

RS 053
Reducing Emissions from Older Vehicles
August 1990

RS 056
Economics of Alternative Fuel Use: Compressed Natural Gas as a Vehicle Fuel
December 1990

RS 064
U.S. Petroleum Supply: History, Prospects, and Policy Implications
September 1992
RS 067
The Cost Effectiveness of Vehicle Inspection and Maintenance Programs

Several states began automobile inspection and maintenance (I/M) programs during the 1970s as part of their effort to reduce carbon monoxide and ozone precursor emissions. The Clean Air Act Amendments of 1990 further increased the scope of I/M programs. This paper offers an evaluation of inspection and maintenance from the perspective of cost-effectiveness: program costs divided by program effectiveness. Effectiveness is measured in tons of pollutants removed: volatile organic compounds, carbon monoxide, and nitrogen oxides. Where possible, individual program components are evaluated with respect to cost-effectiveness that should be included in assessments of I/M: a formal decision tree model of the I/M process; cost-effectiveness estimates of current and enhanced I/M programs; and alternatives for making I/M more cost-effective.

December 1993

RS 074
Air Emissions Banking and Trading: Analysis and Implications for Wetland Mitigation Banking

Examines the history of the air emissions banking and trading policy initiated by EPA in the early 1970s and identifies the factors that hindered its success. The lessons learned from the air emissions program are applied to wetland mitigation banking. It is hoped that wetlands banking and trading mechanisms will increase the ability to proceed with economic activity and still preserve wetlands. Potential solutions for avoiding the problems encountered in the air emissions trading program are also discussed.

February 1994

RS 075
Improving Cost-Effectiveness Estimation: A Reassessment of Control Options to Reduce Ozone Precursor Emissions

Regulators and industry use cost-effectiveness techniques as a decision tool to rank the desirability of emission control strategies. This paper examines the conceptual basis for cost-effectiveness estimates for the control of stationary mobile source emissions focusing on volatile organic compounds that are precursors of ozone. The paper also provides an independent set of cost-effectiveness estimates for enhanced inspection/maintenance programs, vehicle scrappage, the low emission vehicle standard, and reformulated gasoline.

August 1994

RS 076
Paying for Automobile Insurance at the Pump: A Critical Review

Proponents of pay-at-the-pump (PAP) auto insurance advocate replacing the current system of driver-purchased motor vehicle insurance with a new one where a major portion of the cost of insurance would be paid for by new taxes at the gasoline pump. Some groups and states have given some consideration to a form of PAP insurance. This paper examines efficiency and equity effects of such proposals. It finds the PAP proposals (a) are based on false assumptions of accident causes; (b) are not needed to solve the uninsured motorist problem; (c) incorrectly link promises of large savings to paying for insurance at the pump; and (d) are both inequitable and inefficient.

December 1994

RS 082
Superfund Liability and Taxes: Petroleum Industry Shares in Their Historical Context

Summarizes historic and current information about petroleum industry Superfund cleanup liability and taxes. It estimates the amount of Superfund taxes paid from 1982 through the early 1990s and then calculates the petroleum industry's share of Superfund taxes. This paper documents the large disparity that exists between the share of Superfund taxes paid by the petroleum industry and the share of contamination that can be attributed to the petroleum industry; the results show that the petroleum industry's share of general Superfund taxes far exceeds its share of cleanup costs.

July 1996

RS 094
How Unilateral Economic Sanctions Affect the U.S. Economy: An Inter-Industry Analysis

The National Association of Manufacturers (1997) estimates that a total of 61 U.S. laws and executive actions targeting 35 countries and billions of dollars of goods and services have been unilaterally enacted over the 1993-1996 period. Hufbauer et al. (1997) have estimated that U.S. unilateral sanctions in force in 1995 reduced exports by $15 billion to $19 billion in that year, putting at risk 200,000 to 250,000 high-wage export supported jobs. This report provides sector and industry specific breakdowns of such aggregate impacts. Also, the initial impact in a given industry is traced to supporting industries, e.g. to input suppliers, and transport and marketing industries. Thus, while the direct burden of sanctions may fall on a narrow set of industries, the analysis reveals the extent to which the impacts spill over into other sectors of the economy, an area to date that has not received adequate attention. It follows that foregone exports are too narrow a measure of the costs of unilateral economic sanctions. The report also notes that capital goods, energy, chemicals, and agricultural products have been disproportionately impacted by U.S. unilateral sanctions.

November 1998

OTHER PUBLICATIONS

The Economics of Energy Security

Prepared by Douglas R. Bohi and Michael A. Toman Thisan. This book examines energy security as a basis for designing energy policy. Energy security refers to the loss of economic welfare that may occur as a result of change in price or availability of energy. (ISBN 0-7923-9664-2)

January 1996

PAPERS ON SPECIFIC ISSUES

For specific information on Policy Analysis Department publications, call (202) 682-8166, fax 202-682-8408, or write to the following address:

API
Policy Analysis Department
1220 L Street, NW
Washington, DC 20005.
DVD

Fuel-Less, You Can’t Be Cool Without Fuel

A 17-minute educational and entertaining DVD film for teen students that uses pop music and dance to illustrate the often invisible role petroleum products play in our lives. It shows how oil is transformed into products such as gasoline, jet fuel, cosmetics, clothing, CDs, and even aspirin. The film, designed for a middle-school audience, was produced by Emmy award-winning journalist Ellen Kingsley with a cast that includes a real science teacher and several teens.

September 1996 | Price: No charge for first five single copies
To order, contact the API Communications Department: (202) 682-8062
Translated Publications

**CHINESE * **

Spec Q1
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Chinese
Chinese translation of Spec Q1.
9th Edition | June 2013 | Product Number: G0Q109C | Price: $87.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese
Chinese translation of Spec Q2.
1st Edition | December 2011 | Product Number: G0Q201C | Price: $58.00

Spec 2B
Specification for the Fabrication of Structural Steel Pipe—Chinese
Chinese translation of Spec 2B.
6th Edition | July 2001 | Product Number: G02B06C | Price: $61.00

Spec 2C
Offshore Pedestal-Mounted Cranes—Chinese
Chinese translation of Spec 2C.
7th Edition | March 2012 | Product Number: G02C07C | Price: $104.00

Spec 2F
Specification for Mooring Chain—Chinese
Chinese translation of Spec 2F.
6th Edition | June 1997 | Product Number: G02F06C | Price: $65.00

Spec 4F
Specification for Drilling and Well Servicing Structures—Chinese
Chinese translation of Spec 4F.

RP 4G
Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures—Chinese
Chinese translation of RP 4G.
4th Edition | April 2012 | Product Number: G04G04C | Price: $84.00

RP 5A5/ISO 15463:2003
Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe—Chinese
Chinese translation of RP 5A5.
7th Edition | June 2005 | Product Number: GX5A507C | Price: $113.00

RP 5C1
Recommended Practice for Care and Use of Casing and Tubing—Chinese
Chinese translation of RP 5C1.
18th Edition | May 1999 | Product Number: G05C18C | Price: $83.00

Spec 5DP/ISO 11961:2008
Specification for Drill Pipe—Chinese
Chinese translation of Spec 5DP.
1st Edition | August 2009 | Product Number: GX5DP01C | Price: $131.00

Spec 5LCP
Specification on Coiled Line Pipe—Chinese
Chinese translation of Spec 5LCP.
2nd Edition | October 2006 | Product Number: G5LCP2C | Price: $106.00

RP 5L2
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Chinese
Chinese translation of RP 5L2.
4th Edition | July 2002 | Product Number: G5L204C | Price: $61.00

RP 5LT
Recommended Practice for Truck Transportation of Line Pipe—Chinese
Chinese translation of RP 5LT.
1st Edition | March 2012 | Product Number: G5LT01C | Price: $43.00

Spec 5ST
Specification for Coiled Tubing—U.S. Customary and SI Units—Chinese
Chinese translation of Spec 5ST.
1st Edition | April 2010 | Product Number: G5ST01C | Price: $97.00

Spec 6D
Specification for Pipeline and Piping Valves—Chinese
Chinese translation of Spec 6D.

Spec 7-1/ISO 10424-1:2004
Specification for Rotary Drill Stem Elements—Chinese
Chinese translation of Spec 7-1.
1st Edition | February 2006 | Product Number: GX7101C | Price: $117.00

Spec 7F
Oil Field Chain and Sprockets—Chinese
Chinese translation of Spec 7F.
8th Edition | November 2010 | Product Number: G7F008C | Price: $84.00

Spec 7NRV
Specification for Drill String Non-Return Valves—Chinese
Chinese translation of Spec 7NRV.
1st Edition | July 2006 | Product Number: G7NRV01C | Price: $50.00

Spec 8C
Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)—Chinese
Chinese translation of Spec 8C.
5th Edition | April 2012 | Product Number: GX08C05C | Price: $101.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Chinese Translation</th>
<th>Edition</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 11BR</td>
<td>Recommended Practice for the Care and Handling of Sucker Rods—Chinese</td>
<td>Chinese translation of RP 11BR.</td>
<td>9th Edition</td>
<td>G11BR09C</td>
<td>$76.00</td>
</tr>
<tr>
<td>Spec 12J</td>
<td>Specification for Oil and Gas Separators—Chinese</td>
<td>Chinese translation of Spec 12J.</td>
<td>8th Edition</td>
<td>G12J08C</td>
<td>$70.00</td>
</tr>
<tr>
<td>Spec 15LR</td>
<td>Specification for Low Pressure Fiberglass Line Pipe—Chinese</td>
<td>Chinese translation of Spec 15LR.</td>
<td>7th Edition</td>
<td>G15LR7C</td>
<td>$70.00</td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Chinese</td>
<td>Chinese translation of API 510.</td>
<td>10th Edition</td>
<td>G51001C</td>
<td>$163.00</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Fax Orders: +1 303 397 2740

RP 575
Inspection Practices for Atmospheric and Low-Pressure Storage Tanks—Chinese
Chinese translation of RP 575.
3rd Edition | April 2014 | Product Number: C57503C | Price: $137.00

RP 577
Welding Processes, Inspection, and Metallurgy—Chinese
Chinese translation of RP 577.
2nd Edition | December 2013
Product Number: C57702 CN1420 | Price: $163.00

Std 600
Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Chinese
Chinese translation of Std 600.
13th Edition | January 2015 | Product Number: C60013C | Price: $98.00

Std 608
Metal Ball Valves—Flanged, Threaded, and Welding Ends—Chinese
Chinese translation of Std 608.
5th Edition | November 2012 | Product Number: C60805C | Price: $79.00

Std 620
Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese
Chinese translation of Std 620.
12th Edition | October 2013 | Product Number: C62012C | Price: $314.00

Std 650
Welded Tanks for Oil Storage—Chinese
Chinese translation of Std 650.
12th Edition | March 2013 | Product Number: C65012C | Price: $343.00

RP 651
Cathodic Protection of Aboveground Petroleum Storage Tanks—Chinese
Chinese translation of RP 651.
4th Edition | September 2014 | Product Number: C65104C | Price: $91.00

RP 652
Linings of Aboveground Petroleum Storage Tank Bottoms—Chinese
Chinese translation of RP 652.
4th Edition | September 2014 | Product Number: C65204C | Price: $94.00

Std 653
Tank Inspection, Repair, Alteration, and Reconstruction—Chinese
Chinese translation of Std 653.
5th Edition | November 2014 | Product Number: C65305C | Price: $170.00

Std 676
Positive Displacement Pumps—Rotary—Chinese
Chinese translation of Std 676.
3rd Edition | November 2009
Product Number: C67603 CN945 | Price: $108.00

Std 682
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Chinese
Chinese translation of Std 682.

Std 2220
Contractor Safety Performance Process—Chinese
Chinese translation of Std 2220.
3rd Edition | October 2011 | Product Number: K222003C | Price: $66.00

KAZAKH

RP 5B1
Gauging and Inspection of Casing, Tubing and Line Pipe Threads—Kazakh
Kazakh translation of RP 5B1.
5th Edition | August 1999 | Product Number: G05B15K | Price: $117.00

RP 5L2
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Kazakh
Kazakh translation of RP 5L2.
4th Edition | July 2002 | Product Number: G5L204K | Price: $69.00

RP 5L8
Recommended Practice for Field Inspection of New Line Pipe—Kazakh
Kazakh translation of RP 5L8.
2nd Edition | December 1996 | Product Number: G05L82K | Price: $103.00

RP 5L9
External Fusion Bonded Epoxy Coating of Line Pipe—Kazakh
1st Edition | December 2001 | Product Number: G5L901K | Price: $66.00

RP 7G
Recommended Practice for Drill Stem Design and Operating Limits—Kazakh
Kazakh translation of RP 7G.

TR 10TR1
Cement Sheath Evaluation—Kazakh
Kazakh translation of TR 10TR1.
2nd Edition | September 2008 | Product Number: G10TR12K | Price: $119.00

TR 10TR4
Selection of Centralizers for Primary Cementing Operations—Kazakh
Kazakh translation of TR 10TR4.
1st Edition | May 2008 | Product Number: G10TR40K | Price: $50.00

TR 10TR5
Methods for Testing of Solid and Rigid Centralizers—Kazakh
Kazakh translation of TR 10TR5.
1st Edition | May 2008 | Product Number: G10TR50K | Price: $50.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) | Phone Orders: +1 303 397 7956 (Local and International)

<table>
<thead>
<tr>
<th>RP 13K</th>
<th>Recommended Practice for Chemical Analysis of Barite—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 13K.</td>
<td></td>
</tr>
<tr>
<td>3rd Edition</td>
<td>May 2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 19B</th>
<th>Recommended Practice for Evaluation of Well Perforators—Kazakh (formerly RP 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 19B.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 49</th>
<th>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 49.</td>
<td></td>
</tr>
<tr>
<td>3rd Edition</td>
<td>May 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 54</th>
<th>Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 54.</td>
<td></td>
</tr>
<tr>
<td>3rd Edition</td>
<td>August 1999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 59</th>
<th>Recommended Practice for Well Control Operations—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 59.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 67</th>
<th>Recommended Practice for Oilfield Explosives Safety—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 67.</td>
<td></td>
</tr>
<tr>
<td>2nd Edition</td>
<td>May 2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 500</th>
<th>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of RP 500.</td>
<td></td>
</tr>
<tr>
<td>3rd Edition</td>
<td>December 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std 1104</th>
<th>Welding of Pipelines and Related Facilities—Kazakh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh translation of Std 1104.</td>
<td></td>
</tr>
<tr>
<td>21st Edition</td>
<td>September 2013</td>
</tr>
</tbody>
</table>

**PORTUGUESE * **

<table>
<thead>
<tr>
<th>Spec Q1</th>
<th>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Portuguese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portuguese translation of Spec Q1.</td>
<td></td>
</tr>
<tr>
<td>9th Edition</td>
<td>June 2013</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
<th>Russian Title</th>
<th>Edition</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 5B1</td>
<td>Gauging and Inspection of Casing, Tubing and Pipe Line Threads—Russian</td>
<td>Russian translation of RP 5B1.</td>
<td>5th Edition</td>
<td>G05B15R</td>
<td>$117.00</td>
</tr>
<tr>
<td>Spec 5CT</td>
<td>Casing and Tubing—Russian</td>
<td>Russian translation of Spec 5CT.</td>
<td>10th Edition</td>
<td>G5CT010R</td>
<td>$214.00</td>
</tr>
<tr>
<td>RP 5C5</td>
<td>Procedures for Testing Casing and Tubing Connections—Russian</td>
<td>Russian translation of RP 5C5.</td>
<td>4th Edition</td>
<td>GX5C504R</td>
<td>$148.00</td>
</tr>
<tr>
<td>Spec 5L</td>
<td>Line Pipe—Russian</td>
<td>Russian translation of Spec 5L.</td>
<td>46th Edition</td>
<td>G05L46R</td>
<td>$235.00</td>
</tr>
<tr>
<td>RP 5L1</td>
<td>Recommended Practice for Railroad Transportation of Line Pipe—Russian</td>
<td>Russian translation of RP 5L1.</td>
<td>7th Edition</td>
<td>G5L107R</td>
<td>$47.00</td>
</tr>
<tr>
<td>RP 5L2</td>
<td>Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Russian</td>
<td>Russian translation of RP 5L2.</td>
<td>4th Edition</td>
<td>G5L204R</td>
<td>$69.00</td>
</tr>
<tr>
<td>RP 5L3</td>
<td>Drop-Weight Tear Tests on Line Pipe—Russian</td>
<td>Russian translation of RP 5L3.</td>
<td>4th Edition</td>
<td>G5L304R</td>
<td>$78.00</td>
</tr>
<tr>
<td>RP 5L7</td>
<td>Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe—Russian</td>
<td>Russian translation of RP 5L7.</td>
<td>2nd Edition</td>
<td>G02906R</td>
<td>$74.00</td>
</tr>
<tr>
<td>RP 5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe—Russian</td>
<td>Russian translation of RP 5L8.</td>
<td>2nd Edition</td>
<td>G05L82R</td>
<td>$103.00</td>
</tr>
<tr>
<td>Spec 5LCP</td>
<td>Specification on Coiled Line Pipe—Russian</td>
<td>Russian translation of Spec 5LCP.</td>
<td>2nd Edition</td>
<td>G5LCP2R</td>
<td>$121.00</td>
</tr>
<tr>
<td>Spec 5LD</td>
<td>CRA Clad or Lined Steel Pipe—Russian</td>
<td>Russian translation of Spec 5LD.</td>
<td>4th Edition</td>
<td>G5LD04R</td>
<td>$119.00</td>
</tr>
<tr>
<td>RP 5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe—Russian</td>
<td>Russian translation of RP 5LT.</td>
<td>1st Edition</td>
<td>G5L01R</td>
<td>$48.00</td>
</tr>
<tr>
<td>RP 5LW</td>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels—Russian</td>
<td>Russian translation of RP 5LW.</td>
<td>3rd Edition</td>
<td>G5L03R</td>
<td>$48.00</td>
</tr>
<tr>
<td>RP 5SI</td>
<td>Recommended Practice for Purchaser Representative Surveillance and/or Inspection at the Supplier—Russian</td>
<td>Russian translation of RP 5SI.</td>
<td>1st Edition</td>
<td>G5S01R</td>
<td>$47.00</td>
</tr>
<tr>
<td>Bull 5T1</td>
<td>Imperfection and Defect Terminology—Russian</td>
<td>Russian translation of Bull 5T1.</td>
<td>11th Edition</td>
<td>G05T111R</td>
<td>$105.00</td>
</tr>
<tr>
<td>RP 6DR</td>
<td>Recommended Practice for the Repair and Remanufacture of Pipeline Valves—Russian</td>
<td>Russian translation of Spec RP 6DR.</td>
<td>2nd Edition</td>
<td>G06DR2R</td>
<td>$65.00</td>
</tr>
</tbody>
</table>

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC 6FD</td>
<td>Specification for Fire Test for Check Valves—Russian</td>
<td>1st Edition</td>
<td>February 1995</td>
<td>G06FD1R</td>
<td>$74.00</td>
</tr>
<tr>
<td>RP 7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits—Russian</td>
<td>16th Edition</td>
<td>August 1998</td>
<td>G07G6AR</td>
<td>$160.00</td>
</tr>
<tr>
<td>SPEC 7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections—Russian</td>
<td>2nd Edition</td>
<td>January 2017</td>
<td>GX70202R</td>
<td>$157.00</td>
</tr>
<tr>
<td>RP 10B-2</td>
<td>Recommended Practice for Testing Well Cements—Russian</td>
<td>2nd Edition</td>
<td>April 2013</td>
<td>G10B202R</td>
<td>$182.00</td>
</tr>
<tr>
<td>TR 10TR1</td>
<td>Cement Sheath Evaluation—Russian</td>
<td>2nd Edition</td>
<td>September 2008</td>
<td>G10TR12R</td>
<td>$119.00</td>
</tr>
<tr>
<td>TR 10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements—Russian</td>
<td>1st Edition</td>
<td>July 1997</td>
<td>G10TR2R</td>
<td>$100.00</td>
</tr>
<tr>
<td>TR 10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Russian</td>
<td>1st Edition</td>
<td>May 2008</td>
<td>G10TR40R</td>
<td>$49.00</td>
</tr>
<tr>
<td>SPEC 11D1/ISO 14310:2008</td>
<td>Packers and Bridge Plugs—Russian</td>
<td>3rd Edition</td>
<td>April 2015</td>
<td>G11D103R</td>
<td>$95.00</td>
</tr>
<tr>
<td>SPEC 11E</td>
<td>Specification for Pumping Units—Russian</td>
<td>19th Edition</td>
<td>November 2013</td>
<td>G11E019R</td>
<td>$140.00</td>
</tr>
<tr>
<td>RP 11S3</td>
<td>Recommended Practice for Electrical Submersible Pump Installations—Russian</td>
<td>2nd Edition</td>
<td>March 1999</td>
<td>G11S32R</td>
<td>$74.00</td>
</tr>
<tr>
<td>SPEC 12J</td>
<td>Specification for Oil and Gas Separators—Russian</td>
<td>8th Edition</td>
<td>October 2008</td>
<td>G12J08R</td>
<td>$80.00</td>
</tr>
<tr>
<td>RP 13K</td>
<td>Recommended Practice for Chemical Analysis of Barite—Russian</td>
<td>3rd Edition</td>
<td>May 2011</td>
<td>G13K03R</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 16Q</td>
<td>Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems</td>
<td>2nd Edition</td>
<td>April 2017</td>
<td>G16Q02R</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
<th>Edition</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian</td>
<td>2nd Edition</td>
<td>GX17D02R</td>
<td>$154.00</td>
</tr>
<tr>
<td>Std 19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations—Russian</td>
<td>2nd Edition</td>
<td>GX19C02R</td>
<td>$91.00</td>
</tr>
<tr>
<td>RP 19D/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants—Russian</td>
<td>1st Edition</td>
<td>GX19D01R</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian</td>
<td>3rd Edition</td>
<td>G04903R</td>
<td>$70.00</td>
</tr>
<tr>
<td>RP 54</td>
<td>Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Russian</td>
<td>3rd Edition</td>
<td>G54003R</td>
<td>$103.00</td>
</tr>
<tr>
<td>RP 59</td>
<td>Recommended Practice for Well Control Operations—Russian</td>
<td>2nd Edition</td>
<td>G59002R</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP 67</td>
<td>Recommended Practice for Oilfield Explosives Safety—Russian</td>
<td>2nd Edition</td>
<td>G06702R</td>
<td>$71.00</td>
</tr>
<tr>
<td>Std 520, Part I</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection—Russian</td>
<td>9th Edition</td>
<td>C520109R</td>
<td>$280.00</td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian</td>
<td>2nd Edition</td>
<td>G055602R</td>
<td>$126.00</td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>7th Edition</td>
<td>C59907R</td>
<td>$66.00</td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries—Russian</td>
<td>10th Edition</td>
<td>C60210R</td>
<td>$100.00</td>
</tr>
<tr>
<td>Std 608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>5th Edition</td>
<td>C60805R</td>
<td>$91.00</td>
</tr>
<tr>
<td>RP 934-A</td>
<td>Materials and Fabrication of 2 1/4Cr-1Mo, 2 1/4Cr-1Mo-1/4V, 3Cr-1Mo, and 3Cr-1Mo-1/4V Steel Heavy Wall Pressure Vessels for High-Temperature, High-Pressure Hydrogen Service—Russian</td>
<td>2nd Edition</td>
<td>C934A02R</td>
<td>$89.00</td>
</tr>
</tbody>
</table>

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 934-C
Materials and Fabrication of 1 1/4CR-1/2Mo Steel Heavy Wall Pressure Vessels for High Pressure Hydrogen Service Operating at or Below 825 °F (441 °C)—Russian
Russian translation of RP 934-C.
1st Edition | May 2008 | Product Number: C934C01R | Price: $89.00

Std 1104
Welding of Pipelines and Related Facilities—Russian
Russian translation of Std 1104.
21st Edition | September 2013
Product Number: D110421R | Price: $284.00

SPANISH *

Spec Q1
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Spanish
Spanish translation of Q1.
9th Edition | June 2013 | Product Number: G0Q109SP | Price: $124.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organization for the Petroleum and Natural Gas Industries—Spanish
Spanish translation of Q2.
1st Edition | December 2011
Product Number: G0Q201SP | Price: $82.00

Chapter 1
Vocabulary—Spanish [Historical]
Spanish translation of Ch. 1.
2nd Edition | July 1994 | Product Number: H010SP | Price: $112.00

Chapter 3.1A
Spanish translation of Ch. 3.1A.
3rd Edition | August 2013 | Product Number: H301A03S | Price: $103.00

Chapter 3.2
Standard Practice for Gauging Petroleum and Petroleum Products in Tank Cars—Spanish
Spanish translation of Ch. 3.2.
1st Edition | August 1995 | Product Number: H03021S | Price: $100.00

Chapter 3.3
Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.3.
1st Edition | June 1996 | Product Number: H030316 | Price: $85.00

Chapter 3.4
Standard Practice for Level Measurement of Liquid Hydrocarbons on Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.4.
1st Edition | April 1995 | Product Number: H03041SP | Price: $85.00

Chapter 3.5
Standard Practice for Level Measurement of Light Hydrocarbon Liquids Onboard Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.5
1st Edition | March 1997 | Product Number: H03051S | Price: $85.00

Chapter 4.1
Introduction—Spanish
Spanish translation of Ch. 4.1.
3rd Edition | February 2005 | Product Number: H40101S | Price: $84.00

Chapter 5.1
General Considerations for Measurement by Meters—Spanish
Spanish translation of Ch. 5.1.

Chapter 5.2
Measurement of Liquid Hydrocarbons by Displacement Meters—Spanish
Spanish translation of Ch. 5.2.
3rd Edition | October 2005 | Product Number: H50203SP | Price: $90.00

Chapter 5.3
Measurement of Liquid Hydrocarbons by Turbine Meters—Spanish
Spanish translation of Ch. 5.3.
5th Edition | September 2005
Product Number: H50305SP | Price: $109.00

Chapter 5.4
Accessory Equipment for Liquid Meters—Spanish
Spanish translation of Ch. 5.4.
4th Edition | September 2005
Product Number: H05044SP | Price: $97.00

Chapter 5.5
Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish
Spanish translation of Ch. 5.5.
2nd Edition | July 2005 | Product Number: H50502SP | Price: $72.00

Chapter 5.6
Measurement of Liquid Hydrocarbons by Coriolis Meters—Spanish
Spanish translation of Ch. 5.6.
1st Edition | October 2002 | Product Number: H05061S | Price: $143.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Edition</th>
<th>Publication Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish</td>
<td>2nd Edition</td>
<td>November 2011</td>
<td>H050802SP</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 7G-2/ISO 10407-2:2008</td>
<td>Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish</td>
<td>1st Edition</td>
<td>August 2009</td>
<td>GX7G201SP</td>
<td>$144.00</td>
</tr>
<tr>
<td>7.3</td>
<td>Fixed Automatic Tank Temperature Systems—Spanish</td>
<td>2nd Edition</td>
<td>October 2011</td>
<td>H70302SP</td>
<td>$85.00</td>
</tr>
<tr>
<td>8.3</td>
<td>Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products—Spanish</td>
<td>1st Edition</td>
<td>October 1995</td>
<td>H80301SP</td>
<td>$92.00</td>
</tr>
<tr>
<td>10.9</td>
<td>Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration—Spanish</td>
<td>3rd Edition</td>
<td>May 2013</td>
<td>H100903SP</td>
<td>$42.00</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Calculation of Static Petroleum Quantities, Part 1—Upright Cylindrical Tanks and Marine Vessels—Spanish</td>
<td>3rd Edition</td>
<td>April 2012</td>
<td>H1201013SP</td>
<td>$117.00</td>
</tr>
<tr>
<td>17.2</td>
<td>Measurement of Cargoes on Board Tank Vessels—Spanish</td>
<td>2nd Edition</td>
<td>May 1999</td>
<td>H1702SP</td>
<td>$136.00</td>
</tr>
<tr>
<td>17.3</td>
<td>Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements—Spanish</td>
<td>2nd Edition</td>
<td>December 2016</td>
<td>H170302S</td>
<td>$124.00</td>
</tr>
<tr>
<td>17.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)—Spanish</td>
<td>2nd Edition</td>
<td>September 2016</td>
<td>H170402S</td>
<td>$113.00</td>
</tr>
<tr>
<td>17.5</td>
<td>Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities—Spanish</td>
<td>3rd Edition</td>
<td>April 2012</td>
<td>H170503SP</td>
<td>$149.00</td>
</tr>
<tr>
<td>17.8</td>
<td>Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems—Spanish</td>
<td>2nd Edition</td>
<td>August 2016</td>
<td>H170802S</td>
<td>$111.00</td>
</tr>
<tr>
<td>17.9</td>
<td>Vessel Experience Factor (VEF)—Spanish</td>
<td>2nd Edition</td>
<td>May 2012</td>
<td>H170902SP</td>
<td>$170.00</td>
</tr>
<tr>
<td>17.11</td>
<td>Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment—Spanish</td>
<td>2nd Edition</td>
<td>August 2016</td>
<td>H170112S</td>
<td>$111.00</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Chapter 17.12</th>
<th>Procedures for Bulk Liquid Chemical Cargo Inspections—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of Ch. 17.12.</td>
<td></td>
</tr>
<tr>
<td>2nd Edition</td>
<td>August 2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 20.2</th>
<th>Production Allocation Measurement Using Single-Phase Devices—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of Ch. 20.2.</td>
<td></td>
</tr>
<tr>
<td>1st Edition</td>
<td>November 2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>API 510</th>
<th>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of API 510.</td>
<td></td>
</tr>
<tr>
<td>10th Edition</td>
<td>May 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP 576</th>
<th>Inspection of Pressure-Relieving Devices—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of RP 576.</td>
<td></td>
</tr>
<tr>
<td>4th Edition</td>
<td>April 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std 1104</th>
<th>Welding of Pipelines and Related Facilities—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of Std 1104.</td>
<td></td>
</tr>
<tr>
<td>21st Edition</td>
<td>September 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std 2510</th>
<th>Design and Construction of LPG Installations—Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish translation of Std 2510.</td>
<td></td>
</tr>
<tr>
<td>8th Edition</td>
<td>May 2001</td>
</tr>
</tbody>
</table>
Chapter 11.1—1980 has not been withdrawn, but superseded. The 1980 standards should not be utilized on new applications. Chapter 11.1—2004 (page 60 of this Catalog) is to be utilized on all new applications.

Chapter 11.1
Volume Correction Factors—Volume I
Table 5A—Generalized Crude Oils and JP-4, Correction of Observed API Gravity to API Gravity at 60°F.
Table 6A—Generalized Crude Oils and JP-4, Correction of Volume to 60°F Against API Gravity at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume II
Table 5B—Generalized Products, Correction of Observed API Gravity to API Gravity at 60°F.
Table 6B—Generalized Products, Correction of Volume to 60°F Against API Gravity at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume III
Table 6C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 60°F Against Thermal Expansion Coefficients at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Addendum to Volume III/IX Volume Correction—MTBE
Provides users of the API Manual of Petroleum Measurement Standards Chapter 11.1, Volume III (Table 6C) and Volume IX (Table 54C) with revised volume correction factor tables for MTBE. The tables can be used to expedite calculation of the volume of mixtures composed predominantly of MTBE at standard conditions when volumes at other conditions are used. These tables apply to commercially available mixtures containing at least 85 weight percent MTBE. The information gained from using these tables can be used to determine quantities of MTBE in tanks, shipping containers, and other storage containers typically used in the petroleum industry. Table 6C—Volume Correction Factors for Individual and Special Applications, Volume Correction for MTBE to 60°F and Volume IX, Table 54C—Volume Correction for Individual and Special Applications, Volume Correction for MTBE to 15°C.
PAGES: 4
1st Edition | January 1995 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume IV
Table 23A—Generalized Crude Oils, Correction of Observed Relative Density to Relative Density at 60/60°F.
Table 24A—Generalized Crude Oils, Correction of Volume to 60°F Against Relative Density 60/60°F.
August 1980 | Reaffirmed, March 1997 | Price: $52.00

Chapter 11.1
Volume Correction Factors—Volume V
Table 23B—Generalized Products, Correction of Observed Relative Density to Relative Density at 60/60°F.
Table 24B—Generalized Products, Correction of Volume to 60°F Against Relative Density 60/60°F.
August 1980 | Reaffirmed, March 1997 | Price: $52.00

Chapter 11.1
Volume Correction Factors—Volume VI
Table 24C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 60°F Against Thermal Expansion Coefficients at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume VII
Table 53A—Generalized Crude Oils, Correction of Observed Density to Density at 15°C.
Table 54A—Generalized Crude Oils, Correction of Volume to 15°C Against Density at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $52.00

Chapter 11.1
Volume Correction Factors—Volume VIII
Table 53B—Generalized Products, Correction of Observed Density to Density at 15°C.
Table 54B—Generalized Products, Correction of Volume to 15°C Against Density at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $52.00

Chapter 11.1
Volume Correction Factors—Volume IX
Table 54C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 15°C Against Thermal Expansion Coefficients at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume X
Background, Development, and Computer Documentation, including computer subroutines in Fortran IV for all volumes of Chapter 11.1, except Volumes XI/XII, XIII, and XIV. Implementation procedures, including rounding and truncating procedures, are also included. These subroutines are not available through API in magnetic or electronic form. Pages: 403
August 1980 | Reaffirmed, March 1997 | Price: $46.00

Chapter 11.1
Volume Correction Factors—Volume XI/XII
Superseded by Chapter 11.5, Parts 1 to 3, 2009
(see page 59 of this Catalog)
Two combined volumes, containing Petroleum Measurement Subsidiary Tables 1-4, 8-14, 21, 22, 26-31, 33, 34, 51, 52, and 56-58, which provide conversions between volume measures and density measures.
January 1980 | Reaffirmed, December 1999
Order from ASTM | 100 Barr Harbor Drive | West Conshohocken, PA 19428
Tel: (610) 832-9500

Chapter 11.1
Volume Correction Factors—Volume XIII
Table 5D—Generalized Sampling Oils, Correction of Observed API Gravity to API Gravity at 60°F.
Table 6D—Generalized Sampling Oils, Correction of Volume to 60°F Against API Gravity at 60°F.
January 1982 | Reaffirmed, March 1997 | Price: $52.00
Chapter 11.1
Volume Correction Factors—Volume XIV
Table 53D—Generalized Lubricating Oils, Correction of Observed Density to Density at 15°C.
Table 54D—Generalized Lubricating Oils, Correction of Volume to 15°C Against Density at 15°C.
January 1982 | Reaffirmed, March 1997 | Price: $52.00

Chapter 11.2.1
Compressibility Factors for Hydrocarbons: 0–90° API Gravity Range
Provides tables to correct hydrocarbon volumes metered under pressure to corresponding volumes at the equilibrium pressure for the metered temperature. It contains compressibility factors related to meter temperature and API gravity (60°F) of metered material. Pages: 149
1st Edition | August 1984 | Reaffirmed, May 1996 | Price: $146.00

Chapter 11.2.1M
Compressibility Factors for Hydrocarbons: 638–1074 Kilograms per Cubic Meter Range
Provides tables in metric (SI) units to correct hydrocarbon volumes metered under pressure to corresponding volumes at the equilibrium pressure for the metered temperature. It contains compressibility factors related to meter temperature and density (15 °C) of metered material. Pages: 187
1st Edition | August 1984 | Reaffirmed, May 1996 | Price: $146.00

Chapter 11.2
CD-ROM and Documentation of Chapters 11.2.1, 11.2.1M, 11.2.3, and 11.2.3M
Includes tables found in Chapters 11.2.1, 11.2.1M, 11.2.3, and 11.2.3M, along with a computer documentation manual containing text information from those chapters. The tables, presented in both standard and metric (SI) units, cover compressibility factors for hydrocarbons and water calibration of volumetric provers. The tape is 9-track, 1600 bpi, unlabeled, 4-file type, and is available in either ASCII or EBCDIC format. Format desired must be specified when ordering. Now available on disk. Please specify when ordering.
1st Edition | 1984

Chapter 11.2
Computer Tape Information and Documentation for Chapters 11.2.1, 11.2.1M, 11.2.3 and 11.2.3M
Provides only the text information from Chapters 11.2.1, 11.2.1M, 11.2.3 and 11.2.3M, and information pertaining to the use of the magnetic tape described above. The manual is included with orders for the magnetic tape. Pages: 11
1st Edition | 1984

WITHDRAWN IN 2018

API Standard for Third Party Network Connectivity
1st Edition | November 2007

Security Guidelines for the Petroleum Industry
3rd Edition | April 2005

Security Vulnerability Assessment Methodology for the Petroleum and Petrochemical Industries
October 2004

Chapter 7
Temperature Determination
1st Edition | June 2001

Chapter 14.6
Continuous Density Measurement
2nd Edition | April 1991

Chapter 14.8
Liquefied Petroleum Gas Measurement
2nd Edition | July 1997

Std 662, Part 2/ISO 15547-2:2005
Plate Heat Exchangers for General Refinery Services, Part 2—Brazed Aluminum Plate-Fin Heat Exchangers (ANSI/API 662, Part 2)
1st Edition | February 2006

RP 1114
Recommended Practice for the Design of Solution-Mined Underground Storage Facilities
2nd Edition | January 2013

RP 2200
Repairing Hazardous Liquid Pipelines
5th Edition | September 2015

WITHDRAWN PUBLICATIONS
The documents listed in this section have been withdrawn and are no longer being maintained by the responsible standards committee. Copies of these documents are available for purchase at www.api.org/publications.

Exploration and Production
Glossary of Oil Field Production Terminology, 1st ed. 1988
Report of Eastern/Western Hemisphere Production of Casing, Tubing, and Drill Pipe, 1997–2004

Vocational Training Series 1–6
Book 1, Introduction to Oil and Gas Production, 4th ed. 1983
Book 2, Corrosion of Oil and Gas Well Equipment, 1st ed. 1958, 2nd ed. 1990
Book 3, Subsurface Salt Water Injection and Disposal, 2nd ed. 1978
Book 4, Well Testing, 2nd ed. 1976
Book 5, Wireline Operations and Procedures, 1983
Book 6, Gas Lift, 1984

1 Specification for Oil-Field Bletting, 10th ed. 1947, 11th ed. 1952, 12th ed. 1957
1A Specification for Oil-Field Flat Bletting, 1st ed. 1957
2 Oil Field Boilers, 1st ed. 1928–10th ed. 1949
2ALRFD-S1 Supplement 1 to Planning, Designing and Constructing Fixed Offshore Platforms—Load and Resistance Factor Design, 1st ed. 1997
Historical Publications

<table>
<thead>
<tr>
<th>Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)</th>
<th>Phone Orders: +1 303 397 7956 (Local and International)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7D Oil-Field Boilers, 10th ed. 1949</td>
<td>12C All-Welded Oil Storage Tanks, 1st ed. 1936-15th ed. 1958</td>
</tr>
<tr>
<td>7E Care and Use of Oil-Field Boilers, 3rd ed. 1949</td>
<td>12D Large Welded Production Tanks, 3rd ed. 1944-10th ed. 1994</td>
</tr>
<tr>
<td>8B Internal-Combustion Engines and Unit-Type Radiator Coolers and Oil-Field Service, 6th ed. 1953</td>
<td>12H Recommended Practice for Installation of New Bottoms In Old Storage Tanks, 1st ed. 1957</td>
</tr>
<tr>
<td>10 Recommended Practice in Drilling Operations, 1953</td>
<td>12M Oil Field Thermal Recovery Steam Generators, 1st ed. 1966, 2nd ed. 1967</td>
</tr>
<tr>
<td>11H Recommended Practice for Electrical Surface Pumping Equipment, 1st ed. 1959</td>
<td>15L4 Care and Use of Reinforced Thermosetting Resin Line Pipe, 2nd ed. 1976</td>
</tr>
<tr>
<td>11M Recommended Practice for Grounded 630-Volt, Three-Phase Electrical System for Oil Field Service, 1st ed. 1973</td>
<td>17C Recommended Practice on TFL (Through Flowline) Systems, 2nd ed. 2002</td>
</tr>
<tr>
<td></td>
<td>34 Standard Hydrocarbon Mud Log Form, 1st ed. 1957</td>
</tr>
<tr>
<td></td>
<td>35 Oil-Mapping Symbols, 1st ed. 1957</td>
</tr>
<tr>
<td></td>
<td>36 Determining Productivity Indices, 1st ed. 1958</td>
</tr>
<tr>
<td></td>
<td>37 Recommended Practice Proof-Test Procedure for the Evaluation of High-Pressure Casing and Tubing Connection Designs, 1st ed. 1958, 2nd ed. 1980</td>
</tr>
</tbody>
</table>
Historical Publications

<table>
<thead>
<tr>
<th>Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)</th>
<th>Phone Orders: +1 303 397 7956 (Local and International)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1127 Marine Vapor Control Training Guidelines, 1st ed. 1993</td>
<td>1546 How You Can Cooperate with Distributive Education to Develop Dealers for Tomorrow, 1st ed. 1965</td>
</tr>
<tr>
<td>Marketing</td>
<td>1948 Sources of Petroleum Marketing Statistics, 1st ed. 1963</td>
</tr>
<tr>
<td>1500 Storage and Handling of Aviation Fuels at Airports, 1st ed. 1976</td>
<td>1553 Using a Break-Even System, 1st ed. 1965</td>
</tr>
<tr>
<td>1506 Service Station Management, 1st ed. 1954</td>
<td>1559 Service Station Burglaries and Robberies, 1st ed. 1966</td>
</tr>
<tr>
<td>1511 The New API Engine Oil Service Classification Symbol, 1st ed. 1984, 2nd ed. 1986</td>
<td>1571 Diesel Fuel Questions and Answers for Your Car, 2nd ed. 1982</td>
</tr>
<tr>
<td>1516 Urban Consumer Expenditures for Transportation, 1st ed. 1955</td>
<td>1573 How to Plug Service Station Profit Leaks, 1st ed. 1968–2nd ed. 1978</td>
</tr>
<tr>
<td>1517 Motor Oils and Lubrication, 1st ed. 1956</td>
<td>1574 Pathways to Prestige, 1st ed. 1969</td>
</tr>
<tr>
<td>1525 A Short Course in the Lubrication of Automotive Equipment, 1st ed. 1957</td>
<td>1582 Waste Oil Roundup... No.1, 1st ed. 1972</td>
</tr>
<tr>
<td>1527 How to Plan and Organize Management Institute Programs for Oil Marketers, 1st ed. 1958</td>
<td>1585 Student Employment Program for Service Stations, 1st ed. 1975</td>
</tr>
<tr>
<td>1529 Recommended Performance Requirements for Aviation Fueling Hose, 2nd ed. 1963, 3rd ed. 1982</td>
<td>1586 Student Employment Program for Service Stations, 1st ed. 1975</td>
</tr>
<tr>
<td>1530B The Choice is Yours Change Your Oil at Least Every 60 Days, 1st ed. 1966</td>
<td>1587 Waste Oil Roundup... No. 3, 1st ed. 1974</td>
</tr>
<tr>
<td>ISBN</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1600</td>
<td>Regulations and Ordinances Applying to Petroleum Marketing Facilities, 1st ed. 1959</td>
</tr>
<tr>
<td>1601</td>
<td>Base Lay-Out of Single-Unit Service Station Pumps or Dispensers, 1st ed. 1959</td>
</tr>
<tr>
<td>1602</td>
<td>Recommended Standard for Underground Gasoline Tanks, 1st ed. 1959</td>
</tr>
<tr>
<td>1603</td>
<td>Model Ordinance Regulating Curb Cuts and Approaches to Service Stations, 1st ed. 1959</td>
</tr>
<tr>
<td>1604</td>
<td>Recommended Practice for Abandonment or Removal of Underground Tanks, 1st ed. 1960</td>
</tr>
<tr>
<td>1605</td>
<td>Loading and Unloading Speeds for Gasoline Delivery Trucks, 1st ed. 1961</td>
</tr>
<tr>
<td>1606</td>
<td>A Study of the Value of Coating the Underside of the Bottoms of Vertical Storage Tanks and the Value of Painting the Interior of the Types of Storage Tanks Generally Used in Marketing Operations, 1st ed. 1960</td>
</tr>
<tr>
<td>1607</td>
<td>A Report on the Use of Plastic Materials for Temporary or Permanent Repairs to Steel Storage Tanks, 1st ed. 1960</td>
</tr>
<tr>
<td>1609</td>
<td>Driver's Handbook, 1st ed. 1960</td>
</tr>
<tr>
<td>1610</td>
<td>Recommended Standard for the Base Lay-Out of Single and Single Product Twin Service Station Pumps or Remote Dispensers, and Two Product Remote Dispensers, 1st ed. 1965</td>
</tr>
<tr>
<td>1611</td>
<td>Service Station Tankage Guide, 1st ed. 1961</td>
</tr>
<tr>
<td>1612</td>
<td>Guide for Selection of Petroleum Tank Trucks for Distributors and Jobbers, 1st ed. 1963</td>
</tr>
<tr>
<td>1614</td>
<td>Drivers’ Paper Work, 1st ed. 1961</td>
</tr>
<tr>
<td>1615</td>
<td>Petroleum Delivery Truck Operation and Maintenance, 1st ed. 1961</td>
</tr>
<tr>
<td>1616</td>
<td>Information on Marketing Delivery of Light Refined and Packaged Petroleum Products, 1st ed. 1966</td>
</tr>
<tr>
<td>1617</td>
<td>Structural Characteristics of Hose and Fittings, 1st ed. 1962</td>
</tr>
<tr>
<td>1618</td>
<td>Guide for Selection of Petroleum Tank Trucks for Distributors and Jobbers, 1st ed. 1963</td>
</tr>
<tr>
<td>1619</td>
<td>Bulk Design and Operating Practices to Protect Product Quality of Gasoline and Distillate Fuels, 1st ed. 1963</td>
</tr>
<tr>
<td>1621</td>
<td>Barge Terminal Design and Operating Practices to Protect Product Quality of Gasoline and Distillate Fuels, 1st ed. 1963</td>
</tr>
<tr>
<td>1622</td>
<td>Recommended Good Practices for Bulks Liquid-Loss Control in Terminals and Depots, 1st ed. 1963</td>
</tr>
<tr>
<td>1623</td>
<td>Barge Terminal Design and Operating Practices to Protect Product Quality of Gasoline and Distillate Fuels, 1st ed. 1963</td>
</tr>
<tr>
<td>1624</td>
<td>What to Do When the Power Goes Off, 1st ed. 1967</td>
</tr>
<tr>
<td>1625</td>
<td>Analysis of Temperature Effects on Gasoline Marketing Operations, 1st ed. 1979</td>
</tr>
<tr>
<td>1626</td>
<td>Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Service Stations, 1st ed. 1985</td>
</tr>
<tr>
<td>1627</td>
<td>Storage and Handling of Gasoline-Methanol/Cosolvent Blends at Distribution Terminals and Service Stations, 1st ed. 1986</td>
</tr>
<tr>
<td>1631</td>
<td>Handling Water Discharges from Automotive Service Facilities Located at Petroleum Marketing Operations, 1st ed. 1992</td>
</tr>
<tr>
<td>1632</td>
<td>The Used Oil State Law Digest, 2nd ed. 1994</td>
</tr>
<tr>
<td>1634</td>
<td>Keeping it Clean: Making Safe and Spill-Free Motor Fuel Deliveries, 1st ed. 1992</td>
</tr>
<tr>
<td>1A</td>
<td>Cleaning Petroleum Storage Tanks-Section A, Crude Oil and Unfinished-Products Tanks, 1955</td>
</tr>
<tr>
<td>1B</td>
<td>Cleaning Petroleum Storage Tanks-Section B, Gasoline Tanks, 1955</td>
</tr>
<tr>
<td>2</td>
<td>Gas and Electric Cutting and Welding, 1953</td>
</tr>
<tr>
<td>3</td>
<td>Organization for Accident Prevention, 1942</td>
</tr>
<tr>
<td>4</td>
<td>Service Station Safety, 1959</td>
</tr>
<tr>
<td>13A</td>
<td>Cleaning Mobile Tanks Used for Transportation of Flammable Liquids—Section A, Tank Vehicles, 1955</td>
</tr>
<tr>
<td>13B</td>
<td>Cleaning Mobile Tanks Used for Transportation of Flammable Liquids—Section B, Tank Cars, 1958</td>
</tr>
<tr>
<td>2003</td>
<td>API Inspection for Accident Prevention in Refineries, 1st ed. 1984</td>
</tr>
<tr>
<td>2004</td>
<td>Inspection for Fire Protection, 1st 1984</td>
</tr>
<tr>
<td>2011</td>
<td>Safe Practices in Air or Gas Drilling, 1st ed. 1964</td>
</tr>
<tr>
<td>2015B</td>
<td>Cleaning Open-Top and Covered Floating-Roof Tanks, 1st ed. 1981</td>
</tr>
<tr>
<td>2016</td>
<td>Cleaning Tanks Used for Gasoline, 4th ed. 1961</td>
</tr>
<tr>
<td>2020</td>
<td>Driver Improvement Course, 1st ed. 1970</td>
</tr>
<tr>
<td>2021A</td>
<td>Interim Study—Prevention and Suppression of Fires in Large Aboveground Atmospheric Storage Tanks, 1st ed. 1998</td>
</tr>
<tr>
<td>2022</td>
<td>Fire Hazards of Oil Spills on Waterways, 1st ed. 1977, 2nd ed. 1982</td>
</tr>
<tr>
<td>2025</td>
<td>Emergency Planning and Mutual Aid for Products Terminals and Bulk Plants, 1st ed. 1978</td>
</tr>
<tr>
<td>2031</td>
<td>Combustible-Gas Detector Systems and Environmental/Operational Factors Influencing their Performance, 1st ed. 1991</td>
</tr>
<tr>
<td>2202</td>
<td>Guidelines for Protecting Against Lead Hazard when Dismantling and Disposing of Steel from Tanks that Have Contained Leaded Gasoline, 1st ed. 1975–3rd 1991</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Efficiency Issues in Other Continental Shelf Leasing, 1987</td>
<td></td>
</tr>
<tr>
<td>Safety of Interstate Liquid Pipeline s: An Evaluation of Present Levels</td>
<td></td>
</tr>
<tr>
<td>The Effects of State Below-Cost Selling Laws on Retail Prices of Motor</td>
<td></td>
</tr>
<tr>
<td>Factors Affecting Petroleum Product Imports, 1985</td>
<td></td>
</tr>
<tr>
<td>Analytics of Proposals to Compel Open Supply, 1987</td>
<td></td>
</tr>
<tr>
<td>Mineral Leasing on Federal Lands: A Comparison of Key Leasing Elements, 1985</td>
<td></td>
</tr>
<tr>
<td>A Review of Evidence of the Consequences of United States Cargo Preference Programs, 1985</td>
<td></td>
</tr>
<tr>
<td>The Longshoremans’s and Harbor Workers’ Compensation Act: The 1972 and 1984 Amendments, 1985</td>
<td></td>
</tr>
<tr>
<td>Efficiency Issues in Other Continental Shelf Leasing, 1987</td>
<td></td>
</tr>
<tr>
<td>Value Added Taxes: The Experience of Western European Countries, 1985</td>
<td></td>
</tr>
<tr>
<td>Safety of Interstate Liquid Pipelines: An Evaluation of Present Levels and Proposals for Change, 1987</td>
<td></td>
</tr>
<tr>
<td>Mineral Leasing on Federal Lands: A Comparison of Key Leasing Elements, 1985</td>
<td></td>
</tr>
<tr>
<td>Analytics of Proposals to Compel Open Supply, 1987</td>
<td></td>
</tr>
<tr>
<td>Factors Affecting Petroleum Product Imports, 1985</td>
<td></td>
</tr>
<tr>
<td>The Effects of State Below-Cost Selling Laws on Retail Prices of Motor Gasoline, 1987</td>
<td></td>
</tr>
<tr>
<td>Risk and Returns in the Interstate Natural Gas Pipeline, 1988</td>
<td></td>
</tr>
<tr>
<td>Aggregate Energy Demand: Determinants and Implications for Conservation Policy, 1989</td>
<td></td>
</tr>
<tr>
<td>Compensation for Medical Expenses and Lost Wages of the Chronically Ill, 1986</td>
<td></td>
</tr>
<tr>
<td>The Economics of Alternative Fuel Use: Substituting Methanol, 1989</td>
<td></td>
</tr>
<tr>
<td>Workers Compensation and Disease, 1986</td>
<td></td>
</tr>
<tr>
<td>Biological Research on the Effects of Undispersed and Dispersed Experimental Crude Oil slicks in the New York Bight, 1985</td>
<td></td>
</tr>
<tr>
<td>OECD Countries and the VAT: The Historical Experience, 1990</td>
<td></td>
</tr>
<tr>
<td>Analysis of Factors Influencing the Consumption of Premium Motor Gasolines, 1990</td>
<td></td>
</tr>
<tr>
<td>Competition in the Interstate Natural Gas Pipeline Industry, 1987</td>
<td></td>
</tr>
<tr>
<td>Public Policy and the Imprecision of Petroleum Resource Estimates, 1987</td>
<td></td>
</tr>
<tr>
<td>Non-OPEC Supply and World Petroleum Markets: Past Forecasts, Recent Experience and Future Prospects, 1990</td>
<td></td>
</tr>
<tr>
<td>Petroleum Production on the Arctic National Wildlife Refuge Coastal Plain and the National Interest, 1987</td>
<td></td>
</tr>
<tr>
<td>Gasoline Distribution and Service Station Margins: An Assessment of EPA Assumptions and Implications for Methanol, 1990</td>
<td></td>
</tr>
<tr>
<td>Federal Policy Regarding the Take-or-Pay Obligations of Interstate Gas Pipelines, 1988</td>
<td></td>
</tr>
<tr>
<td>Managing the Environment: A Review of Present Programs and Their Goals and Methods, 1989</td>
<td></td>
</tr>
<tr>
<td>Non-Hazardous Solid Waste Landfill Policy, 1991</td>
<td></td>
</tr>
<tr>
<td>The Decline of Gasoline Service Stations and Motorists’ Access to Car Maintenance Services, 1989</td>
<td></td>
</tr>
<tr>
<td>Meeting the Oxygenate Requirements of the 1990 Clean Air Act Amendments, 1991</td>
<td></td>
</tr>
<tr>
<td>Structure and Performance in Motor Gasoline Manufacturing and Marketing, 1991</td>
<td></td>
</tr>
<tr>
<td>Energy and Macroeconomic Performance, 1989</td>
<td></td>
</tr>
<tr>
<td>Price Adjustment in Gasoline and Heating Oil Markets, 1991</td>
<td></td>
</tr>
<tr>
<td>An Historical Overview of Solid Waste Management in the Petroleum Industry, 1990</td>
<td></td>
</tr>
<tr>
<td>The Impact of State Legislation on the Number of Retail Gasoline Outlets, 1991</td>
<td></td>
</tr>
<tr>
<td>Used Oil Management in Selected Industrialized Countries, 1991</td>
<td></td>
</tr>
<tr>
<td>Economic Evaluation of Wetlands, 1991</td>
<td></td>
</tr>
<tr>
<td>Estimated Costs and Benefits of Retrofitting Aboveground Petroleum Industry Storage Tanks with Release Prevention Barriers, 1992</td>
<td></td>
</tr>
<tr>
<td>Control Strategies for Reducing Landfarm Air Emissions, 1989</td>
<td></td>
</tr>
<tr>
<td>Economic Aspects of Workplace Safety Regulation with Application to the U.S. Petroleum Industry, 1992</td>
<td></td>
</tr>
<tr>
<td>Petroleum Industry Technology to Meet Today’s Challenges, 1991</td>
<td></td>
</tr>
<tr>
<td>Energy Prices and Externalities, 1993</td>
<td></td>
</tr>
<tr>
<td>Do Product Prices Respond Symmetrically to Changes in Crude Prices?, 1992</td>
<td></td>
</tr>
<tr>
<td>The Cleanup of Inactive Hazardous Waste Sites in Selected Industrialized Countries, 1991</td>
<td></td>
</tr>
<tr>
<td>Dealing with Uncertainties in a Biologically Based Risk Assessment of Cyclophosphamide-Induced Leukemia, 1994</td>
<td></td>
</tr>
<tr>
<td>Costs to the Petroleum Industry of Major New and Future Federal Government Environmental Requirements, 1993</td>
<td></td>
</tr>
<tr>
<td>The Differential Impact of Motor Fuel Taxes on States and Regions, 1993</td>
<td></td>
</tr>
<tr>
<td>Petroleum and Public Policy: The Post-World War II Experience, 1992</td>
<td></td>
</tr>
<tr>
<td>Petroleum Product Taxation in the OECD Countries: How Much are They, Who Pays Them, and What are They Doing to Petroleum Markets?, 1993</td>
<td></td>
</tr>
<tr>
<td>Water Quality Management: Policy and Practice in Selected Countries, 1992</td>
<td></td>
</tr>
<tr>
<td>RCRA Economic Impact Analysis: Refinery Nonhazardous Wastewater Surface Impoundments, 1993</td>
<td></td>
</tr>
<tr>
<td>International Management of Wetlands, 1992</td>
<td></td>
</tr>
<tr>
<td>Development of Improved Methods to Measure Effective Doses of Ozone, 1994</td>
<td></td>
</tr>
<tr>
<td>Effluent Fees: Present Practice and Future Potential, 1993</td>
<td></td>
</tr>
<tr>
<td>Potential Expenditures by The Petroleum Industry for Water Pollution Control Measures, 1995</td>
<td></td>
</tr>
<tr>
<td>Estimates of Annual U.S. Road User Payments Versus Annual Road Expenditures, 1995</td>
<td></td>
</tr>
<tr>
<td>Water Effluent Trading, 1995</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>080</td>
<td>Efficiency and Equity Effects of Value-added and Other Broad-based Consumption Taxes: A Review of the Literature</td>
</tr>
<tr>
<td>080</td>
<td>Subsidies to Alternative Transportation Fuels and Alternative Fuel Vehicles in Twelve Eastern States and the District of Columbia</td>
</tr>
<tr>
<td>081</td>
<td>Initial Cost Impacts of a Carbon Tax on U.S. Manufacturing Industries and Other Sectors</td>
</tr>
<tr>
<td>082</td>
<td>The Funding of Roads in New York: Taxes Collected from Road Users Versus Expenditure on Roads</td>
</tr>
<tr>
<td>083</td>
<td>The Funding of Roads in New Jersey: Taxes Collected from Road Users Versus Expenditure on Roads</td>
</tr>
<tr>
<td>083</td>
<td>Octane Requirements of the Motor Vehicle Fleet and Gasoline Grade Sales</td>
</tr>
<tr>
<td>085</td>
<td>The Monetary Benefits of An 8-Hour 0.08 ppm Ozone Standard in Chicago</td>
</tr>
<tr>
<td>087</td>
<td>Competition and Electric Power Generation</td>
</tr>
<tr>
<td>087</td>
<td>An Examination of Incentives for and Obstacles to Pollution Prevention in the Petroleum Industry</td>
</tr>
<tr>
<td>088</td>
<td>Restoring Natural Resources: Legal Background and Economic Analysis</td>
</tr>
<tr>
<td>088</td>
<td>The Funding of Roads in the United States: How the Taxes and Fees Collected from Motorists are Spent</td>
</tr>
<tr>
<td>089</td>
<td>Distribution and Behavior of Drilling Fluids and Cuttings Around Gulf of Mexico drilling Sites</td>
</tr>
<tr>
<td>089</td>
<td>The Benefits of Road Travel and Transport</td>
</tr>
<tr>
<td>089</td>
<td>Climate Change Policy Commitments: A Reality Check</td>
</tr>
<tr>
<td>090</td>
<td>A Review of the Literature on Health-health Threshold Values</td>
</tr>
<tr>
<td>091</td>
<td>Carbon Sinks and The Kyoto Protocol</td>
</tr>
<tr>
<td>093</td>
<td>Implications of the Kyoto Protocol Targets for OECD Countries</td>
</tr>
<tr>
<td>095</td>
<td>The Kyoto Protocol: Implications of Emissions Trading Scenarios</td>
</tr>
<tr>
<td>101</td>
<td>Impacts of Oil Sanctions in World Markets</td>
</tr>
<tr>
<td>104</td>
<td>Country Impacts of Multilateral Oil Sanctions and the Conduct of U.S. Foreign Policy</td>
</tr>
<tr>
<td>104</td>
<td>Emissions and Vehicle Performance with Lower RVP Fuels</td>
</tr>
<tr>
<td>106</td>
<td>The Feasibility of “No Cost” Efforts To Reduce Carbon Emissions in the United States</td>
</tr>
<tr>
<td>108</td>
<td>The EPACML Model: Analysis of Critical Components and Finite Source Methodology</td>
</tr>
<tr>
<td>109</td>
<td>Environmental Fate and Attenuation of Gasoline in the Subsurface</td>
</tr>
<tr>
<td>110</td>
<td>Estimation of Aromatic Hydrocarbon Emissions from Glycol Dehydration Units Using a Process Simulation Model</td>
</tr>
<tr>
<td>111</td>
<td>Estimation of Incremental Benzene Exposure Associated with Seven Bulk Gasoline Storage Facilities in North Carolina</td>
</tr>
<tr>
<td>140</td>
<td>Global Emissions of Methane from Petroleum Sources</td>
</tr>
</tbody>
</table>
Publications by Number

<table>
<thead>
<tr>
<th>Pub Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPMS Ch. 5.5</td>
<td>Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems</td>
<td>2nd</td>
<td>2005</td>
<td>H50502</td>
<td>$72.00</td>
<td>55</td>
</tr>
<tr>
<td>MPMS Ch. 5.5</td>
<td>Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish</td>
<td>2nd</td>
<td>2005</td>
<td>H50502SP</td>
<td>$72.00</td>
<td>55, 174</td>
</tr>
<tr>
<td>MPMS Ch. 5.6</td>
<td>Measurement of Liquid Hydrocarbons by Coriolis Meters</td>
<td>1st</td>
<td>2002</td>
<td>H50601</td>
<td>$143.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 5.6</td>
<td>Measurement of Liquid Hydrocarbons by Coriolis Meters—Spanish</td>
<td>1st</td>
<td>2002</td>
<td>H50601S</td>
<td>$143.00</td>
<td>56, 174</td>
</tr>
<tr>
<td>MPMS Ch. 5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters</td>
<td>2nd</td>
<td>2011</td>
<td>H50820</td>
<td>$89.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish</td>
<td>2nd</td>
<td>2011</td>
<td>H50820SP</td>
<td>$89.00</td>
<td>56, 174</td>
</tr>
<tr>
<td>MPMS Ch. 6.1</td>
<td>Lease Automatic Custody Transfer (LACT) Systems</td>
<td>2nd</td>
<td>1991</td>
<td>H30121</td>
<td>$62.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 6.2</td>
<td>Loading Rack Metering Systems</td>
<td>3rd</td>
<td>2004</td>
<td>H60203</td>
<td>$81.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 6.2</td>
<td>Loading Rack Metering Systems—Spanish</td>
<td>3rd</td>
<td>2004</td>
<td>H60203S</td>
<td>$81.00</td>
<td>56, 175</td>
</tr>
<tr>
<td>MPMS Ch. 6.5</td>
<td>Metering Systems for Loading and Unloading Marine Bulk Carriers</td>
<td>2nd</td>
<td>1991</td>
<td>H30125</td>
<td>$67.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 6.6</td>
<td>Pipeline Metering Systems</td>
<td>2nd</td>
<td>1991</td>
<td>H30126</td>
<td>$67.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 6.7</td>
<td>Metering Viscous Hydrocarbons</td>
<td>2nd</td>
<td>1991</td>
<td>H30127</td>
<td>$67.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 7.1</td>
<td>Liquid-in-Glass Thermometers</td>
<td>2nd</td>
<td>2017</td>
<td>H70102</td>
<td>$113.00</td>
<td>56</td>
</tr>
<tr>
<td>MPMS Ch. 7.2</td>
<td>Portable Electronic Thermometers</td>
<td>3rd</td>
<td>2018</td>
<td>H70203</td>
<td>$110.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 7.3</td>
<td>Fixed Automatic Tank Temperature Systems</td>
<td>2nd</td>
<td>2011</td>
<td>H70302</td>
<td>$85.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 7.3</td>
<td>Fixed Automatic Tank Temperature Systems—Spanish</td>
<td>2nd</td>
<td>2011</td>
<td>H70302SP</td>
<td>$85.00</td>
<td>57, 175</td>
</tr>
<tr>
<td>MPMS Ch. 7.4</td>
<td>Dynamic Temperature Measurement</td>
<td>2nd</td>
<td>2018</td>
<td>H70402</td>
<td>$103.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 7.5/ISO</td>
<td>Automatic Tank Temperature Measurement Onboard Marine Vessels Carrying Refrigerated Hydrocarbon and Chemical Gas Fluids</td>
<td>1st</td>
<td>2014</td>
<td>H70501</td>
<td>$98.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 8.1</td>
<td>Standard Practice for Manual Sampling of Petroleum and Petroleum Products</td>
<td>4th</td>
<td>2013</td>
<td>H80104</td>
<td>$124.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 8.1</td>
<td>Standard Practice for Manual Sampling of Petroleum and Petroleum Products—Spanish</td>
<td>4th</td>
<td>2013</td>
<td>H80104S</td>
<td>$124.00</td>
<td>57, 175</td>
</tr>
<tr>
<td>MPMS Ch. 8.2</td>
<td>Standard Practice for Automatic Sampling of Petroleum and Petroleum Products</td>
<td>4th</td>
<td>2016</td>
<td>H80204</td>
<td>$73.00</td>
<td>57</td>
</tr>
<tr>
<td>MPMS Ch. 8.3</td>
<td>Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products</td>
<td>1st</td>
<td>1995</td>
<td>H80301</td>
<td>$92.00</td>
<td>58</td>
</tr>
<tr>
<td>MPMS Ch. 8.3</td>
<td>Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products—Spanish</td>
<td>1st</td>
<td>1995</td>
<td>H80301SP</td>
<td>$92.00</td>
<td>58, 175</td>
</tr>
<tr>
<td>MPMS Ch. 8.4</td>
<td>Standard Practice for Sampling and Handling of Fuels for Volatility Measurement</td>
<td>4th</td>
<td>2017</td>
<td>H80404</td>
<td>$47.00</td>
<td>58</td>
</tr>
<tr>
<td>MPMS Ch. 8.5</td>
<td>Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils, Condensates, and Liquid Petroleum Products</td>
<td>1st</td>
<td>2015</td>
<td>H80501</td>
<td>$52.00</td>
<td>58</td>
</tr>
<tr>
<td>MPMS Ch. 8.5</td>
<td>Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils, Condensates, and Liquid Petroleum Products—Spanish</td>
<td>1st</td>
<td>2015</td>
<td>H80501S</td>
<td>$52.00</td>
<td>58, 175</td>
</tr>
<tr>
<td>MPMS Ch. 9.1</td>
<td>Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method</td>
<td>3rd</td>
<td>2012</td>
<td>H90013</td>
<td>$42.00</td>
<td>58</td>
</tr>
<tr>
<td>MPMS Ch. 9.2</td>
<td>Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure Hydrometer</td>
<td>3rd</td>
<td>2012</td>
<td>H90023</td>
<td>$42.00</td>
<td>58</td>
</tr>
<tr>
<td>MPMS Ch. 9.3</td>
<td>Standard Test Method for Density, Relative Density, and API Gravity of Crude Petroleum and Liquid Petroleum Products by Thermohydrometer Method</td>
<td>3rd</td>
<td>2012</td>
<td>H90303</td>
<td>$42.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 9.4</td>
<td>Continuous Density Measurement Under Dynamic (Flowing) Conditions</td>
<td>1st</td>
<td>2018</td>
<td>H90404</td>
<td>$160.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.1</td>
<td>Standard Test Method for Sediment in Crude Oils and Fuel Oils by the Extraction Method</td>
<td>3rd</td>
<td>2007</td>
<td>H10013</td>
<td>$40.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.2</td>
<td>Standard Test Method of Water in Petroleum Products and Bituminous Materials by Distillation</td>
<td>4th</td>
<td>2016</td>
<td>H100204</td>
<td>$52.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.3</td>
<td>Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure)</td>
<td>4th</td>
<td>2013</td>
<td>H100304</td>
<td>$52.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.4</td>
<td>Determination of Water and/or Sediment in Crude Oil by the Centrifuge Method (Field Procedure)</td>
<td>4th</td>
<td>2013</td>
<td>H100404</td>
<td>$88.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.5</td>
<td>Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation</td>
<td>5th</td>
<td>2013</td>
<td>H100505</td>
<td>$42.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.6</td>
<td>Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)</td>
<td>5th</td>
<td>2013</td>
<td>H100605</td>
<td>$42.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.7</td>
<td>Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration</td>
<td>2nd</td>
<td>2002</td>
<td>H100702</td>
<td>$40.00</td>
<td>59</td>
</tr>
<tr>
<td>MPMS Ch. 10.8</td>
<td>Standard Test Method for Sediment in Crude Oil by Membrane Filtration</td>
<td>2nd</td>
<td>2005</td>
<td>H100802</td>
<td>$40.00</td>
<td>60</td>
</tr>
<tr>
<td>MPMS Ch. 10.9</td>
<td>Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration</td>
<td>3rd</td>
<td>2013</td>
<td>H100903</td>
<td>$42.00</td>
<td>60, 175</td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Add-In Program for Microsoft® Excel See Listing</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Dynamic Link Library (DLL) See Listing</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Source Code See Listing</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Source Code, DLL & XL Add-In—Combined See Listing</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Standard Document and API 11.1 VCF Application—Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils</td>
<td>2004</td>
<td></td>
<td>H11013</td>
<td>See Listing</td>
<td>60</td>
</tr>
<tr>
<td>MPMS Ch. 11.2</td>
<td>Data File of Chapters 11.2.2 and 11.2.2M</td>
<td>1st</td>
<td>1984</td>
<td>H27307</td>
<td>$305.00</td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.2</td>
<td>Compressibility Factors for Hydrocarbons: 0.350–0.637 Relative Density (60 °F/60 °F) and –50 °F to 140 °F Metering Temperature</td>
<td>2nd</td>
<td>1986</td>
<td>H27307</td>
<td>$176.00</td>
<td>61</td>
</tr>
<tr>
<td>MPMS Ch. 11.2</td>
<td>Compressibility Factors for Hydrocarbons: 350–637 Kilograms per Cubic Meter Density (15 °C) and –46 °C to 60 °C Metering Temperature</td>
<td>1st</td>
<td>1986</td>
<td>H27309</td>
<td>$176.00</td>
<td>61</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.2.4</td>
<td>Temperature Correction for the Volume of NGL and LPG—Tables 23E, 24E, 53E, 54E, 59E, 60E</td>
<td>1st</td>
<td>2007</td>
<td>H1102041</td>
<td>$185.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.2.5</td>
<td>A Simplified Vapor Pressure Correlation for Commercial NGLs</td>
<td>1st</td>
<td>2007</td>
<td>H1102051</td>
<td>$93.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.3.2.1</td>
<td>Ethylene Density</td>
<td>2nd</td>
<td>2013</td>
<td>H1132102</td>
<td>$62.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.3.3</td>
<td>Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol Density and Volume Correction Factors</td>
<td>2nd</td>
<td>2015</td>
<td>H1103032</td>
<td>$149.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.3.3.2</td>
<td>Propane Compressibility</td>
<td>1974</td>
<td></td>
<td>H25656</td>
<td>$305.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.4.1</td>
<td>Properties of Reference Materials, Part 1—Density of Water and Water Volumetric Correction Factors for Water Calibration of Volumetric Probes</td>
<td>2nd</td>
<td>2018</td>
<td>H11412</td>
<td>$77.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 11.5, Parts 1 to 3</td>
<td>Density/Weight/Volume Intraconversion</td>
<td>1st</td>
<td>2009</td>
<td>H1105CD</td>
<td>$255.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.1.1</td>
<td>Calculation of Static Petroleum Quantities, Part 1—Upright Cylindrical Tanks and Marine Vessels</td>
<td>3rd</td>
<td>2012</td>
<td>H1201013</td>
<td>$117.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.1.1</td>
<td>Calculation of Static Petroleum Quantities, Part 1—Upright Cylindrical Tanks and Marine Vessels—Spanish</td>
<td>3rd</td>
<td>2012</td>
<td>H1201013SP</td>
<td>$117.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.1.2</td>
<td>Calculation of Static Petroleum Quantities, Part 2—Calculation Procedures for Tank Cars</td>
<td>2nd</td>
<td>2018</td>
<td>H12122</td>
<td>$122.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.2.1</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 1—Introduction</td>
<td>2nd</td>
<td>1995</td>
<td>H12021</td>
<td>$112.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.2.2</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 2—Measurement Tickets</td>
<td>3rd</td>
<td>2003</td>
<td>H12223</td>
<td>$104.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.2.3</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 3—Proving Reports</td>
<td>1st</td>
<td>1998</td>
<td>H12023</td>
<td>$123.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.2.4</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 4—Calculation of Base Prover Volumes by Waterdraw Method</td>
<td>1st</td>
<td>1997</td>
<td>H12024</td>
<td>$126.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.2.5</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 5—Base Prover Volume Using Master Meter Method</td>
<td>1st</td>
<td>2001</td>
<td>H12025</td>
<td>$175.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 12.3</td>
<td>Calculation of Volumetric Shrinkage from Blending Light Hydrocarbons with Crude Oils</td>
<td>1st</td>
<td>1996</td>
<td>H12031</td>
<td>$92.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 13.2</td>
<td>Methods of Evaluating Meter Proving Data</td>
<td>2nd</td>
<td>2018</td>
<td>H13022</td>
<td>$100.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 13.3</td>
<td>Measurement Uncertainty</td>
<td>2nd</td>
<td>2017</td>
<td>H130302</td>
<td>$116.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.1</td>
<td>Collecting and Handling of Natural Gas Samples for Custody Transfer</td>
<td>7th</td>
<td>2016</td>
<td>H140107</td>
<td>$215.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.1</td>
<td>Measurement of Flow to Flares</td>
<td>1st</td>
<td>2007</td>
<td>H140101</td>
<td>$110.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.3.1</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric Square-Edged Orifice Meters, Part 1: General Equations and Uncertainty Guidelines</td>
<td>4th</td>
<td>2012</td>
<td>H1403014</td>
<td>$186.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.3.2</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 2: Specification and Installation Requirements</td>
<td>5th</td>
<td>2016</td>
<td>H1403025</td>
<td>$194.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.3.3</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 3: Natural Gas Applications</td>
<td>4th</td>
<td>2013</td>
<td>H1403034</td>
<td>$227.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.3.4</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 4: Background, Development, Implementation Procedures and Subroutine Documentation</td>
<td>3rd</td>
<td>1992</td>
<td>H130354</td>
<td>$169.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.4</td>
<td>Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes</td>
<td>2nd</td>
<td>2017</td>
<td>H140402</td>
<td>$67.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.5</td>
<td>Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer</td>
<td>3rd</td>
<td>2009</td>
<td>H140503</td>
<td>$75.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.7</td>
<td>Mass Measurement of Natural Gas Liquids and Other Hydrocarbons</td>
<td>5th</td>
<td>2018</td>
<td>H140705</td>
<td>$73.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.9</td>
<td>Measurement of Natural Gas by Coriolis Meter</td>
<td>2nd</td>
<td>2013</td>
<td>H140105</td>
<td>See Listing</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 14.12</td>
<td>Measurement of Gas by Vortex Meters</td>
<td>1st</td>
<td>2017</td>
<td>H140121</td>
<td>$89.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 15</td>
<td>Guidelines for the Use of the International System of Units (SI) in the Petroleum and Allied Industries</td>
<td>3rd</td>
<td>2001</td>
<td>H15003</td>
<td>$118.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 16.2</td>
<td>Mass Measurement of Liquid Hydrocarbons in Vertical Cylindrical Storage Tanks by Hydrostatic Tank Gauging</td>
<td>1st</td>
<td>1994</td>
<td>H16021</td>
<td>$100.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.1</td>
<td>Guidelines for Marine Inspection</td>
<td>6th</td>
<td>2014</td>
<td>H170106</td>
<td>$155.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.1</td>
<td>Guidelines for Marine Inspection—Spanish</td>
<td>6th</td>
<td>2014</td>
<td>H170106S</td>
<td>$155.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.10.1/ISO 10976:2012</td>
<td>Measurement of Cargoes On Board Marine Gas Carriers, Part 1—Liquefied Natural Gas</td>
<td>1st</td>
<td>2014</td>
<td>H171011</td>
<td>$155.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.10.2</td>
<td>Measurement of Cargoes On Board Marine Gas Carriers, Part 2—Liquefied Petroleum and Chemical Gases</td>
<td>2nd</td>
<td>2016</td>
<td>H171022</td>
<td>$155.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.11</td>
<td>Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment</td>
<td>2nd</td>
<td>2016</td>
<td>H170112</td>
<td>$111.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.11</td>
<td>Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment—Spanish</td>
<td>2nd</td>
<td>2016</td>
<td>H170125</td>
<td>$111.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.12</td>
<td>Procedures for Bulk Liquid Chemical Cargo Inspections</td>
<td>2nd</td>
<td>2015</td>
<td>H170122</td>
<td>$168.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.12</td>
<td>Procedures for Bulk Liquid Chemical Cargo Inspections—Spanish</td>
<td>2nd</td>
<td>2015</td>
<td>H170122S</td>
<td>$168.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.2</td>
<td>Measurement of Cargoes On Board Tank Vessels</td>
<td>2nd</td>
<td>1999</td>
<td>H17022</td>
<td>$136.00</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.2</td>
<td>Measurement of Cargoes On Board Tank Vessels—Spanish</td>
<td>2nd</td>
<td>1999</td>
<td>H1702SP</td>
<td>$136.00</td>
</tr>
</tbody>
</table>
Publications by Number

<table>
<thead>
<tr>
<th>Pub</th>
<th>Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPMS Ch. 21.1</td>
<td>Flow Measurement Using Electronic Metering Systems—Spanish</td>
<td>2nd 2016</td>
<td>H170302S</td>
<td>$124.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)</td>
<td>2nd 2016</td>
<td>H170402</td>
<td>$113.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)—Spanish</td>
<td>2nd 2016</td>
<td>H170402S</td>
<td>$113.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.5</td>
<td>Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities</td>
<td>3rd 2012</td>
<td>H170503</td>
<td>$149.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.5</td>
<td>Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities—Spanish</td>
<td>3rd 2012</td>
<td>H170503SP</td>
<td>$149.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.6</td>
<td>Guidelines for Determining Fullness of Pipelines Between Vessels and Shore Tanks</td>
<td>2nd 2014</td>
<td>H170602</td>
<td>$113.00</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.8</td>
<td>Guidelines for Pre-Loading Inspection of Marine Vessel Cargo tanks and Their Cargo-Handling Systems—Spanish</td>
<td>2nd 2016</td>
<td>H170802S</td>
<td>$111.00</td>
<td>67, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.9</td>
<td>Vessel Experience Factor (VEF)</td>
<td>2nd 2012</td>
<td>H170902</td>
<td>$170.00</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.9</td>
<td>Vessel Experience Factor (VEF)—Spanish</td>
<td>2nd 2012</td>
<td>H170902SP</td>
<td>$170.00</td>
<td>68, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.1</td>
<td>Measurement Procedures for Crude Oil Gathered from Lease Tanks by Truck</td>
<td>3rd 2018</td>
<td>H18013</td>
<td>$125.00</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.2</td>
<td>Custody Transfer of Crude Oil from Lease Tanks Using Alternative Measurement Methods</td>
<td>1st 2016</td>
<td>H180201</td>
<td>$129.00</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.1</td>
<td>Evaporative Loss from Fixed-Roof Tanks</td>
<td>5th 2017</td>
<td>H190105S</td>
<td>$160.00</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.10</td>
<td>Documentation File for API Manual of Petroleum Measurement Standards Chapter 19.1—Evaporative Loss from Fixed-Roof Tanks</td>
<td>1st 1993</td>
<td>H30555</td>
<td>$176.00</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.2</td>
<td>Evaporative Loss from Floating-Roof Tanks</td>
<td>3rd 2012</td>
<td>H190203</td>
<td>$181.00</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part A</td>
<td>Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss Factors for External Floating-Roof Tanks</td>
<td>1st 1997</td>
<td>H1903A</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part B</td>
<td>Air Concentration Test Method—Rim-Seat Loss Factors for Floating-Roof Tanks</td>
<td>1st 1997</td>
<td>H1903B</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part C</td>
<td>Weight Loss Test Method for the Measurement of Rim-Seal Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st 1998</td>
<td>H1903C</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part D</td>
<td>Fugitive Emission Test Method for the Measurement of Deck-Seam Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st 2001</td>
<td>H1903D</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part E</td>
<td>Weight Loss Test Method for the Measurement of Deck-Fitting Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st 1997</td>
<td>H1903E</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.3, Part H</td>
<td>Tank Seals and Fittings Certification—Administration</td>
<td>1st 1998</td>
<td>H1903H</td>
<td>$126.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.4</td>
<td>Evaporative Loss Reference Information and Speciation Methodology</td>
<td>3rd 2012</td>
<td>H190403</td>
<td>$202.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.5</td>
<td>Atmospheric Hydrocarbon Emissions from Marine Vessel Transfer Operations</td>
<td>1st 2009</td>
<td>H190501</td>
<td>$128.00</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 19.6.1</td>
<td>Evaporative Loss from Storage Tank Floating-Roof Landings</td>
<td>1st 2017</td>
<td>H190601</td>
<td>$129.00</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 20.1</td>
<td>Allocation Measurement</td>
<td>1st 1993</td>
<td>H30701</td>
<td>$112.00</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 20.2</td>
<td>Production Allocation Measurement Using Single-Phase Devices</td>
<td>1st 2016</td>
<td>H200201</td>
<td>$128.00</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 20.2</td>
<td>Production Allocation Measurement Using Single-Phase Devices—Spanish</td>
<td>1st 2016</td>
<td>H200201S</td>
<td>$128.00</td>
<td>72, 176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 20.3</td>
<td>Measurement of Multiphase Flow</td>
<td>1st 2013</td>
<td>H200301</td>
<td>$185.00</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 20.5</td>
<td>Recommended Practice for Application of Production Well Testing in Measurement and Allocation</td>
<td>1st 2017</td>
<td>H200501</td>
<td>$192.00</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.1</td>
<td>Flow Measurement Using Electronic Metering Systems—Electronic Gas Measurement</td>
<td>2nd 2013</td>
<td>H210102</td>
<td>$170.00</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.2</td>
<td>Electronic Liquid Volume Measurement Using Positive Displacement and Turbine Meters</td>
<td>1st 1998</td>
<td>H2101</td>
<td>$197.00</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 21.2A1</td>
<td>Addendum 1 to Flow Measurement Using Electronic Metering Systems, Inferred Mass</td>
<td>1st 2000</td>
<td>H2102A</td>
<td>$62.00</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 22.1</td>
<td>General Guidelines for Developing Testing Protocols for Devices Used in the Measurement of Hydrocarbon Fluids</td>
<td>2nd 2015</td>
<td>H220102</td>
<td>$90.00</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 22.2</td>
<td>Testing Protocols—Differential Pressure Flow Measurement Devices</td>
<td>2nd 2017</td>
<td>H220202</td>
<td>$107.00</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 22.3</td>
<td>Testing Protocol for Flare Gas Metering</td>
<td>1st 2015</td>
<td>H220301</td>
<td>$101.00</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 22.4</td>
<td>Testing Protocol for Pressure, Differential Pressure, and Temperature Measuring Devices</td>
<td>1st 2018</td>
<td>H220401</td>
<td>$77.00</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 22.6</td>
<td>Testing Protocol for Gas Chromatographs</td>
<td>1st 2015</td>
<td>H220601</td>
<td>$101.00</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 23.1</td>
<td>Reconciliation of Liquid Pipeline Quantities</td>
<td>1st 2016</td>
<td>H230101</td>
<td>$98.00</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull E1</td>
<td>Generic Hazardous Chemical Category List and Inventory for the Oil andGas Exploration and Production Industry</td>
<td>2nd 1990</td>
<td>G11000</td>
<td>$146.00</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull E2</td>
<td>Management of Naturally Occurring Radioactive Materials (NORM) in Oil and Gas Production Operations</td>
<td>2nd 2003</td>
<td>GE2002</td>
<td>$126.00</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull E3</td>
<td>Wellbore Plugging and Abandonment Practices</td>
<td>2nd 2018</td>
<td>G11008</td>
<td>$142.00</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API E5</td>
<td>Environmental Guidance Document: Waste Management in Exploration and Production Operations</td>
<td>2nd 1997</td>
<td>GE5002</td>
<td>$129.00</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API OSRC</td>
<td>Proceedings of the 2014 Offshore Structural Reliability Conference</td>
<td>1st 2015</td>
<td>GOSRC01</td>
<td>Free</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Spec</td>
<td>Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Chinese</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109C</td>
<td>$87.00</td>
<td>1, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Portuguese</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109P</td>
<td>$124.00</td>
<td>1, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Russian</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109R</td>
<td>$99.00</td>
<td>1, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Spanish</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109SP</td>
<td>$124.00</td>
<td>1, 174</td>
</tr>
<tr>
<td>Spec</td>
<td>Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201P</td>
<td>$82.00</td>
<td>1, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Portuguese</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201R</td>
<td>$66.00</td>
<td>1, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Spanish</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201SP</td>
<td>$82.00</td>
<td>2, 174</td>
</tr>
<tr>
<td>Spec</td>
<td>Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Russian</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201C</td>
<td>$58.00</td>
<td>1, 167</td>
</tr>
<tr>
<td>RP</td>
<td>T-1</td>
<td>Creating Orientation Programs for Personnel Going Offshore</td>
<td>5th</td>
<td>2016</td>
<td>GT1005</td>
<td>$67.00</td>
<td>45</td>
</tr>
<tr>
<td>RP</td>
<td>T-2</td>
<td>Recommended Practice for Qualification Programs for Offshore Production Personnel Who Work with Safety Devices</td>
<td>2nd</td>
<td>2001</td>
<td>GT2002</td>
<td>$61.00</td>
<td>45</td>
</tr>
<tr>
<td>RP</td>
<td>T-4</td>
<td>Training of Offshore Personnel in Nonoperating Emergencies</td>
<td>2nd</td>
<td>1995</td>
<td>GT4002</td>
<td>$61.00</td>
<td>45</td>
</tr>
<tr>
<td>RP</td>
<td>T-6</td>
<td>Recommended Practice for Training and Qualification of Personnel in Well Control Equipment and Techniques for Wireline Operations on Offshore Locations</td>
<td>1st</td>
<td>2002</td>
<td>GT6001</td>
<td>$61.00</td>
<td>45</td>
</tr>
<tr>
<td>RP</td>
<td>T-7</td>
<td>Training of Personnel in Rescue of Persons in Water</td>
<td>2nd</td>
<td>1995</td>
<td>GT7002</td>
<td>$59.00</td>
<td>45</td>
</tr>
<tr>
<td>RS</td>
<td>032</td>
<td>An Empirical Analysis of the Determinants of Petroleum Drilling</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>051</td>
<td>The Use of Economic Incentive Mechanisms in Environmental Management</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>053</td>
<td>Reducing Emissions from Older Vehicles</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>056</td>
<td>Economics of Alternative Fuel Use: Compressed Natural Gas as a Vehicle Fuel</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>067</td>
<td>The Cost Effectiveness of Vehicle Inspection and Maintenance Programs</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>DP</td>
<td>074</td>
<td>Current Status of Watershed Management in the United States</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>074</td>
<td>Air Emissions Banking and Trading: Analysis and Implications for Wetland Mitigation Banking</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>RS</td>
<td>075</td>
<td>Improving Cost-Effectiveness Estimation: A Reassessment of Control Options to Reduce Ozone Precursor Emissions</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>RS</td>
<td>076</td>
<td>Paying for Automobile Insurance at the Pump: A Critical Review</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>DP</td>
<td>077</td>
<td>Alternative Wetland Mitigation Programs</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>DP</td>
<td>081</td>
<td>Are We Running Out of Oil?</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>082</td>
<td>Superfund Liability and Taxes: Petroleum Industry Shares in Their Historical Context</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>DP</td>
<td>084R</td>
<td>Analysis of the Costs and Benefits of Regulations: Review of Historical Experience</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>DP</td>
<td>086</td>
<td>Opposition to OCS Development, Historical Context and Economic Considerations</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>DP</td>
<td>088</td>
<td>Restoring Natural Resources: Legal Background and Economic Analysis</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
</tr>
<tr>
<td>RS</td>
<td>094</td>
<td>How Unilateral Economic Sanctions Affect the U.S. Economy: An Inter-Industry Analysis</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
</tr>
<tr>
<td>RP</td>
<td>1FSC</td>
<td>Facilities Systems Completion Planning and Execution</td>
<td>1st</td>
<td>2013</td>
<td>G1FSC01</td>
<td>$62.00</td>
<td>2</td>
</tr>
<tr>
<td>TR</td>
<td>1PER15K-1</td>
<td>Protocol for Verification and Validation of High-Pressure High-Temperature Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G1PER15K11</td>
<td>$151.00</td>
<td>2</td>
</tr>
<tr>
<td>Spec</td>
<td>2B</td>
<td>Specification for the Fabrication of Structural Steel Pipe</td>
<td>6th</td>
<td>2001</td>
<td>G02B06</td>
<td>$85.00</td>
<td>3</td>
</tr>
<tr>
<td>Spec</td>
<td>2B</td>
<td>Specification for the Fabrication of Structural Steel Pipe—Chinese</td>
<td>6th</td>
<td>2001</td>
<td>G02B06C</td>
<td>$61.00</td>
<td>3, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>2C</td>
<td>Offshore Pedestal-Mounted Cranes</td>
<td>7th</td>
<td>2012</td>
<td>G02C07</td>
<td>$147.00</td>
<td>3</td>
</tr>
<tr>
<td>Spec</td>
<td>2C</td>
<td>Offshore Pedestal-Mounted Cranes—Chinese</td>
<td>7th</td>
<td>2012</td>
<td>G02C07C</td>
<td>$104.00</td>
<td>3, 167</td>
</tr>
<tr>
<td>Std</td>
<td>2CCU</td>
<td>Offshore Cargo Carrying Units</td>
<td>1st</td>
<td>2017</td>
<td>G2CC0U1</td>
<td>$108.00</td>
<td>27</td>
</tr>
<tr>
<td>RP</td>
<td>2D</td>
<td>Operation and Maintenance of Offshore Cranes</td>
<td>7th</td>
<td>2014</td>
<td>G02D07</td>
<td>$149.00</td>
<td>3</td>
</tr>
<tr>
<td>RP</td>
<td>2EQ/ISO 19901-2:2004</td>
<td>Seismic Design Procedures and Criteria for Offshore Structures</td>
<td>1st</td>
<td>2014</td>
<td>GGEQ01</td>
<td>$129.00</td>
<td>3</td>
</tr>
<tr>
<td>Spec</td>
<td>2F</td>
<td>Specification for Mooring Chain</td>
<td>6th</td>
<td>1997</td>
<td>G02F06</td>
<td>$92.00</td>
<td>3</td>
</tr>
<tr>
<td>Spec</td>
<td>2F</td>
<td>Specification for Mooring Chain—Chinese</td>
<td>6th</td>
<td>1997</td>
<td>G02F06C</td>
<td>$65.00</td>
<td>3, 167</td>
</tr>
<tr>
<td>RP</td>
<td>2FB</td>
<td>Recommended Practice for Design of Offshore Facilities Against Fire and Blast Loading</td>
<td>1st</td>
<td>2006</td>
<td>G2FB01</td>
<td>$162.00</td>
<td>4</td>
</tr>
<tr>
<td>RP</td>
<td>2FPS</td>
<td>Planning, Designing, and Constructing Floating Production Systems</td>
<td>2nd</td>
<td>2011</td>
<td>G2FPS02</td>
<td>$192.00</td>
<td>4</td>
</tr>
</tbody>
</table>

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 2GEO/ISO 19901-4:2003</td>
<td>Geotechnical and Foundation Design Considerations</td>
<td>1st</td>
<td>2011</td>
<td>GG2GEO01</td>
<td>$159.00</td>
<td>4</td>
</tr>
<tr>
<td>Spec 2H</td>
<td>Specification for Carbon Manganese Steel Plate for Offshore Structures</td>
<td>9th</td>
<td>2006</td>
<td>G2H09</td>
<td>$97.00</td>
<td>4</td>
</tr>
<tr>
<td>Bull 2HINS</td>
<td>Guidance for Post-Hurricane Structural Inspection of Offshore Structures</td>
<td>1st</td>
<td>2009</td>
<td>G2HINS01</td>
<td>$85.00</td>
<td>4</td>
</tr>
<tr>
<td>RP 2I</td>
<td>In-Service Inspection of Mooring Hardware for Floating Structures</td>
<td>3rd</td>
<td>2008</td>
<td>G02I03</td>
<td>$152.00</td>
<td>4</td>
</tr>
<tr>
<td>RP 2MET/ISO 19901-1:2006</td>
<td>Deprivation of Metocean Design and Operating Conditions</td>
<td>1st</td>
<td>2014</td>
<td>GG2MET01</td>
<td>$206.00</td>
<td>4</td>
</tr>
<tr>
<td>RP 2MOP/ISO 19901-6:2009</td>
<td>Marine Operations</td>
<td>1st</td>
<td>2010</td>
<td>GG2MOP1</td>
<td>$250.00</td>
<td>5</td>
</tr>
<tr>
<td>Spec 2MT1</td>
<td>Specification for Carbon Manganese Steel Plate with Improved Toughness for Offshore Structures</td>
<td>2nd</td>
<td>2001</td>
<td>G2MT12</td>
<td>$85.00</td>
<td>5</td>
</tr>
<tr>
<td>Spec 2MT2</td>
<td>Rolled Shapes with Improved Notch Toughness</td>
<td>1st</td>
<td>2002</td>
<td>G2MT21</td>
<td>$81.00</td>
<td>5</td>
</tr>
<tr>
<td>RP 2N/ISO 19901-6:2009</td>
<td>Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions</td>
<td>3rd</td>
<td>2015</td>
<td>G02N03</td>
<td>$205.00</td>
<td>5</td>
</tr>
<tr>
<td>Std 2RD</td>
<td>Dynamic Risers for Floating Production Systems</td>
<td>2nd</td>
<td>2013</td>
<td>G2RD02</td>
<td>$252.00</td>
<td>5</td>
</tr>
<tr>
<td>Bull 2S</td>
<td>Design of Windlass Wildcats for Floating Offshore Structures</td>
<td>2nd</td>
<td>1995</td>
<td>G2S02</td>
<td>$78.00</td>
<td>5</td>
</tr>
<tr>
<td>Spec 2SC</td>
<td>Manufacture of Structural Steel Castings for Primary Offshore Applications</td>
<td>1st</td>
<td>2014</td>
<td>G2SC01</td>
<td>$117.00</td>
<td>5</td>
</tr>
<tr>
<td>Spec 2SF</td>
<td>Manufacture of Structural Steel Forgings for Primary Offshore Applications</td>
<td>1st</td>
<td>2013</td>
<td>G2SF01</td>
<td>$88.00</td>
<td>6</td>
</tr>
<tr>
<td>RP 2SIM</td>
<td>Structural Integrity Management of Fixed Offshore Structures</td>
<td>1st</td>
<td>2014</td>
<td>G2SIM01</td>
<td>$175.00</td>
<td>6</td>
</tr>
<tr>
<td>RP 2SK</td>
<td>Design and Analysis of Stationkeeping Systems for Floating Structures</td>
<td>2nd</td>
<td>2014</td>
<td>G2SK02</td>
<td>$191.00</td>
<td>6</td>
</tr>
<tr>
<td>Bull 2VD</td>
<td>Guidelines for Tie-Downs on Offshore Production Facilities for Hurricane Season</td>
<td>1st</td>
<td>2008</td>
<td>G2VD01</td>
<td>$53.00</td>
<td>6</td>
</tr>
<tr>
<td>Bull 2V</td>
<td>Design of Flat Plate Structures</td>
<td>3rd</td>
<td>2004</td>
<td>G2V03</td>
<td>$197.00</td>
<td>6</td>
</tr>
<tr>
<td>Spec 2W</td>
<td>Specification for Steel Plates for Offshore Structures, Produced by Thermo-Mechanical Control Processing (TMCP)</td>
<td>5th</td>
<td>2006</td>
<td>G2W05</td>
<td>$97.00</td>
<td>6</td>
</tr>
<tr>
<td>Spec 2X</td>
<td>Recommended Practice for Ultrasonic and Magnetic Examination of Offshore Structural</td>
<td>4th</td>
<td>2004</td>
<td>G2X04</td>
<td>$151.00</td>
<td>7</td>
</tr>
<tr>
<td>Spec 2Y</td>
<td>Specification for Steel Plates, Quenched-and-Tempered, for Offshore Structures</td>
<td>5th</td>
<td>2006</td>
<td>G2Y05</td>
<td>$97.00</td>
<td>7</td>
</tr>
<tr>
<td>RP 2Z</td>
<td>Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures</td>
<td>4th</td>
<td>2005</td>
<td>G2Z04</td>
<td>$123.00</td>
<td>7</td>
</tr>
<tr>
<td>RP 2Z</td>
<td>Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures</td>
<td>4th</td>
<td>2005</td>
<td>G2Z04</td>
<td>$123.00</td>
<td>7</td>
</tr>
<tr>
<td>Spec 4F</td>
<td>Specification for Drilling and Well Servicing Structures</td>
<td>4th</td>
<td>2013</td>
<td>G4F04</td>
<td>$118.00</td>
<td>7</td>
</tr>
<tr>
<td>Spec 4G</td>
<td>Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures</td>
<td>4th</td>
<td>2012</td>
<td>G4G04</td>
<td>$119.00</td>
<td>7</td>
</tr>
<tr>
<td>RP 4G</td>
<td>Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures—Russian</td>
<td>4th</td>
<td>2012</td>
<td>G4G04R</td>
<td>$84.00</td>
<td>7,167</td>
</tr>
<tr>
<td>RP 5A3/ISO 13678:2010</td>
<td>Recommended Practice on Thread Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements—Russian</td>
<td>3rd</td>
<td>2009</td>
<td>G5A303R</td>
<td>$119.00</td>
<td>8,170</td>
</tr>
<tr>
<td>RP 5A3/ISO 15463:2003</td>
<td>Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe</td>
<td>7th</td>
<td>2005</td>
<td>G5A507</td>
<td>$162.00</td>
<td>8</td>
</tr>
<tr>
<td>RP 5C1</td>
<td>Recommended Practice for Care and Use of Casing and Tubing</td>
<td>18th</td>
<td>1999</td>
<td>G5C18</td>
<td>$118.00</td>
<td>8</td>
</tr>
<tr>
<td>RP 5C3</td>
<td>Calculating Performance Properties of Pipe Used as Casing or Tubing</td>
<td>7th</td>
<td>2018</td>
<td>G5C307</td>
<td>$234.00</td>
<td>8</td>
</tr>
<tr>
<td>RP 5C5</td>
<td>Procedures for Testing Casing and Tubing Connections</td>
<td>4th</td>
<td>2017</td>
<td>G5C504</td>
<td>$185.00</td>
<td>9</td>
</tr>
<tr>
<td>RP 5C6</td>
<td>Pipe with Welded Connectors</td>
<td>3rd</td>
<td>2018</td>
<td>G5C62</td>
<td>$98.00</td>
<td>9</td>
</tr>
<tr>
<td>RP 5C8</td>
<td>Care, Maintenance, and Inspection of Coiled Tubing</td>
<td>1st</td>
<td>2017</td>
<td>G5C801</td>
<td>$124.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec 5B</td>
<td>Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads</td>
<td>16th</td>
<td>2017</td>
<td>G5B016</td>
<td>$155.00</td>
<td>8</td>
</tr>
<tr>
<td>Spec 5B</td>
<td>Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads—Russian</td>
<td>16th</td>
<td>2017</td>
<td>G5B016R</td>
<td>$124.00</td>
<td>8,170</td>
</tr>
<tr>
<td>RP 5B1</td>
<td>Gauging and Inspection of Casing, Tubing and Line Pipe Threads</td>
<td>5th</td>
<td>1999</td>
<td>G5B105</td>
<td>$146.00</td>
<td>8</td>
</tr>
<tr>
<td>RP 5B1</td>
<td>Gauging and Inspection of Casing, Tubing and Line Pipe Threads—Kazakh</td>
<td>5th</td>
<td>1999</td>
<td>G5B15K</td>
<td>$117.00</td>
<td>8,169</td>
</tr>
<tr>
<td>RP 5B1</td>
<td>Gauging and Inspection of Casing, Tubing and Line Pipe Threads—Russian</td>
<td>5th</td>
<td>1999</td>
<td>G5B15R</td>
<td>$117.00</td>
<td>8,171</td>
</tr>
<tr>
<td>RP 5C1</td>
<td>Recommended Practice for Care and Use of Casing and Tubing</td>
<td>18th</td>
<td>1999</td>
<td>G5C18</td>
<td>$83.00</td>
<td>8,167</td>
</tr>
<tr>
<td>RP 5C3</td>
<td>Calculating Performance Properties of Pipe Used as Casing or Tubing</td>
<td>7th</td>
<td>2018</td>
<td>G5C307</td>
<td>$234.00</td>
<td>8</td>
</tr>
<tr>
<td>RP 5C5</td>
<td>Procedures for Testing Casing and Tubing Connections</td>
<td>4th</td>
<td>2017</td>
<td>G5C504</td>
<td>$185.00</td>
<td>9</td>
</tr>
<tr>
<td>RP 5C6</td>
<td>Pipe with Welded Connectors</td>
<td>3rd</td>
<td>2018</td>
<td>G5C62</td>
<td>$98.00</td>
<td>9</td>
</tr>
<tr>
<td>RP 5C8</td>
<td>Care, Maintenance, and Inspection of Coiled Tubing</td>
<td>1st</td>
<td>2017</td>
<td>G5C801</td>
<td>$124.00</td>
<td>9</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Spec 5CRA/ISO 13680:2008</td>
<td>Specification for Corrosion Resistant Alloy Seamless Tubes for Use as Casing, Tubing and Coupling Stock</td>
<td>1st</td>
<td>2010</td>
<td>G5CRA01</td>
<td>$160.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec 5CT</td>
<td>Casing and Tubing</td>
<td>10th</td>
<td>2018</td>
<td>GCT010</td>
<td>$268.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec 5CT</td>
<td>Casing and Tubing—Russian</td>
<td>10th</td>
<td>2018</td>
<td>G5CT010R</td>
<td>$214.00</td>
<td>9, 171</td>
</tr>
<tr>
<td>Spec 5DP/ISO 11961:2008</td>
<td>Specification for Drill Pipe</td>
<td>1st</td>
<td>2009</td>
<td>G5DP01</td>
<td>$186.00</td>
<td>9</td>
</tr>
<tr>
<td>RP 5EX</td>
<td>Design, Verification, and Application of Solid Expandable Systems</td>
<td>1st</td>
<td>2018</td>
<td>G5EX01</td>
<td>$108.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec 5L</td>
<td>Line Pipe</td>
<td>46th</td>
<td>2018</td>
<td>G5L46</td>
<td>$284.00</td>
<td>9, 171</td>
</tr>
<tr>
<td>Spec 5L</td>
<td>Line Pipe—Russian</td>
<td>46th</td>
<td>2018</td>
<td>G5L46R</td>
<td>$235.00</td>
<td>9, 171</td>
</tr>
<tr>
<td>RP 5L1</td>
<td>Recommended Practice for Railroad Transportation of Line Pipe</td>
<td>7th</td>
<td>2009</td>
<td>G5L107</td>
<td>$61.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L1</td>
<td>Recommended Practice for Railroad Transportation of Line Pipe—Russian</td>
<td>7th</td>
<td>2009</td>
<td>G5L107R</td>
<td>$47.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L2</td>
<td>Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service</td>
<td>4th</td>
<td>2002</td>
<td>G5L204</td>
<td>$85.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L2</td>
<td>Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Chinese</td>
<td>4th</td>
<td>2002</td>
<td>G5L204C</td>
<td>$61.00</td>
<td>10, 167</td>
</tr>
<tr>
<td>RP 5L2</td>
<td>Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Kazakh</td>
<td>4th</td>
<td>2002</td>
<td>G5L204K</td>
<td>$69.00</td>
<td>10, 169</td>
</tr>
<tr>
<td>RP 5L2</td>
<td>Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service—Russian</td>
<td>4th</td>
<td>2002</td>
<td>G5L204R</td>
<td>$69.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L3</td>
<td>Drop-Weight Tear Tests on Line Pipe</td>
<td>4th</td>
<td>2014</td>
<td>G5L304</td>
<td>$98.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L3</td>
<td>Drop-Weight Tear Tests on Line Pipe—Russian</td>
<td>4th</td>
<td>2014</td>
<td>G5L304R</td>
<td>$78.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L7</td>
<td>Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe</td>
<td>2nd</td>
<td>1988</td>
<td>G5L702</td>
<td>$92.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L7</td>
<td>Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe—Russian</td>
<td>2nd</td>
<td>1988</td>
<td>G5L702R</td>
<td>$74.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802</td>
<td>$129.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe—Russian</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802R</td>
<td>$103.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe—Kazakh</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802K</td>
<td>$103.00</td>
<td>10, 169</td>
</tr>
<tr>
<td>RP 5L9</td>
<td>External Fusion Bonded Epoxy Coating of Line Pipe</td>
<td>1st</td>
<td>2001</td>
<td>G5L901</td>
<td>$81.00</td>
<td>10</td>
</tr>
<tr>
<td>RP 5L9</td>
<td>External Fusion Bonded Epoxy Coating of Line Pipe—Russian</td>
<td>1st</td>
<td>2001</td>
<td>G5L901R</td>
<td>$66.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP 5L9</td>
<td>External Fusion Bonded Epoxy Coating of Line Pipe—Kazakh</td>
<td>1st</td>
<td>2001</td>
<td>G5L901K</td>
<td>$66.00</td>
<td>10, 169</td>
</tr>
<tr>
<td>Spec 5LC</td>
<td>CRA Line Pipe</td>
<td>4th</td>
<td>2015</td>
<td>G5LC04</td>
<td>$180.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec 5LCP</td>
<td>Specification on Coiled Line Pipe</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2</td>
<td>$150.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec 5LCP</td>
<td>Specification on Coiled Line Pipe—Chinese</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2C</td>
<td>$106.00</td>
<td>11, 167</td>
</tr>
<tr>
<td>Spec 5LCP</td>
<td>Specification on Coiled Line Pipe—Russian</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2R</td>
<td>$121.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>Spec 5LD</td>
<td>CRA Clad or Lined Steel Pipe</td>
<td>4th</td>
<td>2015</td>
<td>G5LD04</td>
<td>$149.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec 5LD</td>
<td>CRA Clad or Lined Steel Pipe—Russian</td>
<td>4th</td>
<td>2015</td>
<td>G5LD04R</td>
<td>$119.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>RP 5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe</td>
<td>1st</td>
<td>2012</td>
<td>G5LT01</td>
<td>$61.00</td>
<td>11</td>
</tr>
<tr>
<td>RP 5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe—Russian</td>
<td>1st</td>
<td>2012</td>
<td>G5LT01R</td>
<td>$48.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>RP 5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe—Russian</td>
<td>1st</td>
<td>2012</td>
<td>G5LT01C</td>
<td>$43.00</td>
<td>11, 167</td>
</tr>
<tr>
<td>RP 5LW</td>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels</td>
<td>3rd</td>
<td>2009</td>
<td>G5LW03</td>
<td>$61.00</td>
<td>11</td>
</tr>
<tr>
<td>RP 5LW</td>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels—Russian</td>
<td>3rd</td>
<td>2009</td>
<td>G5LW03R</td>
<td>$48.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>RP 5SI</td>
<td>Recommended Practice for Purchaser Representative Surveillance and/or Inspection at the Supplier</td>
<td>1st</td>
<td>2006</td>
<td>G5SI01</td>
<td>$59.00</td>
<td>11</td>
</tr>
<tr>
<td>RP 5SI</td>
<td>Recommended Practice for Purchaser Representative Surveillance and/or Inspection at the Supplier—Russian</td>
<td>1st</td>
<td>2006</td>
<td>G5SI01R</td>
<td>$47.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>Spec 5ST</td>
<td>Specification for Coiled Tubing—U.S. Customary and SI Units</td>
<td>1st</td>
<td>2010</td>
<td>G5ST01</td>
<td>$138.00</td>
<td>12</td>
</tr>
<tr>
<td>Spec 5ST</td>
<td>Specification for Coiled Tubing—U.S. Customary and SI Units—Chinese</td>
<td>1st</td>
<td>2010</td>
<td>G5ST01C</td>
<td>$97.00</td>
<td>12, 167</td>
</tr>
<tr>
<td>Bull 5T1</td>
<td>Imperfection and Defect Terminology</td>
<td>11th</td>
<td>2017</td>
<td>G5T111</td>
<td>$131.00</td>
<td>12</td>
</tr>
<tr>
<td>Bull 5T1</td>
<td>Imperfection and Defect Terminology—Russian</td>
<td>11th</td>
<td>2017</td>
<td>G5T111R</td>
<td>$105.00</td>
<td>12, 171</td>
</tr>
<tr>
<td>TR 5TP</td>
<td>Torque-Position Assembly Guidelines for API Casing and Tubing Connections</td>
<td>1st</td>
<td>2013</td>
<td>G5TP01</td>
<td>$118.00</td>
<td>12</td>
</tr>
<tr>
<td>TR 5TRSR22</td>
<td>Technical Report in SR22 Supplementary Requirements for Enhanced Leak Resistance LTC</td>
<td>1st</td>
<td>2002</td>
<td>G5TRSR22</td>
<td>$91.00</td>
<td>12</td>
</tr>
<tr>
<td>RP 5UE</td>
<td>Recommended Practice for Ultrasonic Evaluation of Pipe Imperfections</td>
<td>2nd</td>
<td>2005</td>
<td>G5UE02</td>
<td>$81.00</td>
<td>12</td>
</tr>
<tr>
<td>Spec 6A</td>
<td>Specification for Wellhead and Tree Equipment</td>
<td>21st</td>
<td>2018</td>
<td>G5AX02</td>
<td>$295.00</td>
<td>12</td>
</tr>
<tr>
<td>Spec 6A</td>
<td>Specification for Wellhead and Tree Equipment—Russian</td>
<td>21st</td>
<td>2018</td>
<td>G5AX02R</td>
<td>$236.00</td>
<td>12, 171</td>
</tr>
<tr>
<td>Std 6ACRA</td>
<td>Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G6ACRA1</td>
<td>$93.00</td>
<td>13</td>
</tr>
<tr>
<td>TR 6AF</td>
<td>Technical Report on Capabilities of API Flanges Under Combinations of Load</td>
<td>3rd</td>
<td>2008</td>
<td>G6AF03</td>
<td>$155.00</td>
<td>13</td>
</tr>
<tr>
<td>TR 6AF</td>
<td>Technical Report on Capabilities of API Flanges Under Combinations of Load—Russian</td>
<td>3rd</td>
<td>2008</td>
<td>G6AF03R</td>
<td>$124.00</td>
<td>13, 171</td>
</tr>
<tr>
<td>TR 6AF1</td>
<td>Technical Report on Temperature Derating of API Flanges Under Combination of Loading</td>
<td>2nd</td>
<td>1998</td>
<td>G6AF1</td>
<td>$162.00</td>
<td>13</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>TR</td>
<td>6AF2</td>
<td>Technical Report on Capabilities of API Integral Flanges Under Combination of Loading—Phase II</td>
<td>5th</td>
<td>2013</td>
<td>G6AF25</td>
<td>$175.00</td>
</tr>
<tr>
<td>TR</td>
<td>6AM</td>
<td>Technical Report on Material Toughness</td>
<td>2nd</td>
<td>1995</td>
<td>G06AM2</td>
<td>$78.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6AV1</td>
<td>Validation of Safety and Shutdown Valves for Sandy Service</td>
<td>3rd</td>
<td>2018</td>
<td>G6AV103</td>
<td>$100.00</td>
</tr>
<tr>
<td>Std</td>
<td>6AV2</td>
<td>Installation, Maintenance and Repair of Surface Safety Valves and Underwater Safety Valves Offshore</td>
<td>1st</td>
<td>2014</td>
<td>G6AV201</td>
<td>$139.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves</td>
<td>24th</td>
<td>2014</td>
<td>G6D024</td>
<td>$155.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves—Chinese</td>
<td>24th</td>
<td>2014</td>
<td>G6D024C</td>
<td>$108.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves—Russian</td>
<td>24th</td>
<td>2014</td>
<td>G6D024R</td>
<td>$124.00</td>
</tr>
<tr>
<td>RP</td>
<td>6DR</td>
<td>Recommended Practice for the Repair and Remanufacture of Pipeline Valves</td>
<td>2nd</td>
<td>2012</td>
<td>G06DR2</td>
<td>$80.00</td>
</tr>
<tr>
<td>RP</td>
<td>6DR</td>
<td>Recommended Practice for the Repair and Remanufacture of Pipeline Valves—Russian</td>
<td>2nd</td>
<td>2012</td>
<td>G06DR2R</td>
<td>$65.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6DSS</td>
<td>Specification for Subsea Pipeline Valves</td>
<td>3rd</td>
<td>2017</td>
<td>G6D053</td>
<td>$170.00</td>
</tr>
<tr>
<td>Std</td>
<td>6D/ISO</td>
<td>Standard for Actuator Sizing and Mounting Kits for Pipeline Valves</td>
<td>1st</td>
<td>2012</td>
<td>G6D0X01</td>
<td>$135.00</td>
</tr>
<tr>
<td>TR</td>
<td>6F1</td>
<td>Technical Report on Performance of API and ANSI End Connections in a Fire Test According to API Specification 6FA</td>
<td>3rd</td>
<td>1999</td>
<td>G06F13</td>
<td>$118.00</td>
</tr>
<tr>
<td>TR</td>
<td>6F2</td>
<td>Technical Report on Fire Resistance Improvements for API Flanges</td>
<td>3rd</td>
<td>1999</td>
<td>G06F23</td>
<td>$112.00</td>
</tr>
<tr>
<td>Std</td>
<td>6FA</td>
<td>Standard for Fire Test for Valves</td>
<td>4th</td>
<td>2016</td>
<td>G06FA4</td>
<td>$90.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6FB</td>
<td>Specification for Fire Test for End Connections</td>
<td>3rd</td>
<td>1998</td>
<td>G06FB3</td>
<td>$112.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6FD</td>
<td>Specification for Fire Test for Check Valves</td>
<td>1st</td>
<td>1995</td>
<td>G06FD1</td>
<td>$92.00</td>
</tr>
<tr>
<td>Spec</td>
<td>6FD</td>
<td>Specification for Fire Test for Check Valves—Russian</td>
<td>1st</td>
<td>1995</td>
<td>G06FD1R</td>
<td>$74.00</td>
</tr>
<tr>
<td>RP</td>
<td>6HT</td>
<td>Heat Treatment and Testing of Carbon and Low Alloy Steel Large Cross Section and Critical Section Components</td>
<td>2nd</td>
<td>2013</td>
<td>G6HT02</td>
<td>$88.00</td>
</tr>
<tr>
<td>TR</td>
<td>6J1</td>
<td>Elastomer Life Estimation Testing Procedures</td>
<td>1st</td>
<td>2000</td>
<td>G06J11</td>
<td>$81.00</td>
</tr>
<tr>
<td>TR</td>
<td>6MET</td>
<td>Metallic Material Limits for Wellhead Equipment Used in High Temperature for API 6A and API 17D Applications</td>
<td>2nd</td>
<td>2018</td>
<td>G6MET2</td>
<td>$112.00</td>
</tr>
<tr>
<td>Std</td>
<td>6X</td>
<td>Design Calculations for Pressure-Containing Equipment</td>
<td>1st</td>
<td>2014</td>
<td>G06X01</td>
<td>$62.00</td>
</tr>
<tr>
<td>Std</td>
<td>7CW</td>
<td>Casing Wear Tests</td>
<td>1st</td>
<td>2015</td>
<td>G7CW01</td>
<td>$88.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7F</td>
<td>Oil Field Chain and Sprockets</td>
<td>8th</td>
<td>2010</td>
<td>G7F008</td>
<td>$119.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7F</td>
<td>Oil Field Chain and Sprockets—Chinese</td>
<td>8th</td>
<td>2010</td>
<td>G7F008C</td>
<td>$84.00</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits</td>
<td>16th</td>
<td>1998</td>
<td>G07G6A</td>
<td>$200.00</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits—Kazakh</td>
<td>16th</td>
<td>1998</td>
<td>G07G6AK</td>
<td>$161.00</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits—Russian</td>
<td>16th</td>
<td>1998</td>
<td>G07G6AR</td>
<td>$160.00</td>
</tr>
<tr>
<td>RP</td>
<td>7G/2/ISO 10407-2:2008 Recommended Practice for Inspection and Classification of Drill Stem Element Inspection</td>
<td>1st</td>
<td>2009</td>
<td>G7XG201</td>
<td>$144.00</td>
<td>17</td>
</tr>
<tr>
<td>RP</td>
<td>7G/2/ISO 10407-2:2008 Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish</td>
<td>1st</td>
<td>2009</td>
<td>G7XG201SP</td>
<td>$144.00</td>
<td>17, 175</td>
</tr>
<tr>
<td>RP</td>
<td>7H/1</td>
<td>Safe Use of 2-Inch Hammer Unions for Oilfield Applications</td>
<td>1st</td>
<td>2009</td>
<td>H7H11</td>
<td>$38.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7K</td>
<td>Dulling and Well Servicing Equipment</td>
<td>6th</td>
<td>2015</td>
<td>G07K06</td>
<td>$206.00</td>
</tr>
<tr>
<td>RP</td>
<td>7L</td>
<td>Procedures for Inspection, Maintenance, Repair, and Remanufacture of Drilling Equipment</td>
<td>1st</td>
<td>1995</td>
<td>G07L01</td>
<td>$112.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7NRV</td>
<td>Specification for Drill String Non-Return Valves</td>
<td>1st</td>
<td>2006</td>
<td>G7NRV01</td>
<td>$72.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7NRV</td>
<td>Specification for Drill String Non-Return Valves—Chinese</td>
<td>1st</td>
<td>2006</td>
<td>G7NRV01C</td>
<td>$50.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO 10424-1:2004 Specification for Rotary Drill Stem Elements</td>
<td>1st</td>
<td>2006</td>
<td>G7X101</td>
<td>$167.00</td>
<td>16</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO 10424-1:2004 Specification for Rotary Drill Stem Elements—Spanish</td>
<td>1st</td>
<td>2006</td>
<td>G7X101SP</td>
<td>$167.00</td>
<td>16, 175</td>
</tr>
<tr>
<td>Spec</td>
<td>7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections</td>
<td>2nd</td>
<td>2017</td>
<td>G7X70202</td>
<td>$196.00</td>
</tr>
<tr>
<td>Spec</td>
<td>7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections—Russian</td>
<td>2nd</td>
<td>2017</td>
<td>G7X70202R</td>
<td>$157.00</td>
</tr>
<tr>
<td>RP</td>
<td>8B</td>
<td>Recommended Practice for Procedures for Inspection, Maintenance, Repair, and Remanufacture of Hoisting Equipment</td>
<td>8th</td>
<td>2014</td>
<td>G08B08</td>
<td>$98.00</td>
</tr>
<tr>
<td>Spec</td>
<td>8C</td>
<td>Dulling and Production Hoisting Equipment (PSL 1 and PSL 2)</td>
<td>5th</td>
<td>2012</td>
<td>G08C05</td>
<td>$144.00</td>
</tr>
<tr>
<td>Spec</td>
<td>8C</td>
<td>Dulling and Production Hoisting Equipment (PSL 1 and PSL 2)—Chinese</td>
<td>5th</td>
<td>2012</td>
<td>G08C05C</td>
<td>$101.00</td>
</tr>
<tr>
<td>Spec</td>
<td>9A</td>
<td>Specification for Wire Rope</td>
<td>26th</td>
<td>2011</td>
<td>G09A06C</td>
<td>$112.00</td>
</tr>
<tr>
<td>Spec</td>
<td>9A</td>
<td>Specification for Wire Rope—Chinese</td>
<td>26th</td>
<td>2011</td>
<td>G09A06C</td>
<td>$79.00</td>
</tr>
<tr>
<td>RP</td>
<td>9B</td>
<td>Application, Care, and Use of Wire Ropes for Oil Field Service</td>
<td>14th</td>
<td>2015</td>
<td>G09B014</td>
<td>$124.00</td>
</tr>
<tr>
<td>Spec</td>
<td>10A/ISO 10426-1:2009 Specification for Cements and Materials for Well cementing</td>
<td>24th</td>
<td>2010</td>
<td>G10A24</td>
<td>$149.00</td>
<td>18</td>
</tr>
<tr>
<td>RP</td>
<td>10B-2</td>
<td>Recommended Practice for Testing Well Cement</td>
<td>2nd</td>
<td>2013</td>
<td>G10B202</td>
<td>$227.00</td>
</tr>
<tr>
<td>RP</td>
<td>10B-2</td>
<td>Recommended Practice for Testing Well Cement—Russian</td>
<td>2nd</td>
<td>2013</td>
<td>G10B202R</td>
<td>$182.00</td>
</tr>
<tr>
<td>Publication</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 10B-3</td>
<td>Testing of Well Cements Used in Deepwater Well Construction</td>
<td>2nd</td>
<td>2016</td>
<td>G10B32</td>
<td>$98.00</td>
<td>19</td>
</tr>
<tr>
<td>RP 10B-4</td>
<td>Preparation and Testing of Foamed Cement Formulations at Atmospheric Pressure</td>
<td>2nd</td>
<td>2015</td>
<td>G10B402</td>
<td>$98.00</td>
<td>19</td>
</tr>
<tr>
<td>RP 10B-5/ISO 10426-5:2004</td>
<td>Recommended Practice on Determination of Shrinkage and Expansion of Well Cement Formulations at Atmospheric Pressure</td>
<td>1st</td>
<td>2005</td>
<td>GX10B501</td>
<td>$82.00</td>
<td>19</td>
</tr>
<tr>
<td>RP 10B-6/ISO 10426-6:2008</td>
<td>Recommended Practice on Determining the Static Gel Strength of Cement Formulations</td>
<td>1st</td>
<td>2010</td>
<td>GG10B601</td>
<td>$64.00</td>
<td>19</td>
</tr>
<tr>
<td>Spec 100/ISO 10427-1:2001</td>
<td>Specification for Bow-Spring Casing Centralizers</td>
<td>6th</td>
<td>2002</td>
<td>GX10D06</td>
<td>$92.00</td>
<td>19</td>
</tr>
<tr>
<td>Spec 100/ISO 10427-1:2001</td>
<td>Specification for Bow-Spring Casing Centralizers—Chinese</td>
<td>6th</td>
<td>2002</td>
<td>GX10D06C</td>
<td>$65.00</td>
<td>19, 168</td>
</tr>
<tr>
<td>Spec 10F</td>
<td>Cementing Float Equipment Testing</td>
<td>4th</td>
<td>2018</td>
<td>GX10F04</td>
<td>$77.00</td>
<td>19</td>
</tr>
<tr>
<td>TR 10TR1</td>
<td>Cement Sheath Evaluation</td>
<td>2nd</td>
<td>2008</td>
<td>G10TR12</td>
<td>$119.00</td>
<td>20, 169</td>
</tr>
<tr>
<td>TR 10TR1</td>
<td>Cement Sheath Evaluation—Kazakh</td>
<td>2nd</td>
<td>2008</td>
<td>G10TR12K</td>
<td>$119.00</td>
<td>20, 169</td>
</tr>
<tr>
<td>TR 10TR1</td>
<td>Cement Sheath Evaluation—Russian</td>
<td>2nd</td>
<td>2008</td>
<td>G10TR12R</td>
<td>$119.00</td>
<td>20, 172</td>
</tr>
<tr>
<td>TR 10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements</td>
<td>1st</td>
<td>1997</td>
<td>G10TR2</td>
<td>$126.00</td>
<td>20</td>
</tr>
<tr>
<td>TR 10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements—Russian</td>
<td>1st</td>
<td>1997</td>
<td>G10TR2R</td>
<td>$100.00</td>
<td>20, 172</td>
</tr>
<tr>
<td>TR 10TR3</td>
<td>Technical Report on Temperatures for API Cement Operating Thickening Time Tests</td>
<td>1st</td>
<td>1999</td>
<td>G10TR3</td>
<td>$162.00</td>
<td>20</td>
</tr>
<tr>
<td>TR 10TR3</td>
<td>Technical Report on Temperatures for API Cement Operating Thickening Time Tests—Russian</td>
<td>1st</td>
<td>1999</td>
<td>G10TR3R</td>
<td>$129.00</td>
<td>20, 172</td>
</tr>
<tr>
<td>TR 10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations</td>
<td>1st</td>
<td>2008</td>
<td>G10TR40</td>
<td>$63.00</td>
<td>20</td>
</tr>
<tr>
<td>TR 10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Kazakh</td>
<td>1st</td>
<td>2008</td>
<td>G10TR40K</td>
<td>$50.00</td>
<td>20, 169</td>
</tr>
<tr>
<td>TR 10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Russian</td>
<td>1st</td>
<td>2008</td>
<td>G10TR40R</td>
<td>$49.00</td>
<td>20, 172</td>
</tr>
<tr>
<td>TR 10TR5</td>
<td>Methods for Testing of Solid and Rigid Centralizers</td>
<td>1st</td>
<td>2008</td>
<td>G10TR50</td>
<td>$63.00</td>
<td>20</td>
</tr>
<tr>
<td>TR 10TR5</td>
<td>Methods for Testing of Solid and Rigid Centralizers—Kazakh</td>
<td>1st</td>
<td>2008</td>
<td>G10TR50K</td>
<td>$50.00</td>
<td>20, 169</td>
</tr>
<tr>
<td>TR 10TR5</td>
<td>Methods for Testing of Solid and Rigid Centralizers—Russian</td>
<td>1st</td>
<td>2008</td>
<td>G10TR50R</td>
<td>$49.00</td>
<td>20, 172</td>
</tr>
<tr>
<td>TR 10TR6</td>
<td>Evaluation and Testing of Mechanical Cement Wiper Plugs</td>
<td>1st</td>
<td>2015</td>
<td>G10TR601</td>
<td>$93.00</td>
<td>20</td>
</tr>
<tr>
<td>TR 10TR7</td>
<td>Mechanical Behavior of Cement</td>
<td>1st</td>
<td>2017</td>
<td>G10TR71</td>
<td>$121.00</td>
<td>20</td>
</tr>
<tr>
<td>RP 11AR</td>
<td>Recommended Practice for Care and Use of Subsurface Pumps</td>
<td>4th</td>
<td>2000</td>
<td>G11AR4</td>
<td>$128.00</td>
<td>21</td>
</tr>
<tr>
<td>Spec 11AX</td>
<td>Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings</td>
<td>13th</td>
<td>2015</td>
<td>G11AX13</td>
<td>$180.00</td>
<td>21</td>
</tr>
<tr>
<td>Spec 11AX</td>
<td>Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings—Russian</td>
<td>13th</td>
<td>2015</td>
<td>G11AX13R</td>
<td>$144.00</td>
<td>21, 172</td>
</tr>
<tr>
<td>Spec 11B</td>
<td>Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees</td>
<td>27th</td>
<td>2010</td>
<td>G11B27</td>
<td>$160.00</td>
<td>21</td>
</tr>
<tr>
<td>Spec 11B</td>
<td>Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Chinese</td>
<td>27th</td>
<td>2010</td>
<td>G11B27C</td>
<td>$112.00</td>
<td>21, 168</td>
</tr>
<tr>
<td>RP 11BR</td>
<td>Recommended Practice for the Care and Handling of Sucker Rods</td>
<td>9th</td>
<td>2008</td>
<td>G11BR09</td>
<td>$108.00</td>
<td>21</td>
</tr>
<tr>
<td>RP 11BR</td>
<td>Recommended Practice for the Care and Handling of Sucker Rods—Chinese</td>
<td>9th</td>
<td>2008</td>
<td>G11BR09C</td>
<td>$76.00</td>
<td>21, 168</td>
</tr>
<tr>
<td>Spec 11D1/ISO 14310:2008</td>
<td>Packsers and Bridge Plugs</td>
<td>3rd</td>
<td>2015</td>
<td>G11D103</td>
<td>$118.00</td>
<td>37</td>
</tr>
<tr>
<td>Spec 11D1/ISO 14310:2008</td>
<td>Packsers and Bridge Plugs—Russian</td>
<td>3rd</td>
<td>2015</td>
<td>G11D103R</td>
<td>$95.00</td>
<td>37, 172</td>
</tr>
<tr>
<td>Spec 11E</td>
<td>Specification for Pumping Units</td>
<td>19th</td>
<td>2013</td>
<td>G11E019</td>
<td>$175.00</td>
<td>22</td>
</tr>
<tr>
<td>Spec 11E</td>
<td>Specification for Pumping Units—Chinese</td>
<td>19th</td>
<td>2013</td>
<td>G11E019C</td>
<td>$123.00</td>
<td>22, 168</td>
</tr>
<tr>
<td>Spec 11E</td>
<td>Specification for Pumping Units—Russian</td>
<td>19th</td>
<td>2013</td>
<td>G11E019R</td>
<td>$140.00</td>
<td>22, 172</td>
</tr>
<tr>
<td>RP 11ER</td>
<td>Recommended Practice for Guarding of Pumping Units</td>
<td>3rd</td>
<td>2009</td>
<td>G11ER03</td>
<td>$82.00</td>
<td>22</td>
</tr>
<tr>
<td>RP 11G</td>
<td>Recommended Practice for Installation, Maintenance and Lubrication of Pumping Units</td>
<td>5th</td>
<td>2013</td>
<td>G11G05</td>
<td>$88.00</td>
<td>22</td>
</tr>
<tr>
<td>TR 11L</td>
<td>Design Calculations for Sucker Rod Pumping Systems (Conventional Units)</td>
<td>5th</td>
<td>2008</td>
<td>G11L05</td>
<td>$109.00</td>
<td>22</td>
</tr>
<tr>
<td>Bull 11L2</td>
<td>Bulletin on Catalog of Analog Computer Dynamometer Cards</td>
<td>1st</td>
<td>1969</td>
<td>G05700</td>
<td>$126.00</td>
<td>22</td>
</tr>
<tr>
<td>Bull 11L3</td>
<td>Sucker Rod Pumping System Design Book</td>
<td>1st</td>
<td>1970</td>
<td>G05800</td>
<td>$136.00</td>
<td>22</td>
</tr>
<tr>
<td>TR 11L6</td>
<td>Technical Report on Electric Motor Prime Mover for Beam Pumping Unit Service</td>
<td>2nd</td>
<td>2008</td>
<td>G11L602</td>
<td>$89.00</td>
<td>22</td>
</tr>
<tr>
<td>RP 11S</td>
<td>Recommended Practice for the Operation, Maintenance and Troubleshooting of Electric Submersible Pump Installations</td>
<td>3rd</td>
<td>1994</td>
<td>G11S30</td>
<td>$85.00</td>
<td>23</td>
</tr>
<tr>
<td>RP 11S1</td>
<td>Recommended Practice for Electrical Submersible Pump Teardown Report</td>
<td>3rd</td>
<td>1997</td>
<td>G11S31</td>
<td>$126.00</td>
<td>23</td>
</tr>
<tr>
<td>RP 11S2</td>
<td>Recommended Practice for Electric Submersible Pump Testing</td>
<td>2nd</td>
<td>1997</td>
<td>G11S22</td>
<td>$85.00</td>
<td>23</td>
</tr>
<tr>
<td>RP 11S2</td>
<td>Recommended Practice for Electric Submersible Pump Testing—Russian</td>
<td>2nd</td>
<td>1997</td>
<td>G11S22R</td>
<td>$69.00</td>
<td>23, 172</td>
</tr>
<tr>
<td>RP 11S3</td>
<td>Recommended Practice for Electrical Submersible Pump Installations</td>
<td>2nd</td>
<td>1999</td>
<td>G11S32</td>
<td>$92.00</td>
<td>23</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 11S3</td>
<td></td>
<td>Recommended Practice for Electrical Submersible Pump Installations—Russian</td>
<td>2nd</td>
<td>1999</td>
<td>G11S32R</td>
<td>$74.00</td>
</tr>
<tr>
<td>RP 11S4</td>
<td></td>
<td>Recommended Practice for Sizing and Selection of Electric Submersible Pump Installations</td>
<td>3rd</td>
<td>2002</td>
<td>G11S43</td>
<td>$81.00</td>
</tr>
<tr>
<td>RP 11S5</td>
<td></td>
<td>Recommended Practice for the Application of Electrical Submersible Cable Systems</td>
<td>2nd</td>
<td>2008</td>
<td>G11S52</td>
<td>$112.00</td>
</tr>
<tr>
<td>RP 11S6</td>
<td></td>
<td>Recommended Practice for Testing of Electric Submersible Pump Cable Systems</td>
<td>1st</td>
<td>1995</td>
<td>G11S61</td>
<td>$92.00</td>
</tr>
<tr>
<td>RP 11S7</td>
<td></td>
<td>Recommended Practice on Application and Testing of Electric Submersible Pump Seal Chamber Sections</td>
<td>1st</td>
<td>1993</td>
<td>G05947</td>
<td>$92.00</td>
</tr>
<tr>
<td>RP 11S8</td>
<td></td>
<td>Recommended Practice on Electric Submersible System Vibrations</td>
<td>2nd</td>
<td>2012</td>
<td>G11S802</td>
<td>$80.00</td>
</tr>
<tr>
<td>RP 11V6</td>
<td></td>
<td>Recommended Practice for Design of Continuous Flow Gas Lift Installations Using Injection Pressure Operated Valves</td>
<td>2nd</td>
<td>1999</td>
<td>G11V62</td>
<td>$153.00</td>
</tr>
<tr>
<td>RP 11V8</td>
<td></td>
<td>Recommended Practice for Gas Lift System Design and Performance Prediction</td>
<td>1st</td>
<td>2003</td>
<td>G11V81</td>
<td>$123.00</td>
</tr>
<tr>
<td>Spec 12B</td>
<td></td>
<td>Specification for Bolted Tanks for Storage of Production Liquids</td>
<td>16th</td>
<td>2014</td>
<td>G12B156</td>
<td>$124.00</td>
</tr>
<tr>
<td>Spec 12D</td>
<td></td>
<td>Specification for Field-Welded Tanks for Storage of Production Liquids</td>
<td>12th</td>
<td>2017</td>
<td>G12D12</td>
<td>$111.00</td>
</tr>
<tr>
<td>Spec 12E</td>
<td></td>
<td>Specification for Shop Welded Tanks for Storage of Production Liquids</td>
<td>12th</td>
<td>2008</td>
<td>G12F12</td>
<td>$100.00</td>
</tr>
<tr>
<td>Spec 12F</td>
<td></td>
<td>Specification for Shop Welded Tanks for Storage of Production Liquids—Chinese</td>
<td>12th</td>
<td>2008</td>
<td>G12F12C</td>
<td>$70.00</td>
</tr>
<tr>
<td>Spec 12J</td>
<td></td>
<td>Specification for Oil and Gas Separators</td>
<td>8th</td>
<td>2008</td>
<td>G12J08</td>
<td>$100.00</td>
</tr>
<tr>
<td>Spec 12J</td>
<td></td>
<td>Specification for Oil and Gas Separators—Chinese</td>
<td>8th</td>
<td>2008</td>
<td>G12J08C</td>
<td>$70.00</td>
</tr>
<tr>
<td>Spec 12J</td>
<td></td>
<td>Specification for Oil and Gas Separators—Russian</td>
<td>8th</td>
<td>2008</td>
<td>G12J08R</td>
<td>$80.00</td>
</tr>
<tr>
<td>Spec 12K</td>
<td></td>
<td>Specification for Indirect Type Diffied Heaters</td>
<td>8th</td>
<td>2008</td>
<td>G12K08</td>
<td>$118.00</td>
</tr>
<tr>
<td>Spec 12K</td>
<td></td>
<td>Specification for Indirect Type Diffied Heaters—Chinese</td>
<td>8th</td>
<td>2008</td>
<td>G12K08C</td>
<td>$83.00</td>
</tr>
<tr>
<td>Spec 12L</td>
<td></td>
<td>Specification for Vertical and Horizontal Emulsion Teaters</td>
<td>5th</td>
<td>2008</td>
<td>G12L05</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP 12N</td>
<td></td>
<td>Recommended Practice for the Operation, Maintenance and Testing of Firebox Flame Arrestors</td>
<td>2nd</td>
<td>1994</td>
<td>G12N02</td>
<td>$85.00</td>
</tr>
<tr>
<td>Spec 12P</td>
<td></td>
<td>Specification for Fiberglass Reinforced Plastic Tanks</td>
<td>4th</td>
<td>2016</td>
<td>G12P04</td>
<td>$111.00</td>
</tr>
<tr>
<td>RP 12R1</td>
<td></td>
<td>Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of tanks in Production Service</td>
<td>5th</td>
<td>1997</td>
<td>G12R15</td>
<td>$136.00</td>
</tr>
<tr>
<td>Spec 13A/ISO 13500-2009</td>
<td></td>
<td>Specification for Drilling Fluid Materials</td>
<td>18th</td>
<td>2010</td>
<td>GX13A018</td>
<td>$186.00</td>
</tr>
<tr>
<td>RP 13B-1/ISO 10414-1:2008</td>
<td></td>
<td>Recommended Practice for Field Testing Water-Based Drilling Fluids</td>
<td>4th</td>
<td>2009</td>
<td>G13B14</td>
<td>$170.00</td>
</tr>
<tr>
<td>RP 13B-2</td>
<td></td>
<td>Recommended Practice for Field Testing Oil-Based Drilling Fluids</td>
<td>5th</td>
<td>2014</td>
<td>G13B05</td>
<td>$211.00</td>
</tr>
<tr>
<td>RP 13C</td>
<td></td>
<td>Recommended Practice for Drilling Fluid Processing Systems Evaluation</td>
<td>5th</td>
<td>2014</td>
<td>G13C05</td>
<td>$139.00</td>
</tr>
<tr>
<td>RP 13D</td>
<td></td>
<td>Rheology and Hydraulics of Oil-Well Drilling Fluids</td>
<td>7th</td>
<td>2017</td>
<td>G13D07</td>
<td>$159.00</td>
</tr>
<tr>
<td>RP 13E/ISO 10416:2008</td>
<td></td>
<td>Recommended Practice for Laboratory Testing of Drilling Fluids</td>
<td>8th</td>
<td>2009</td>
<td>G13E18</td>
<td>$192.00</td>
</tr>
<tr>
<td>RP 13J</td>
<td></td>
<td>Testing of Heavy Brines</td>
<td>5th</td>
<td>2014</td>
<td>G13J05</td>
<td>$134.00</td>
</tr>
<tr>
<td>RP 13K</td>
<td></td>
<td>Recommended Practice for Chemical Analysis of Barite</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03</td>
<td>$110.00</td>
</tr>
<tr>
<td>RP 13K</td>
<td></td>
<td>Recommended Practice for Chemical Analysis of Barite—Kazakh</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03K</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 13K</td>
<td></td>
<td>Recommended Practice for Chemical Analysis of Barite—Russian</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03R</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 13L</td>
<td></td>
<td>Training and Qualification of Drilling Fluid Technologists</td>
<td>2nd</td>
<td>2017</td>
<td>G13L02</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP 13M/ISO 13503-1:2003</td>
<td></td>
<td>Recommended Practice for the Measurement of Viscous Properties of Completion Fluids</td>
<td>1st</td>
<td>2004</td>
<td>G13M01</td>
<td>$101.00</td>
</tr>
<tr>
<td>RP 13M/ISO 13503-1:2003</td>
<td></td>
<td>Recommended Practice for the Measurement of Viscous Properties of Completion Fluids—Russian</td>
<td>1st</td>
<td>2004</td>
<td>G13M01R</td>
<td>$81.00</td>
</tr>
<tr>
<td>TR 13M</td>
<td></td>
<td>Procedure for Testing and Evaluating the Performance of Friction (Drag) Reducers in Aqueous-based Fluid Flowing in Straight, Smooth Circular Conduits</td>
<td>1st</td>
<td>2018</td>
<td>G13M501</td>
<td>$85.00</td>
</tr>
<tr>
<td>TR 13M</td>
<td></td>
<td>Stress Corrosion Cracking of Corrosion Resistant Alloys in Halide Brines Exposed to Acidic Production Gas</td>
<td>1st</td>
<td>2017</td>
<td>G13TR11</td>
<td>$128.00</td>
</tr>
<tr>
<td>TR 13M</td>
<td></td>
<td>Size Measurement of Dry, Granular Drilling Fluid Particulates</td>
<td>1st</td>
<td>2018</td>
<td>G13TR31</td>
<td>$98.00</td>
</tr>
<tr>
<td>Spec 14A</td>
<td></td>
<td>Specification for Subsurface Safety Valve Equipment</td>
<td>12th</td>
<td>2015</td>
<td>G14A12</td>
<td>$232.00</td>
</tr>
<tr>
<td>RP 14B</td>
<td></td>
<td>Design, Installation, Operation, Test, and Redress of Subsurface Safety Valve Systems</td>
<td>6th</td>
<td>2015</td>
<td>G14B06</td>
<td>$130.00</td>
</tr>
<tr>
<td>RP 14C</td>
<td></td>
<td>Analysis, Design, Installation, and Testing of Safety Systems for Offshore Production Facilities</td>
<td>8th</td>
<td>2017</td>
<td>G14C08</td>
<td>$237.00</td>
</tr>
<tr>
<td>RP 14E</td>
<td></td>
<td>Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems</td>
<td>5th</td>
<td>1991</td>
<td>G07185</td>
<td>$153.00</td>
</tr>
<tr>
<td>RP 14E</td>
<td></td>
<td>Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems—Chinese</td>
<td>5th</td>
<td>1991</td>
<td>811-07185CN940</td>
<td>$108.00</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 14F</td>
<td>Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Division 1, and Division 2 Locations</td>
<td>6th</td>
<td>2018</td>
<td>G14F06</td>
<td>$163.00</td>
<td>27</td>
</tr>
<tr>
<td>RP 14FZ</td>
<td>Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Zone 0, Zone 1, and Zone 2 Locations</td>
<td>2nd</td>
<td>2013</td>
<td>G14F02</td>
<td>$288.00</td>
<td>28</td>
</tr>
<tr>
<td>RP 14G</td>
<td>Recommended Practice for Fire Prevention and Control on Fixed Open-Type Offshore Production Platforms</td>
<td>4th</td>
<td>2007</td>
<td>G14G04</td>
<td>$128.00</td>
<td>28</td>
</tr>
<tr>
<td>RP 14J</td>
<td>Recommended Practice for Design and Hazards Analysis for Offshore Production Facilities</td>
<td>2nd</td>
<td>2001</td>
<td>G14J02</td>
<td>$121.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec 14L/ISO 16070:2005</td>
<td>Specification for Lock Mandrels and Landing Nipples</td>
<td>2nd</td>
<td>2007</td>
<td>G14L02</td>
<td>$123.00</td>
<td>37</td>
</tr>
<tr>
<td>RP 15CLT</td>
<td>Recommended Practice for Composite Lined Steel Tubular Goods</td>
<td>1st</td>
<td>2007</td>
<td>G15CLT1</td>
<td>$85.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec 15HR</td>
<td>High-Pressure Fiberglass Line Pipe</td>
<td>4th</td>
<td>2016</td>
<td>G15HR4</td>
<td>$113.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec 15LE</td>
<td>Specification for Polyethylene Line Pipe (PE)</td>
<td>4th</td>
<td>2008</td>
<td>G15LE4</td>
<td>$104.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec 15LE</td>
<td>Specification for Polyethylene Line Pipe (PE)—Chinese</td>
<td>4th</td>
<td>2008</td>
<td>G15LE4C</td>
<td>$73.00</td>
<td>29,168</td>
</tr>
<tr>
<td>Spec 15LR</td>
<td>Specification for Low Pressure Fiberglass Line Pipe</td>
<td>7th</td>
<td>2001</td>
<td>G15LR7</td>
<td>$100.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec 15LR</td>
<td>Specification for Low Pressure Fiberglass Line Pipe—Chinese</td>
<td>7th</td>
<td>2001</td>
<td>G15LR7C</td>
<td>$70.00</td>
<td>29,168</td>
</tr>
<tr>
<td>Spec 15PK</td>
<td>Specification for Crosslinked Polyethylene (PEX) Line Pipe</td>
<td>7th</td>
<td>2018</td>
<td>G15PK1</td>
<td>$98.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec 15SS</td>
<td>Spoolable Reinforced Plastic Line Pipe</td>
<td>2nd</td>
<td>2016</td>
<td>G15SS2</td>
<td>$129.00</td>
<td>29</td>
</tr>
<tr>
<td>RP 15TL4</td>
<td>Recommended Practice for Care and Use of Fiberglass Tubulars</td>
<td>2nd</td>
<td>1999</td>
<td>G15TL4</td>
<td>$100.00</td>
<td>29</td>
</tr>
<tr>
<td>Publ 1628A</td>
<td>Natural Attenuation Processes</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628B</td>
<td>Risk-Based Decision Making</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628C</td>
<td>Optimization of Hydrocarbon Recovery</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628D</td>
<td>In-Situ Air Sparging</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Spec 16A</td>
<td>Operation and Maintenance Considerations for Hydrocarbon Remediation Systems</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Spec 16AR</td>
<td>Standard for Repair and Remanufacture of Drill-Through Equipment</td>
<td>1st</td>
<td>2017</td>
<td>G16AR01</td>
<td>$161.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec 16C</td>
<td>Choke and Kill Equipment</td>
<td>2nd</td>
<td>2015</td>
<td>G16C02</td>
<td>$155.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec 16D</td>
<td>Control Systems for Drilling Well Control Equipment and Control Systems for Diverter Equipment</td>
<td>3rd</td>
<td>2018</td>
<td>G16D03</td>
<td>$195.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec 16F</td>
<td>Specification for Marine Drilling Riser Equipment</td>
<td>2nd</td>
<td>2017</td>
<td>G16F02</td>
<td>$142.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec 16F</td>
<td>Specification for Marine Drilling Riser Equipment—Russian</td>
<td>2nd</td>
<td>2017</td>
<td>G16F02R</td>
<td>$114.00</td>
<td>30,172</td>
</tr>
<tr>
<td>RP 16Q</td>
<td>Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems</td>
<td>2nd</td>
<td>2017</td>
<td>G16Q02</td>
<td>$125.00</td>
<td>30</td>
</tr>
<tr>
<td>RP 16Q</td>
<td>Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems</td>
<td>2nd</td>
<td>2017</td>
<td>G16Q02R</td>
<td>$100.00</td>
<td>30,172</td>
</tr>
<tr>
<td>Spec 16RCD</td>
<td>Specification for Rotating Control Devices</td>
<td>2nd</td>
<td>2015</td>
<td>G16RCD02</td>
<td>$160.00</td>
<td>30</td>
</tr>
<tr>
<td>RP 16ST</td>
<td>Coiled Tubing Well Control Equipment Systems</td>
<td>1st</td>
<td>2009</td>
<td>G16ST01</td>
<td>$149.00</td>
<td>30</td>
</tr>
<tr>
<td>TR 16TR1</td>
<td>BOP Shear Ram Performance Test Protocol</td>
<td>1st</td>
<td>2018</td>
<td>G16TR1</td>
<td>$100.00</td>
<td>30</td>
</tr>
<tr>
<td>RP 17A</td>
<td>Design and Operation of Subsea Production Systems—General Requirements and Recommendations</td>
<td>5th</td>
<td>2017</td>
<td>GX17A05</td>
<td>$102.00</td>
<td>31</td>
</tr>
<tr>
<td>RP 17B</td>
<td>Recommended Practice for Flexible Pipe</td>
<td>5th</td>
<td>2014</td>
<td>G017B05</td>
<td>$237.00</td>
<td>31</td>
</tr>
<tr>
<td>Spec 17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment</td>
<td>2nd</td>
<td>2011</td>
<td>G17D02</td>
<td>$192.00</td>
<td>31</td>
</tr>
<tr>
<td>Spec 17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Chinese</td>
<td>2nd</td>
<td>2011</td>
<td>G17D02C</td>
<td>$135.00</td>
<td>31,168</td>
</tr>
<tr>
<td>Spec 17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian</td>
<td>2nd</td>
<td>2011</td>
<td>G17D02R</td>
<td>$154.00</td>
<td>31,173</td>
</tr>
<tr>
<td>Spec 17E</td>
<td>Specification for Subsea Umbilicals</td>
<td>5th</td>
<td>2017</td>
<td>G17E05</td>
<td>$200.00</td>
<td>32</td>
</tr>
<tr>
<td>Std 17F</td>
<td>Standard for Subsea Production Control Systems</td>
<td>4th</td>
<td>2017</td>
<td>G017F04</td>
<td>$249.00</td>
<td>32</td>
</tr>
<tr>
<td>RP 17G/ISO 13628-7:2005</td>
<td>Recommended Practice for Completion/Workover Riser</td>
<td>2nd</td>
<td>2006</td>
<td>G17G02</td>
<td>$187.00</td>
<td>32</td>
</tr>
<tr>
<td>RP 17H</td>
<td>Remotely Operated Tools and Interfaces on Subsea Production Systems</td>
<td>2nd</td>
<td>2013</td>
<td>G17H02</td>
<td>$165.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec 17I</td>
<td>Specification for Unbonded Flexible Pipe</td>
<td>4th</td>
<td>2014</td>
<td>G017I04</td>
<td>$139.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec 17K</td>
<td>Specification for Bonded Flexible Pipe</td>
<td>3rd</td>
<td>2017</td>
<td>G17K03</td>
<td>$140.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec 17L1</td>
<td>Specification for Flexible Pipe Ancillary Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G17L01</td>
<td>$175.00</td>
<td>33</td>
</tr>
<tr>
<td>RP 17L2</td>
<td>Recommended Practice for Flexible Pipe Ancillary Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G17L01</td>
<td>$175.00</td>
<td>33</td>
</tr>
<tr>
<td>RP 17N</td>
<td>Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management</td>
<td>2nd</td>
<td>2017</td>
<td>G17N02</td>
<td>$183.00</td>
<td>33</td>
</tr>
<tr>
<td>RP 17Q</td>
<td>Recommended Practice for Subsea High Integrity Pressure Protection Systems (HIPPS)</td>
<td>2nd</td>
<td>2014</td>
<td>G17Q02</td>
<td>$124.00</td>
<td>33</td>
</tr>
<tr>
<td>RP 17Q</td>
<td>Recommended Practice on Subsea Equipment Qualification</td>
<td>2nd</td>
<td>2018</td>
<td>G17Q02</td>
<td>$138.00</td>
<td>34</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>RP</td>
<td>17R</td>
<td>Recommended Practice for Flowline Connectors and Jumpers</td>
<td>1st</td>
<td>2015</td>
<td>G17R01</td>
<td>$124.00</td>
</tr>
<tr>
<td>RP</td>
<td>17S</td>
<td>Recommended Practice for the Design, Testing, and Operation of Subsea Mutli-phase Flow Meters</td>
<td>1st</td>
<td>2015</td>
<td>G17S01</td>
<td>$88.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R1</td>
<td>Evaluation Standard for Internal Pressure Sheath Polymers for High Temperature Flexible Pipes</td>
<td>1st</td>
<td>2003</td>
<td>G17R11</td>
<td>$136.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R10</td>
<td>Subsea Umbilical Termination (SUT) Design Recommendations</td>
<td>1st</td>
<td>2015</td>
<td>G17R101</td>
<td>$107.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R11</td>
<td>Pressure Effects on Subsea Hardware During Flowline Pressure Testing in Deep Water</td>
<td>1st</td>
<td>2015</td>
<td>G17R111</td>
<td>$82.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R12</td>
<td>Consideration of External Pressure in the Design and Pressure Rating of Subsea Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G17R121</td>
<td>$98.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R13</td>
<td>General Overview of Subsea Production Systems</td>
<td>1st</td>
<td>2016</td>
<td>G17R131</td>
<td>$124.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R15</td>
<td>API 17H Hydraulic Interfaces for Hot Stabs</td>
<td>1st</td>
<td>2017</td>
<td>G17R151</td>
<td>$83.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R2</td>
<td>The Aging of PA-11 In Flexible Pipes</td>
<td>1st</td>
<td>2003</td>
<td>G17R21</td>
<td>$104.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R3</td>
<td>An Evaluation of the Risks and Benefits of Penetations in Subsea Wellheads Below the BOP Stack</td>
<td>1st</td>
<td>2004</td>
<td>G17R31</td>
<td>$136.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R4</td>
<td>Subsea Equipment Pressure Ratings</td>
<td>2nd</td>
<td>2016</td>
<td>G17R402</td>
<td>$67.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R5</td>
<td>Avoidance of Blockages in Subsea Production Control and Chemical Injection Systems</td>
<td>1st</td>
<td>2012</td>
<td>G17R501</td>
<td>$101.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R6</td>
<td>Attributes of Production Chemicals in Subsea Production Systems</td>
<td>1st</td>
<td>2012</td>
<td>G17R601</td>
<td>$101.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R7</td>
<td>Verification and Validation of Subsea Connectors</td>
<td>1st</td>
<td>2017</td>
<td>G17R71</td>
<td>$88.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R8</td>
<td>High-Pressure High-Temperature Design Guidelines</td>
<td>2nd</td>
<td>2018</td>
<td>G17R82</td>
<td>$142.00</td>
</tr>
<tr>
<td>TR</td>
<td>17R9</td>
<td>Umbilical Termination Assembly (UTA) Selection and Sizing Recommendations</td>
<td>1st</td>
<td>2017</td>
<td>G17R91</td>
<td>$107.00</td>
</tr>
<tr>
<td>RP</td>
<td>17U</td>
<td>Recommended Practice for Wet and Dry Thermal Insulation of Subsea Flowlines and Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G17U01</td>
<td>$77.00</td>
</tr>
<tr>
<td>RP</td>
<td>17V</td>
<td>Recommended Practice for Analysis, Design, Installation, and Testing of Safety Systems for Subsea Applications</td>
<td>1st</td>
<td>2015</td>
<td>G17V01</td>
<td>$144.00</td>
</tr>
<tr>
<td>RP</td>
<td>17W</td>
<td>Recommended Practice for Subsea Capping Stacks</td>
<td>1st</td>
<td>2014</td>
<td>G17W01</td>
<td>$129.00</td>
</tr>
<tr>
<td>Std</td>
<td>18LCM</td>
<td>Product Life Cycle Management System Requirements for the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2017</td>
<td>G18LCM1</td>
<td>$80.00</td>
</tr>
<tr>
<td>TR</td>
<td>18R1</td>
<td>Guidance on Changes to API Q1, Ninth Edition</td>
<td>1st</td>
<td>2015</td>
<td>G18R101</td>
<td>$67.00</td>
</tr>
<tr>
<td>TR</td>
<td>18R2</td>
<td>Guidance to API Specification Q2</td>
<td>1st</td>
<td>2017</td>
<td>G18R201</td>
<td>$62.00</td>
</tr>
<tr>
<td>TR</td>
<td>18R4</td>
<td>Evaluation of Welding Requirements as Applicable to API Product Specifications</td>
<td>1st</td>
<td>2017</td>
<td>G18R401</td>
<td>$124.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19AC/ISO 14998:2013</td>
<td>Specification for Completion Accessories</td>
<td>1st</td>
<td>2016</td>
<td>G19AC01</td>
<td>$115.00</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2</td>
<td>$126.00</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators—Chinese</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2C</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators—Kazakh</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2K</td>
<td>$101.00</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practices for Evaluation of Well Perforators—Russian</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2R</td>
<td>$100.00</td>
</tr>
<tr>
<td>Std</td>
<td>19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations</td>
<td>2nd</td>
<td>2018</td>
<td>GX19C02</td>
<td>$114.00</td>
</tr>
<tr>
<td>Std</td>
<td>19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations—Russian</td>
<td>2nd</td>
<td>2018</td>
<td>GX19C02R</td>
<td>$91.00</td>
</tr>
<tr>
<td>RP</td>
<td>19D/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants</td>
<td>1st</td>
<td>2008</td>
<td>G19D01</td>
<td>$110.00</td>
</tr>
<tr>
<td>RP</td>
<td>19D/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants—Chinese</td>
<td>1st</td>
<td>2008</td>
<td>G19D01C</td>
<td>$89.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19G1/ISO 17078-1:2004</td>
<td>Side-Pocket Mandrels</td>
<td>1st</td>
<td>2010</td>
<td>G19G101</td>
<td>$106.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19G1/ISO 17078-1:2004</td>
<td>Side-Pocket Mandrels—Chinese</td>
<td>1st</td>
<td>2010</td>
<td>G19G101C</td>
<td>$75.00</td>
</tr>
<tr>
<td>RP</td>
<td>19G10</td>
<td>Design and Operation of Intermittent Gas-Lift Systems</td>
<td>1st</td>
<td>2018</td>
<td>G19G101</td>
<td>$162.00</td>
</tr>
<tr>
<td>RP</td>
<td>19G11</td>
<td>Dynamic Simulation of Gas-Lift Wells and Systems</td>
<td>1st</td>
<td>2018</td>
<td>G19G111</td>
<td>$156.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19H0</td>
<td>Openhole Isolation Equipment</td>
<td>1st</td>
<td>2018</td>
<td>G19H01</td>
<td>$112.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19H5/ISO 17824-2009</td>
<td>Sand Screens</td>
<td>1st</td>
<td>2018</td>
<td>G19H501</td>
<td>$165.00</td>
</tr>
<tr>
<td>Spec</td>
<td>19I7</td>
<td>Specification for Downhole Well Test Tools and Related Equipment</td>
<td>1st</td>
<td>2016</td>
<td>G19I701</td>
<td>$136.00</td>
</tr>
<tr>
<td>Spec</td>
<td>20A</td>
<td>Carbon Steel, Alloy Steel, Stainless Steel, and Nickel Base Alloy Castings for Use in the Petroleum and Natural Gas Industry</td>
<td>2nd</td>
<td>2017</td>
<td>G20A02</td>
<td>$89.00</td>
</tr>
<tr>
<td>Spec</td>
<td>20B</td>
<td>Open Die Shaped Forgings for Use in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2013</td>
<td>G20B01</td>
<td>$88.00</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Spec</td>
<td>20C</td>
<td>Closed Die Forgings for Use in the Petroleum and Natural Gas Industry</td>
<td>2nd</td>
<td>2015</td>
<td>G20C02</td>
<td>$83.00</td>
</tr>
<tr>
<td>Std</td>
<td>20D</td>
<td>Nondestructive Examination Services for Equipment Used in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2013</td>
<td>G20D01</td>
<td>$88.00</td>
</tr>
<tr>
<td>Spec</td>
<td>20E</td>
<td>Alloy and Carbon Steel Bolting for Use in the Petroleum and Natural Gas Industries</td>
<td>2nd</td>
<td>2017</td>
<td>G20E02</td>
<td>$88.00</td>
</tr>
<tr>
<td>Spec</td>
<td>20F</td>
<td>Corrosion-Resistant Bolting for Use in the Petroleum and Natural Gas Industries</td>
<td>2nd</td>
<td>2018</td>
<td>G20F02</td>
<td>$89.00</td>
</tr>
<tr>
<td>Std</td>
<td>20H</td>
<td>Heat Treatment Services—Batch Type for Equipment Used in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2015</td>
<td>G20H01</td>
<td>$67.00</td>
</tr>
<tr>
<td>Std</td>
<td>20J</td>
<td>Qualification of Distributors of Metallic Materials for Use in the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2018</td>
<td>G20J01</td>
<td>$89.00</td>
</tr>
<tr>
<td>Std</td>
<td>20L</td>
<td>Qualification of Polymeric Seal Manufacturers for Use in the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2018</td>
<td>G20L01</td>
<td>$67.00</td>
</tr>
<tr>
<td>RP</td>
<td>31A</td>
<td>Standard Form for Hardcopy Presentation of Downhole Well Log Data</td>
<td>1st</td>
<td>1997</td>
<td>G31A01</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP</td>
<td>45</td>
<td>Recommended Practice for Analysis of Oilfield Waters</td>
<td>3rd</td>
<td>1998</td>
<td>G45003</td>
<td>$146.00</td>
</tr>
<tr>
<td>RP</td>
<td>49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh</td>
<td>3rd</td>
<td>2001</td>
<td>G49003K</td>
<td>$73.00</td>
</tr>
<tr>
<td>RP</td>
<td>49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian</td>
<td>3rd</td>
<td>2001</td>
<td>G49003R</td>
<td>$70.00</td>
</tr>
<tr>
<td>RP</td>
<td>50</td>
<td>Natural Gas Processing Plant Practices for Protection of the Environment</td>
<td>2nd</td>
<td>1995</td>
<td>G50002</td>
<td>$112.00</td>
</tr>
<tr>
<td>RP</td>
<td>51</td>
<td>Onshore Oil and Gas Production Practices for Protection of the Environment</td>
<td>3rd</td>
<td>2001</td>
<td>G51003</td>
<td>$53.00</td>
</tr>
<tr>
<td>RP</td>
<td>51R</td>
<td>Environmental Protection for Onshore Oil and Gas Production Operations and Leases</td>
<td>1st</td>
<td>2009</td>
<td>G51R01</td>
<td>See Listing</td>
</tr>
<tr>
<td>RP</td>
<td>52</td>
<td>Land Drilling Practices for Protection of the Environment</td>
<td>2nd</td>
<td>1995</td>
<td>G52002</td>
<td>$118.00</td>
</tr>
<tr>
<td>DR</td>
<td>53</td>
<td>Characterization of Exploration and Production Associated Wastes</td>
<td>1996</td>
<td>I00053</td>
<td>$140.00</td>
<td>159</td>
</tr>
<tr>
<td>Std</td>
<td>53</td>
<td>Well Control Equipment Systems for Drilling Wells</td>
<td>5th</td>
<td>2018</td>
<td>G05305</td>
<td>$156.00</td>
</tr>
<tr>
<td>RP</td>
<td>54</td>
<td>Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations</td>
<td>3rd</td>
<td>1999</td>
<td>G54003</td>
<td>$129.00</td>
</tr>
<tr>
<td>RP</td>
<td>54</td>
<td>Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Kazakh</td>
<td>3rd</td>
<td>1999</td>
<td>G54003K</td>
<td>$103.00</td>
</tr>
<tr>
<td>RP</td>
<td>54</td>
<td>Recommended Practice for Occupational Safety for Oil and Gas Well Drilling and Servicing Operations—Russian</td>
<td>3rd</td>
<td>1999</td>
<td>G54003R</td>
<td>$103.00</td>
</tr>
<tr>
<td>RP</td>
<td>55</td>
<td>Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide</td>
<td>2nd</td>
<td>1995</td>
<td>G55002</td>
<td>$118.00</td>
</tr>
<tr>
<td>RP</td>
<td>59</td>
<td>Recommended Practice for Well Control Operations</td>
<td>2nd</td>
<td>2006</td>
<td>G59002</td>
<td>$126.00</td>
</tr>
<tr>
<td>RP</td>
<td>59</td>
<td>Recommended Practice for Well Control Operations—Kazakh</td>
<td>2nd</td>
<td>2006</td>
<td>G59002K</td>
<td>$101.00</td>
</tr>
<tr>
<td>RP</td>
<td>59</td>
<td>Recommended Practice for Well Control Operations—Russian</td>
<td>2nd</td>
<td>2006</td>
<td>G59002R</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP</td>
<td>62</td>
<td>Reconditioning of Metallic Gate, Globe, and Check Valves</td>
<td>4th</td>
<td>2018</td>
<td>G62104</td>
<td>$154.00</td>
</tr>
<tr>
<td>Std</td>
<td>64</td>
<td>Diverter Equipment Systems</td>
<td>3rd</td>
<td>2017</td>
<td>G64003</td>
<td>$141.00</td>
</tr>
<tr>
<td>RP</td>
<td>65-1</td>
<td>Cementing Shallow-Water Flow Zones in Deepwater Wells</td>
<td>2nd</td>
<td>2018</td>
<td>G65102</td>
<td>$137.00</td>
</tr>
<tr>
<td>Std</td>
<td>65-2</td>
<td>Isolating Potential Flow Zones During Well Construction</td>
<td>2nd</td>
<td>2010</td>
<td>G65202</td>
<td>See Listing</td>
</tr>
<tr>
<td>RP</td>
<td>67</td>
<td>Recommended Practice for Oilfield Explosives Safety</td>
<td>2nd</td>
<td>2007</td>
<td>G67002</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP</td>
<td>67</td>
<td>Recommended Practice for Oilfield Explosives Safety—Kazakh</td>
<td>2nd</td>
<td>2007</td>
<td>G67002K</td>
<td>$70.00</td>
</tr>
<tr>
<td>RP</td>
<td>67</td>
<td>Recommended Practice for Oilfield Explosives Safety—Russian</td>
<td>2nd</td>
<td>2007</td>
<td>G67002R</td>
<td>$71.00</td>
</tr>
<tr>
<td>RP</td>
<td>68</td>
<td>Recommended Practice for Oil and Gas Well Servicing and Workover Operations Involving Hydrogen Sulfide</td>
<td>1st</td>
<td>1998</td>
<td>G68001</td>
<td>$78.00</td>
</tr>
<tr>
<td>RP</td>
<td>70</td>
<td>Security for Offshore Oil and Natural Gas Operations</td>
<td>1st</td>
<td>2003</td>
<td>G70001</td>
<td>$59.00</td>
</tr>
<tr>
<td>RP</td>
<td>70I</td>
<td>Security for Worldwide Offshore Oil and Natural Gas Operations</td>
<td>1st</td>
<td>2004</td>
<td>G70I03</td>
<td>$63.00</td>
</tr>
<tr>
<td>RP</td>
<td>74</td>
<td>Recommended Practice for Occupational Safety for Onshore Oil and Gas Production Operation</td>
<td>1st</td>
<td>2001</td>
<td>G74001</td>
<td>$63.00</td>
</tr>
<tr>
<td>RP</td>
<td>75</td>
<td>Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities</td>
<td>3rd</td>
<td>2004</td>
<td>G75003</td>
<td>$92.00</td>
</tr>
<tr>
<td>RP</td>
<td>75</td>
<td>Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities—Chinese</td>
<td>3rd</td>
<td>2004</td>
<td>G75003C</td>
<td>$65.00</td>
</tr>
<tr>
<td>Bull</td>
<td>75L</td>
<td>Guidance Document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operations and Associated Activities</td>
<td>1st</td>
<td>2007</td>
<td>G75L01</td>
<td>$35.00</td>
</tr>
<tr>
<td>DR</td>
<td>76</td>
<td>Determination of Emissions from Retail Gasoline Outlets Using Optical Remote Sensing: Pilot Field Study at a Non-Vapor Recovery Site, Project Summary Report, Volume I</td>
<td>1999</td>
<td>I00076</td>
<td>$126.00</td>
<td>129</td>
</tr>
<tr>
<td>RP</td>
<td>76</td>
<td>Contractor Safety Management for Oil and Gas Drilling and Production Operations</td>
<td>2nd</td>
<td>2007</td>
<td>G76002</td>
<td>$59.00</td>
</tr>
<tr>
<td>RP</td>
<td>77</td>
<td>Risk-Based Approach for Managing Hydrocarbon Vapor Exposure During Tank Gauging, Sampling, and Maintenance of Onshore Production Facilities</td>
<td>1st</td>
<td>2018</td>
<td>G77001</td>
<td>$88.00</td>
</tr>
<tr>
<td>RP</td>
<td>80</td>
<td>Guidelines for the Definition of Onshore Gas Gathering Lines</td>
<td>1st</td>
<td>2000</td>
<td>G80001</td>
<td>$129.00</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>RP</td>
<td>85</td>
<td>Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems</td>
<td>1st</td>
<td>2003</td>
<td>G08501</td>
<td>$127.00</td>
</tr>
<tr>
<td>RP</td>
<td>87</td>
<td>Recommended Practice for Field Analysis of Crude Oil Samples Containing from Two to Fifty Percent Water by Volume</td>
<td>1st</td>
<td>2007</td>
<td>G08701</td>
<td>$93.00</td>
</tr>
<tr>
<td>RP</td>
<td>90</td>
<td>Annular Casing Pressure Management for Offshore Wells</td>
<td>1st</td>
<td>2006</td>
<td>G09001</td>
<td>$187.00</td>
</tr>
<tr>
<td>RP</td>
<td>90-2</td>
<td>Annular Casing Pressure Management for Onshore Wells</td>
<td>1st</td>
<td>2016</td>
<td>G090201</td>
<td>$187.00</td>
</tr>
<tr>
<td>Bull</td>
<td>91</td>
<td>Planning and Conducting Surface Preparation and Coating Operations for Oil and Natural Gas Dilling and Production Facilities in a Marine Environment</td>
<td>1st</td>
<td>2007</td>
<td>G09101</td>
<td>$63.00</td>
</tr>
<tr>
<td>Bull</td>
<td>92L</td>
<td>Drilling Ahead Safely with Lost Circulation in the Gulf of Mexico</td>
<td>1st</td>
<td>2015</td>
<td>G092L01</td>
<td>$72.00</td>
</tr>
<tr>
<td>RP</td>
<td>92M</td>
<td>Managed Pressure Drilling Operations with Surface Back-Pressure</td>
<td>1st</td>
<td>2017</td>
<td>G092M01</td>
<td>$101.00</td>
</tr>
<tr>
<td>RP</td>
<td>92S</td>
<td>Managed Pressure Drilling Operations—Surface Back-Pressure with a Subsea Blowout Preventer</td>
<td>1st</td>
<td>2018</td>
<td>G092S01</td>
<td>$126.00</td>
</tr>
<tr>
<td>RP</td>
<td>92U</td>
<td>Underbalanced Drilling Operations</td>
<td>1st</td>
<td>2008</td>
<td>G092U01</td>
<td>$108.00</td>
</tr>
<tr>
<td>RP</td>
<td>95J</td>
<td>Gulf of Mexico Jackup Operations for Hurricane Season</td>
<td>1st</td>
<td>2006</td>
<td>G095J01</td>
<td>$64.00</td>
</tr>
<tr>
<td>Bull</td>
<td>96</td>
<td>Deepwater Well Design and Construction</td>
<td>1st</td>
<td>2013</td>
<td>G09601</td>
<td>$180.00</td>
</tr>
<tr>
<td>Bull</td>
<td>97</td>
<td>Well Construction Interface Document Guidelines</td>
<td>1st</td>
<td>2013</td>
<td>G09701</td>
<td>$67.00</td>
</tr>
<tr>
<td>RP</td>
<td>98</td>
<td>Personal Protective Equipment Selection for Oil Spill Responders</td>
<td>1st</td>
<td>2013</td>
<td>G09801</td>
<td>$134.00</td>
</tr>
<tr>
<td>RP</td>
<td>99</td>
<td>Flash Fire Risk Assessment for the Upstream Oil and Gas Industry</td>
<td>1st</td>
<td>2014</td>
<td>G09901</td>
<td>$82.00</td>
</tr>
<tr>
<td>RP</td>
<td>100-1</td>
<td>Hydraulic Fracturing—Well Integrity and Fracture Containment</td>
<td>1st</td>
<td>2015</td>
<td>G100101</td>
<td>$93.00</td>
</tr>
<tr>
<td>RP</td>
<td>100-2</td>
<td>Managing Environmental Aspects Associated with Exploration and Production Operations Including Hydraulic Fracturing</td>
<td>1st</td>
<td>2015</td>
<td>G100201</td>
<td>$93.00</td>
</tr>
<tr>
<td>Bull</td>
<td>100-3</td>
<td>Community Engagement Guidelines</td>
<td>1st</td>
<td>2014</td>
<td>G100301</td>
<td>See Listing</td>
</tr>
<tr>
<td>DR</td>
<td>141</td>
<td>Global Emissions of Carbon Dioxide from Petroleum Sources</td>
<td>1991</td>
<td></td>
<td>I00141</td>
<td>$61.00</td>
</tr>
<tr>
<td>DR</td>
<td>145</td>
<td>Identification of Oils that Produce Non-Boyuyant In-Situ Burning Residues and Methods for Their Recovery</td>
<td>2002</td>
<td></td>
<td>IDR1450</td>
<td>$97.00</td>
</tr>
<tr>
<td>DR</td>
<td>148</td>
<td>Identification of Organic Toxicants in Treated Refinery Effluents</td>
<td>1997</td>
<td>I00148</td>
<td>$63.00</td>
<td>152</td>
</tr>
<tr>
<td>DR</td>
<td>225</td>
<td>Remediation of a Fractured Clay Till Using Air Flushing: Field Experiments at Sarnia, Ontario</td>
<td>1997</td>
<td></td>
<td>I00225</td>
<td>$100.00</td>
</tr>
<tr>
<td>Publ</td>
<td>300</td>
<td>The Generation and Management of Waste and Secondary Materials in the Petroleum Refining Industry</td>
<td>1991</td>
<td>J30000</td>
<td>$76.00</td>
<td>139</td>
</tr>
<tr>
<td>Publ</td>
<td>301</td>
<td>Aboveground Storage Tank Survey: 1989</td>
<td>1989</td>
<td>J30100</td>
<td>$65.00</td>
<td>146</td>
</tr>
<tr>
<td>Publ</td>
<td>304</td>
<td>Evaluation of Restoration Alternatives for Natural Resources Injured by Oil Spills</td>
<td>1991</td>
<td>J30400</td>
<td>$85.00</td>
<td>139</td>
</tr>
<tr>
<td>Publ</td>
<td>305</td>
<td>Protecting Agricultural Crops from Ozone Exposures—Key Issues and Future Research Directions</td>
<td>1991</td>
<td>J30500</td>
<td>$85.00</td>
<td>135</td>
</tr>
<tr>
<td>Publ</td>
<td>306</td>
<td>An Engineering Assessment of Volumetric Methods of Leak Detection in Aboveground Storage Tanks</td>
<td>1991</td>
<td>J30600</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>307</td>
<td>An Engineering Assessment of Acoustic Methods of Leak Detection in Aboveground Storage Tanks</td>
<td>1992</td>
<td>J30700</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>309</td>
<td>Current Status and Research Needs Related to Biogenic Hydrocarbons</td>
<td>1992</td>
<td>J30900</td>
<td>$116.00</td>
<td>135</td>
</tr>
<tr>
<td>Publ</td>
<td>310</td>
<td>Analysis of Refinery Screening Data</td>
<td>1997</td>
<td>J31000</td>
<td>$59.00</td>
<td>132</td>
</tr>
<tr>
<td>Publ</td>
<td>311</td>
<td>Environmental Design Considerations for Petroleum Refining Processing Units</td>
<td>1993</td>
<td>J31100</td>
<td>$152.00</td>
<td>139</td>
</tr>
<tr>
<td>Publ</td>
<td>312</td>
<td>Responding to Environmental Challenge: The Petroleum Industry and Pollution Prevention</td>
<td>1990</td>
<td>J31200</td>
<td>Free</td>
<td>139</td>
</tr>
<tr>
<td>Publ</td>
<td>315</td>
<td>Assessment of Tankfield Dike Lining Materials and Methods</td>
<td>1993</td>
<td>J31500</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>316</td>
<td>Identifying and Measuring Nonuse Values for Natural and Environmental Resources: A Critical Review</td>
<td>1995</td>
<td>J31600</td>
<td>$61.00</td>
<td>139</td>
</tr>
<tr>
<td>Publ</td>
<td>317</td>
<td>Industry Experience with Pollution Prevention Programs</td>
<td>1993</td>
<td>J31700</td>
<td>Free</td>
<td>140</td>
</tr>
<tr>
<td>Publ</td>
<td>322</td>
<td>An Engineering Evaluation of Acoustic Methods of Leak Detection in Aboveground Storage Tanks</td>
<td>1994</td>
<td>J32200</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>323</td>
<td>An Engineering Evaluation of Volumetric Methods of Leak Detection in Aboveground Storage Tanks</td>
<td>1994</td>
<td>J32300</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>324</td>
<td>Generation and Management of Residual Materials: Petroleum Refining Performance 1990 Survey</td>
<td>1993</td>
<td>J32400</td>
<td>$92.00</td>
<td>140</td>
</tr>
<tr>
<td>Publ</td>
<td>325</td>
<td>An Evaluation of a Methodology for the Detection of Leaks in Aboveground Storage Tanks</td>
<td>1994</td>
<td>J32500</td>
<td>$93.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>326</td>
<td>The Cost Effectiveness of VOC and NOx Emission Control Measures</td>
<td>1994</td>
<td>J32600</td>
<td>$152.00</td>
<td>129</td>
</tr>
<tr>
<td>Publ</td>
<td>327</td>
<td>Aboveground Storage Tank Standards: A Tutorial</td>
<td>1994</td>
<td>J32700</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>328</td>
<td>Laboratory Evaluation of Candidate Liners for Secondary Containment of Petroleum Products</td>
<td>1995</td>
<td>J32800</td>
<td>$85.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>331</td>
<td>Environmental Performance Indicators: Methods for Measuring Pollution Prevention</td>
<td>1994</td>
<td>J33100</td>
<td>$65.00</td>
<td>140</td>
</tr>
<tr>
<td>Publ</td>
<td>332</td>
<td>Comparison of Screening Values from Selected Hydrocarbon Screening Instruments</td>
<td>1995</td>
<td>J33200</td>
<td>$93.00</td>
<td>129</td>
</tr>
<tr>
<td>Publ</td>
<td>333</td>
<td>Generation and Management of Residual Materials</td>
<td>1995</td>
<td>J33300</td>
<td>$103.00</td>
<td>140</td>
</tr>
<tr>
<td>Publ</td>
<td>334</td>
<td>A Guide to Leak Detection for Aboveground Storage Tanks</td>
<td>1992</td>
<td>J33400</td>
<td>$76.00</td>
<td>147</td>
</tr>
<tr>
<td>Publ</td>
<td>337</td>
<td>Development of Emission Factors for Leaks in Refinery Components in Heavy Liquid Service</td>
<td>1996</td>
<td>J33700</td>
<td>$76.00</td>
<td>132</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Pub 340</td>
<td>Liquid Release Prevention and Detection Measures for Aboveground Storage Facilities</td>
<td>1997</td>
<td>J34000</td>
<td>$85.00</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Pub 341</td>
<td>A Survey of Diked-Area Liner Use at Aboveground Storage Tank Facilities</td>
<td>1998</td>
<td>J34100</td>
<td>$76.00</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>DR 342</td>
<td>Toxicity Bioassays on Dispersed Oil in the North Sea: June 1996 Field Trials</td>
<td>2002</td>
<td>J34200</td>
<td>$143.00</td>
<td>139, 148</td>
<td></td>
</tr>
<tr>
<td>DR 343</td>
<td>Automated Validation System for the Offshore Operations Committee Mud and Produced Water Discharge Model</td>
<td>2002</td>
<td>See Listing</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 346</td>
<td>Results of Range-Finding Testing of Leak Detection and Leak Location Technologies for Underground Pipelines</td>
<td>1998</td>
<td>J34600</td>
<td>$85.00</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Pub 347</td>
<td>Hazardous Air Pollutant Emissions from Gasoline Loading Operations at Bulk Gasoline Terminals</td>
<td>1998</td>
<td>J34700</td>
<td>$85.00</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>DR 351</td>
<td>Proceedings: Workshop to Identify Promising Technologies for the Treatment of Produced Water Toxicity</td>
<td>1996</td>
<td>I00351</td>
<td>$75.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Pub 351</td>
<td>Overview of Soil Permeability Test Methods</td>
<td>1999</td>
<td>J35100</td>
<td>$93.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Pub 353</td>
<td>Managing Systems Integrity of Terminal and Tank Facilities</td>
<td>1st</td>
<td>2006</td>
<td>J35300</td>
<td>$150.00</td>
<td>148</td>
</tr>
<tr>
<td>TR 400</td>
<td>Toluene: A Preliminary Study of the Effect of Toluene on Pregnancy of the Rat</td>
<td>1993</td>
<td>I00400</td>
<td>$63.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 401</td>
<td>Toluene: The Effect on Pregnancy of the Rat</td>
<td>1993</td>
<td>I00401</td>
<td>$90.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 402</td>
<td>Toluene to Freshwater Algae, Selenastrum capricornutum</td>
<td>1995</td>
<td>I00402</td>
<td>$63.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TR 403</td>
<td>Closed-Patch Repeated Insult Dermal Sensitization Study of TAME in Guinea Pigs</td>
<td>1995</td>
<td>I00403</td>
<td>$63.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 404</td>
<td>An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part I—Rats</td>
<td>1995</td>
<td>I00404</td>
<td>$81.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 405</td>
<td>An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part II—Mice</td>
<td>1995</td>
<td>I00405</td>
<td>$63.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 406</td>
<td>TAME—Acute Toxicity to Daphnids Under Flow-Through Conditions</td>
<td>1995</td>
<td>I00406</td>
<td>$63.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TR 407</td>
<td>TAME—Acute Toxicity to Mycid Shrimp (Mysidopsis bahia) Under Static Renewal Conditions</td>
<td>1995</td>
<td>I00407</td>
<td>$63.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TR 408</td>
<td>TAME—Acute Toxicity to Rainbow Trout Under Flow-Through Conditions</td>
<td>1995</td>
<td>I00408</td>
<td>$64.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TR 409</td>
<td>Primary Skin Irritation Study in Rabbits of API 91-01 and PS-6 Unleaded Test Gasolines</td>
<td>1995</td>
<td>I00409</td>
<td>$63.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 410</td>
<td>Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells Exposed to Tertiary Amyl Methyl Ether (TAME)</td>
<td>1996</td>
<td>I00410</td>
<td>$90.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 411</td>
<td>Chinese Hamster Ovary (CHO) HPRT Mutation Assay of Tertiary Amyl Methyl Ether (TAME)</td>
<td>1996</td>
<td>I00411</td>
<td>$90.00</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>TR 412</td>
<td>A Range-Finding Developmental Inhalation Toxicity Study of Unleaded Gasoline Vapor Condensate in Rats and Mice via Whole-Body Exposure and an Inhalation Developmental Toxicity Study of Unleaded Gasoline Vapor Condensate in the Rat via Whole-Body Exposure</td>
<td>1998</td>
<td>I00412</td>
<td>$100.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>TR 425</td>
<td>Options for Minimizing Environmental Impacts of Inland Spill Response</td>
<td>2016</td>
<td>I42500</td>
<td>See Listing</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>RP 500</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2</td>
<td>3rd</td>
<td>2012</td>
<td>C50003</td>
<td>$287.00</td>
<td>106</td>
</tr>
<tr>
<td>RP 500</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2—Kazakh</td>
<td>3rd</td>
<td>2012</td>
<td>C50003K</td>
<td>$231.00</td>
<td>106, 170</td>
</tr>
<tr>
<td>RP 505</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2</td>
<td>2nd</td>
<td>2018</td>
<td>C50502</td>
<td>$224.00</td>
<td>106</td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration</td>
<td>10th</td>
<td>2014</td>
<td>C51010</td>
<td>$232.00</td>
<td>91</td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Chinese</td>
<td>10th</td>
<td>2014</td>
<td>C51010C</td>
<td>$163.00</td>
<td>91, 168</td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish</td>
<td>10th</td>
<td>2014</td>
<td>C51010S</td>
<td>$232.00</td>
<td>91, 176</td>
</tr>
<tr>
<td>Std 520, Part I</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection</td>
<td>9th</td>
<td>2014</td>
<td>C520109</td>
<td>$350.00</td>
<td>102</td>
</tr>
<tr>
<td>Std 520, Part II</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation</td>
<td>9th</td>
<td>2014</td>
<td>C520109R</td>
<td>$280.00</td>
<td>102, 173</td>
</tr>
<tr>
<td>RP 520, Part II</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation</td>
<td>6th</td>
<td>2015</td>
<td>C520206</td>
<td>$268.00</td>
<td>102</td>
</tr>
<tr>
<td>Std 521</td>
<td>Pressure-Relieving and Depressurizing Systems</td>
<td>6th</td>
<td>2014</td>
<td>C52106</td>
<td>$283.00</td>
<td>102</td>
</tr>
<tr>
<td>Std 526</td>
<td>Flanged Steel Pressure-Relief Valves</td>
<td>7th</td>
<td>2017</td>
<td>C52607</td>
<td>$216.00</td>
<td>102</td>
</tr>
<tr>
<td>Std 527</td>
<td>Seat Tightness of Pressure Relief Valves</td>
<td>4th</td>
<td>2014</td>
<td>C52704</td>
<td>$93.00</td>
<td>102</td>
</tr>
<tr>
<td>Std 530</td>
<td>Calculation of Heater-Tube Thickness in Petroleum Refineries</td>
<td>7th</td>
<td>2015</td>
<td>C53007</td>
<td>$299.00</td>
<td>107</td>
</tr>
<tr>
<td>RP 534</td>
<td>Heat Recovery Steam Generators</td>
<td>2nd</td>
<td>2007</td>
<td>C53402</td>
<td>$98.00</td>
<td>107</td>
</tr>
<tr>
<td>RP 535</td>
<td>Burners for Fired Heaters in General Refinery Services</td>
<td>3rd</td>
<td>2014</td>
<td>C53503</td>
<td>$155.00</td>
<td>107</td>
</tr>
<tr>
<td>Std 536</td>
<td>Post-Combustion NOx Control for Equipment in General Refinery and Petrochemical Services</td>
<td>3rd</td>
<td>2017</td>
<td>C53603</td>
<td>$173.00</td>
<td>107</td>
</tr>
<tr>
<td>Std 537</td>
<td>Flare Details for Petroleum, Petrochemical, and Natural Gas Industries</td>
<td>3rd</td>
<td>2017</td>
<td>C53703</td>
<td>$247.00</td>
<td>107</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 538</td>
<td>Industrial Fired Boilers for General Refinery and Petrochemical Service</td>
<td>1st</td>
<td>2015</td>
<td>C53801</td>
<td>$314.00</td>
<td>107</td>
</tr>
<tr>
<td>RP 540</td>
<td>Electrical Installations in Petroleum Processing Plants</td>
<td>4th</td>
<td>1999</td>
<td>C54004</td>
<td>$194.00</td>
<td>106</td>
</tr>
<tr>
<td>Std 541</td>
<td>Form-Wound Squirrel Cage Induction Motors—375 kW (500 Horsepower) and Larger</td>
<td>5th</td>
<td>2014</td>
<td>C54105</td>
<td>$196.00</td>
<td>106</td>
</tr>
<tr>
<td>RP 545</td>
<td>Recommended Practice for Lightning Protection of Aboveground Storage Tanks for Flammable or Combustible Liquids</td>
<td>1st</td>
<td>2009</td>
<td>C54501</td>
<td>$104.00</td>
<td>106</td>
</tr>
<tr>
<td>TR 545-A</td>
<td>Verification of Lightning Protection Requirements for Above Ground Hydrocarbon Storage Tanks</td>
<td>1st</td>
<td>2009</td>
<td>CLP2009</td>
<td>$138.00</td>
<td>106</td>
</tr>
<tr>
<td>Std 546</td>
<td>Brushless Synchronous Machines—500 kVA and Larger</td>
<td>3rd</td>
<td>2008</td>
<td>C54603</td>
<td>$214.00</td>
<td>106</td>
</tr>
<tr>
<td>Std 547</td>
<td>General Purpose Form-Wound Squirrel Cage Induction Motors—185 kW (250 hp) Through 2240 kW (3000 hp)</td>
<td>2nd</td>
<td>2017</td>
<td>C54702</td>
<td>$121.00</td>
<td>106</td>
</tr>
<tr>
<td>RP 551</td>
<td>Process Measurement Instrumentation</td>
<td>2nd</td>
<td>2016</td>
<td>C55102</td>
<td>$162.00</td>
<td>108</td>
</tr>
<tr>
<td>RP 552</td>
<td>Transmission Systems</td>
<td>1st</td>
<td>1994</td>
<td>C55201</td>
<td>$112.00</td>
<td>108</td>
</tr>
<tr>
<td>RP 553</td>
<td>Refinery Valves and Accessories for Control and Safety Instrumented Systems</td>
<td>2nd</td>
<td>2012</td>
<td>C55302</td>
<td>$149.00</td>
<td>108</td>
</tr>
<tr>
<td>API 555</td>
<td>Process Analyzers</td>
<td>3rd</td>
<td>2013</td>
<td>C55503</td>
<td>$196.00</td>
<td>106</td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters</td>
<td>2nd</td>
<td>2011</td>
<td>C55602</td>
<td>$157.00</td>
<td>106</td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian</td>
<td>2nd</td>
<td>2011</td>
<td>C55602R</td>
<td>$126.00</td>
<td>106, 173</td>
</tr>
<tr>
<td>RP 557</td>
<td>Guide to Advanced Control Systems</td>
<td>2nd</td>
<td>2013</td>
<td>C55702</td>
<td>$113.00</td>
<td>109</td>
</tr>
<tr>
<td>Std 560</td>
<td>Fired Heaters for General Refinery Service</td>
<td>5th</td>
<td>2016</td>
<td>C56005</td>
<td>$345.00</td>
<td>108</td>
</tr>
<tr>
<td>API 570</td>
<td>Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems</td>
<td>4th</td>
<td>2016</td>
<td>C57004</td>
<td>$185.00</td>
<td>91, 103</td>
</tr>
<tr>
<td>RP 571</td>
<td>Damage Mechanisms Affecting Fixed Equipment in the Refining Industry</td>
<td>2nd</td>
<td>2011</td>
<td>C57102</td>
<td>$339.00</td>
<td>91, 110</td>
</tr>
<tr>
<td>RP 571</td>
<td>Damage Mechanisms Affecting Fixed Equipment in the Refining Industry—Chinese</td>
<td>2nd</td>
<td>2011</td>
<td>C57102C</td>
<td>$238.00</td>
<td>91, 111, 168</td>
</tr>
<tr>
<td>RP 572</td>
<td>Inspection Practices for Pressure Vessels</td>
<td>4th</td>
<td>2016</td>
<td>C57204</td>
<td>$237.00</td>
<td>91</td>
</tr>
<tr>
<td>RP 573</td>
<td>Inspection of Fired Boilers and Heaters</td>
<td>3rd</td>
<td>2013</td>
<td>C57303</td>
<td>$155.00</td>
<td>91, 108</td>
</tr>
<tr>
<td>RP 574</td>
<td>Inspection Practices for Piping System Components</td>
<td>4th</td>
<td>2016</td>
<td>C57404</td>
<td>$216.00</td>
<td>91, 103</td>
</tr>
<tr>
<td>RP 575</td>
<td>Inspection Practices for Atmospheric and Low-Pressure Storage Tanks</td>
<td>3rd</td>
<td>2014</td>
<td>C57503</td>
<td>$196.00</td>
<td>92</td>
</tr>
<tr>
<td>RP 575</td>
<td>Inspection Practices for Atmospheric and Low-Pressure Storage Tanks—Chinese</td>
<td>3rd</td>
<td>2014</td>
<td>C57503C</td>
<td>$137.00</td>
<td>92, 169</td>
</tr>
<tr>
<td>RP 576</td>
<td>Inspection of Pressure-Relieving Devices</td>
<td>4th</td>
<td>2017</td>
<td>C57604</td>
<td>$216.00</td>
<td>92, 102</td>
</tr>
<tr>
<td>RP 576</td>
<td>Inspection of Pressure-Relieving Devices—Spanish</td>
<td>4th</td>
<td>2017</td>
<td>C57604S</td>
<td>$216.00</td>
<td>92, 103, 176</td>
</tr>
<tr>
<td>RP 577</td>
<td>Welding Processes, Inspection, and Metallurgy</td>
<td>2nd</td>
<td>2013</td>
<td>C57702</td>
<td>$232.00</td>
<td>92</td>
</tr>
<tr>
<td>RP 577</td>
<td>Welding Processes, Inspection, and Metallurgy—Chinese</td>
<td>2nd</td>
<td>2013</td>
<td>C57702CN1420</td>
<td>$163.00</td>
<td>92, 169</td>
</tr>
<tr>
<td>RP 578</td>
<td>Guidelines for a Material Verification Program (MVP) for New and Existing Assets</td>
<td>3rd</td>
<td>2018</td>
<td>C57803</td>
<td>$216.00</td>
<td>92, 103</td>
</tr>
<tr>
<td>API 579-1/ ASME FFS-1</td>
<td>Fitness-For-Service</td>
<td>3rd</td>
<td>2016</td>
<td>C57903</td>
<td>See Listing</td>
<td>92</td>
</tr>
<tr>
<td>API 579-2/ ASME FFS-2</td>
<td>Fitness-For-Service Example Problem Manual</td>
<td>1st</td>
<td>2009</td>
<td>C57921</td>
<td>$160.00</td>
<td>93</td>
</tr>
<tr>
<td>RP 580</td>
<td>Risk-Based Inspection</td>
<td>3rd</td>
<td>2016</td>
<td>C58003</td>
<td>$273.00</td>
<td>93</td>
</tr>
<tr>
<td>RP 581</td>
<td>Risk-Based Inspection Methodology</td>
<td>3rd</td>
<td>2016</td>
<td>C58103</td>
<td>$491.00</td>
<td>93</td>
</tr>
<tr>
<td>RP 582</td>
<td>Welding Guidelines for the Chemical, Oil, and Gas Industries</td>
<td>3rd</td>
<td>2016</td>
<td>C58203</td>
<td>$141.00</td>
<td>93, 111</td>
</tr>
<tr>
<td>RP 583</td>
<td>Corrosion Under Insulation and Fireproofing</td>
<td>1st</td>
<td>2014</td>
<td>C58301</td>
<td>$175.00</td>
<td>93</td>
</tr>
<tr>
<td>RP 584</td>
<td>Integrity Operating Windows</td>
<td>1st</td>
<td>2014</td>
<td>C58401</td>
<td>$124.00</td>
<td>94</td>
</tr>
<tr>
<td>RP 585</td>
<td>Pressure Equipment Integrity Incident Investigation</td>
<td>1st</td>
<td>2014</td>
<td>C58501</td>
<td>$129.00</td>
<td>94</td>
</tr>
<tr>
<td>RP 591</td>
<td>Process Valve Qualification Procedure</td>
<td>5th</td>
<td>2014</td>
<td>C59105</td>
<td>$103.00</td>
<td>103</td>
</tr>
<tr>
<td>Std 594</td>
<td>Check Valves: Flanged, Lug, Wafer, and Butt-Welding</td>
<td>8th</td>
<td>2017</td>
<td>C59408</td>
<td>$121.00</td>
<td>103</td>
</tr>
<tr>
<td>Std 598</td>
<td>Valve Inspection and Testing</td>
<td>10th</td>
<td>2016</td>
<td>C59810</td>
<td>$99.00</td>
<td>103</td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends</td>
<td>7th</td>
<td>2013</td>
<td>C59907</td>
<td>$82.00</td>
<td>103</td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>7th</td>
<td>2013</td>
<td>C59907R</td>
<td>$66.00</td>
<td>103, 176</td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets</td>
<td>13th</td>
<td>2015</td>
<td>C60013</td>
<td>$139.00</td>
<td>104</td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Chinese</td>
<td>13th</td>
<td>2015</td>
<td>C60013C</td>
<td>$98.00</td>
<td>104, 169</td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries</td>
<td>10th</td>
<td>2015</td>
<td>C60210</td>
<td>$129.00</td>
<td>104</td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries—Russian</td>
<td>10th</td>
<td>2015</td>
<td>C60210R</td>
<td>$100.00</td>
<td>104, 173</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>603</td>
<td>Corrosion-Resistant, Bolted Bonnet Gate Valves—Flanged and Butt-Welding Ends</td>
<td>9th</td>
<td>2018</td>
<td>C60309</td>
<td>$98.00</td>
<td>104</td>
</tr>
<tr>
<td>607</td>
<td>Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seats</td>
<td>7th</td>
<td>2016</td>
<td>C60707</td>
<td>$100.00</td>
<td>104</td>
</tr>
<tr>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends</td>
<td>5th</td>
<td>2012</td>
<td>C60805</td>
<td>$112.00</td>
<td>105</td>
</tr>
<tr>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Chinese</td>
<td>5th</td>
<td>2012</td>
<td>C60805C</td>
<td>$79.00</td>
<td>105, 169</td>
</tr>
<tr>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>5th</td>
<td>2012</td>
<td>C60805R</td>
<td>$91.00</td>
<td>105, 173</td>
</tr>
<tr>
<td>609</td>
<td>Butterfly Valves: Double-Flanged, Lug- and Wafer-Type</td>
<td>8th</td>
<td>2016</td>
<td>C60908</td>
<td>$108.00</td>
<td>105</td>
</tr>
<tr>
<td>610/ISO 13709:2009</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries</td>
<td>11th</td>
<td>2010</td>
<td>CX61011</td>
<td>$265.00</td>
<td>94</td>
</tr>
<tr>
<td>610/ISO 13709:2009</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries—Russian</td>
<td>11th</td>
<td>2010</td>
<td>CX61011R</td>
<td>$212.00</td>
<td>94, 173</td>
</tr>
<tr>
<td>611</td>
<td>General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services</td>
<td>5th</td>
<td>2008</td>
<td>C61105</td>
<td>$151.00</td>
<td>94</td>
</tr>
<tr>
<td>612</td>
<td>Petroleum Petrochemical and Natural Gas Industries—Steam Turbines—Special-Purpose Applications</td>
<td>7th</td>
<td>2014</td>
<td>C61207</td>
<td>$227.00</td>
<td>94</td>
</tr>
<tr>
<td>611</td>
<td>Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services</td>
<td>5th</td>
<td>2003</td>
<td>C61305</td>
<td>$170.00</td>
<td>95</td>
</tr>
<tr>
<td>614/ISO 10438-1:2007</td>
<td>Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries</td>
<td>5th</td>
<td>2008</td>
<td>CX61402</td>
<td>$302.00</td>
<td>95</td>
</tr>
<tr>
<td>615</td>
<td>Valve Selection Guide</td>
<td>2nd</td>
<td>2016</td>
<td>C61502</td>
<td>$91.00</td>
<td>105</td>
</tr>
<tr>
<td>616</td>
<td>Gas Turbines for the Petroleum, Chemical, and Gas Industry Services</td>
<td>5th</td>
<td>2011</td>
<td>C61605</td>
<td>$212.00</td>
<td>95</td>
</tr>
<tr>
<td>617</td>
<td>Axial and Centrifugal Compressors and Expander-Compressors</td>
<td>8th</td>
<td>2014</td>
<td>C61707</td>
<td>$247.00</td>
<td>95</td>
</tr>
<tr>
<td>618</td>
<td>Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services</td>
<td>5th</td>
<td>2007</td>
<td>C61805</td>
<td>$186.00</td>
<td>95</td>
</tr>
<tr>
<td>619/ISO 10440-1:2007</td>
<td>Rotary-type Positive Displacement Compressors for Petroleum, Petrochemical and Natural Gas Industries</td>
<td>5th</td>
<td>2010</td>
<td>CX61905</td>
<td>$222.00</td>
<td>95</td>
</tr>
<tr>
<td>620</td>
<td>Design and Construction of Large, Welded, Low-Pressure Storage Tanks</td>
<td>12th</td>
<td>2013</td>
<td>C62012</td>
<td>$448.00</td>
<td>99</td>
</tr>
<tr>
<td>620</td>
<td>Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese</td>
<td>12th</td>
<td>2013</td>
<td>C62012C</td>
<td>$314.00</td>
<td>99, 169</td>
</tr>
<tr>
<td>622</td>
<td>Type Testing of Process Valve Packing for Fugitive Emissions</td>
<td>3rd</td>
<td>2018</td>
<td>C62203</td>
<td>$154.00</td>
<td>105</td>
</tr>
<tr>
<td>623</td>
<td>Steel Globe Valves—Flanged and Butt-Welding Ends, Bolted Bonnets</td>
<td>1st</td>
<td>2013</td>
<td>C62301</td>
<td>$77.00</td>
<td>105</td>
</tr>
<tr>
<td>624</td>
<td>Type Testing of Rising Stem Valves Equipped with Flexible Graphite Packing for Fugitive Emissions</td>
<td>1st</td>
<td>2014</td>
<td>C62401</td>
<td>$88.00</td>
<td>106</td>
</tr>
<tr>
<td>625</td>
<td>Tank Systems for Refrigerated Liquefied Gas Storage</td>
<td>1st</td>
<td>2010</td>
<td>C62501</td>
<td>$239.00</td>
<td>99</td>
</tr>
<tr>
<td>641</td>
<td>Type Testing of Quarter-Turn Valves for Fugitive Emissions</td>
<td>1st</td>
<td>2016</td>
<td>C64101</td>
<td>$77.00</td>
<td>105</td>
</tr>
<tr>
<td>650</td>
<td>Welded Tanks for Oil Storage</td>
<td>12th</td>
<td>2013</td>
<td>C65012</td>
<td>$489.00</td>
<td>99</td>
</tr>
<tr>
<td>650</td>
<td>Welded Tanks for Oil Storage—Chinese</td>
<td>12th</td>
<td>2013</td>
<td>C65012C</td>
<td>$343.00</td>
<td>99, 169</td>
</tr>
<tr>
<td>651</td>
<td>Cathodic Protection of Aboveground Petroleum Storage Tanks</td>
<td>4th</td>
<td>2014</td>
<td>C65104</td>
<td>$129.00</td>
<td>100</td>
</tr>
<tr>
<td>651</td>
<td>Cathodic Protection of Aboveground Petroleum Storage Tanks—Chinese</td>
<td>4th</td>
<td>2014</td>
<td>C65104C</td>
<td>$91.00</td>
<td>100, 169</td>
</tr>
<tr>
<td>652</td>
<td>Linings of Aboveground Petroleum Storage Tank Bottoms</td>
<td>4th</td>
<td>2014</td>
<td>C65204</td>
<td>$134.00</td>
<td>100</td>
</tr>
<tr>
<td>652</td>
<td>Linings of Aboveground Petroleum Storage Tank Bottoms—Chinese</td>
<td>4th</td>
<td>2014</td>
<td>C65204C</td>
<td>$94.00</td>
<td>100, 169</td>
</tr>
<tr>
<td>653</td>
<td>Tank Inspection, Repair, Alteration, and Reconstruction</td>
<td>5th</td>
<td>2014</td>
<td>C65305</td>
<td>$242.00</td>
<td>94, 100</td>
</tr>
<tr>
<td>653</td>
<td>Tank Inspection, Repair, Alteration, and Reconstruction—Chinese</td>
<td>5th</td>
<td>2014</td>
<td>C65305C</td>
<td>$170.00</td>
<td>94, 100, 169</td>
</tr>
<tr>
<td>660</td>
<td>Shell-and-Tube Heat Exchangers</td>
<td>9th</td>
<td>2015</td>
<td>C66009</td>
<td>$191.00</td>
<td>108</td>
</tr>
<tr>
<td>661</td>
<td>Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service</td>
<td>7th</td>
<td>2013</td>
<td>C66107</td>
<td>$258.00</td>
<td>108</td>
</tr>
<tr>
<td>663</td>
<td>Hairpin-Type Heat Exchangers</td>
<td>1st</td>
<td>2014</td>
<td>C66301</td>
<td>$180.00</td>
<td>108</td>
</tr>
<tr>
<td>664</td>
<td>Spiral Plate Heat Exchangers</td>
<td>1st</td>
<td>2014</td>
<td>C66401</td>
<td>$180.00</td>
<td>108</td>
</tr>
<tr>
<td>668</td>
<td>Brazed Aluminum Plate-Fin Heat Exchangers</td>
<td>1st</td>
<td>2018</td>
<td>C66801</td>
<td>$140.00</td>
<td>108</td>
</tr>
<tr>
<td>670</td>
<td>Machinery Protection Systems</td>
<td>5th</td>
<td>2014</td>
<td>C67005</td>
<td>$201.00</td>
<td>95</td>
</tr>
<tr>
<td>671/ISO 10441-2007</td>
<td>Special Purpose Couplings for Petroleum, Chemical and Gas Industry Services</td>
<td>4th</td>
<td>2007</td>
<td>C67104</td>
<td>$172.00</td>
<td>95</td>
</tr>
<tr>
<td>672</td>
<td>Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services</td>
<td>4th</td>
<td>2004</td>
<td>C67204</td>
<td>$242.00</td>
<td>96</td>
</tr>
<tr>
<td>673</td>
<td>Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services</td>
<td>3rd</td>
<td>2014</td>
<td>C67303</td>
<td>$175.00</td>
<td>96</td>
</tr>
<tr>
<td>674</td>
<td>Positive Displacement Pumps—Reciprocating</td>
<td>3rd</td>
<td>2010</td>
<td>C67403</td>
<td>$192.00</td>
<td>96</td>
</tr>
<tr>
<td>675</td>
<td>Positive Displacement Pumps—Controlled Volume for Petroleum, Chemical, and Gas Industry Services</td>
<td>3rd</td>
<td>2012</td>
<td>C67503</td>
<td>$131.00</td>
<td>96</td>
</tr>
<tr>
<td>676</td>
<td>Positive Displacement Pumps—Rotary</td>
<td>3rd</td>
<td>2009</td>
<td>C67603</td>
<td>$155.00</td>
<td>96</td>
</tr>
<tr>
<td>676</td>
<td>Positive Displacement Pumps—Rotary—Chinese</td>
<td>3rd</td>
<td>2009</td>
<td>C67603CN845</td>
<td>$108.00</td>
<td>96, 169</td>
</tr>
<tr>
<td>677</td>
<td>General Purpose Gear Units for Petroleum, Chemical and Gas Industry Services</td>
<td>3rd</td>
<td>2006</td>
<td>C67703</td>
<td>$170.00</td>
<td>96</td>
</tr>
<tr>
<td>681</td>
<td>Liquid Ring Vacuum Pumps and Compressors for Petroleum, Chemical, and Gas Industry Services</td>
<td>1st</td>
<td>1998</td>
<td>C68101</td>
<td>$146.00</td>
<td>96</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Std 682</td>
<td>Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps</td>
<td>4th</td>
<td>2014</td>
<td>C68204</td>
<td>$263.00</td>
<td></td>
</tr>
<tr>
<td>Std 682</td>
<td>Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Chinese</td>
<td>4th</td>
<td>2014</td>
<td>C68204C</td>
<td>$184.00</td>
<td></td>
</tr>
<tr>
<td>Std 685</td>
<td>Sealless Centrifugal Pumps for Petroleum, Petrochemical, and Gas</td>
<td>2nd</td>
<td>2011</td>
<td>C68502</td>
<td>$212.00</td>
<td></td>
</tr>
<tr>
<td>RP 686</td>
<td>Recommended Practice for Machinery Installation and Installation Design</td>
<td>2nd</td>
<td>2009</td>
<td>C68602</td>
<td>$193.00</td>
<td></td>
</tr>
<tr>
<td>RP 687</td>
<td>Rotor Repair</td>
<td>1st</td>
<td>2001</td>
<td>C68701</td>
<td>$275.00</td>
<td></td>
</tr>
<tr>
<td>Std 688</td>
<td>Pulsation and Vibration Control in Positive Displacement Machinery</td>
<td>1st</td>
<td>2012</td>
<td>C68801</td>
<td>$161.00</td>
<td></td>
</tr>
<tr>
<td>Std 691</td>
<td>Risk-Based Machinery Management</td>
<td>1st</td>
<td>2017</td>
<td>C69101</td>
<td>$168.00</td>
<td></td>
</tr>
<tr>
<td>Std 692</td>
<td>Dry Gas Sealing Systems for Axial, Centrifugal, and Rotary Screw</td>
<td>1st</td>
<td>2018</td>
<td>C69201</td>
<td>$170.00</td>
<td></td>
</tr>
<tr>
<td>RP 751</td>
<td>Safe Operation of Hydrofluoric Acid Aylation Units</td>
<td>4th</td>
<td>2013</td>
<td>K75104</td>
<td>$155.00</td>
<td></td>
</tr>
<tr>
<td>RP 752</td>
<td>Management of Hazards Associated with Location of Process Plant</td>
<td>3rd</td>
<td>2009</td>
<td>K75203</td>
<td>$145.00</td>
<td></td>
</tr>
<tr>
<td>RP 753</td>
<td>Management of Hazards Associated with Location of Process Plant</td>
<td>1st</td>
<td>2007</td>
<td>K75301</td>
<td>$145.00</td>
<td></td>
</tr>
<tr>
<td>RP 754</td>
<td>Process Safety Performance Indicators for the Refining and Petrochemical Industries</td>
<td>2nd</td>
<td>2016</td>
<td>K75402</td>
<td>$155.00</td>
<td></td>
</tr>
<tr>
<td>RP 755</td>
<td>Fatigue Risk Management Systems for Personnel in the Refining and Petrochemical Industries</td>
<td>1st</td>
<td>2010</td>
<td>K75501</td>
<td>$85.00</td>
<td></td>
</tr>
<tr>
<td>TR 756-1</td>
<td>Process Plant Tent Responses to Vapor Cloud Explosions—Results of the American Petroleum Institute Tent Testing Program</td>
<td>1st</td>
<td>2014</td>
<td>C756101</td>
<td>$196.00</td>
<td></td>
</tr>
<tr>
<td>RP 756</td>
<td>Management of Hazards Associated with Location of Process Plant Tents</td>
<td>1st</td>
<td>2014</td>
<td>C75601</td>
<td>$129.00</td>
<td></td>
</tr>
<tr>
<td>Std 780</td>
<td>Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries</td>
<td>1st</td>
<td>2013</td>
<td>K78001</td>
<td>$196.00</td>
<td></td>
</tr>
<tr>
<td>RP 781</td>
<td>Facility Security Plan Methodology for the Oil and Natural Gas Industries</td>
<td>1st</td>
<td>2016</td>
<td>K78101</td>
<td>$149.00</td>
<td></td>
</tr>
<tr>
<td>Pub 800</td>
<td>Literature Survey: Subsurface and Groundwater Protection Related to Petroleum Refinery Operations</td>
<td>1st</td>
<td>1988</td>
<td>C80000</td>
<td>$95.00</td>
<td></td>
</tr>
<tr>
<td>TR 932-A</td>
<td>A Study of Corrosion in Hydroprocessing Reactor Effluent Air Cooler Systems</td>
<td>2nd</td>
<td>2002</td>
<td>C932A0</td>
<td>$156.00</td>
<td></td>
</tr>
<tr>
<td>Pub 932-B</td>
<td>Design, Materials, Fabrication, Operation, and Inspection Guidelines for Corrosion Control in Hydroprocessing Reactor Effluent Air Cooler (REAC) Systems</td>
<td>2nd</td>
<td>2012</td>
<td>C932B02</td>
<td>$265.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-A</td>
<td>Materials and Fabrication of 2 1/4Cr-1Mo, 2 1/4Cr-1Mo-W, 3Cr-1Mo, and 3Cr-1Mo-Nb Steel Heavy Wall Pressure Vessels for High Temperature, High-Pressure Hydrogen Service</td>
<td>2nd</td>
<td>2008</td>
<td>C934A02</td>
<td>$110.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-A</td>
<td>Materials and Fabrication of 2 1/4Cr-1Mo, 2 1/4Cr-1Mo-W, 3Cr-1Mo, and 3Cr-1Mo-Nb Steel Heavy Wall Pressure Vessels for High Temperature, High-Pressure Hydrogen Service—Russian</td>
<td>2nd</td>
<td>2008</td>
<td>C934A02R</td>
<td>$89.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-B</td>
<td>Fabrication Considerations for Vanadium-Modified Cr-Mo Steel Heavy Wall Pressure Vessels</td>
<td>1st</td>
<td>2011</td>
<td>C934B01</td>
<td>$139.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-C</td>
<td>Materials and Fabrication of 1 1/4Cr-1Mo Heavy Wall Pressure Vessels for High Pressure Hydrogen Service Operating at or Below 825 °F (441 °C)</td>
<td>1st</td>
<td>2008</td>
<td>C934C01</td>
<td>$110.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-C</td>
<td>Materials and Fabrication of 1 1/4Cr-1Mo Heavy Wall Pressure Vessels for High Pressure Hydrogen Service Operating at or Below 825 °F (441 °C)—Russian</td>
<td>1st</td>
<td>2008</td>
<td>C934C01R</td>
<td>$89.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-D</td>
<td>Technical Report on the Materials and Fabrication Issues of 1 1/4Cr-1Mo and 1 1/2Cr-1Mo Steel Pressure Vessels</td>
<td>1st</td>
<td>2010</td>
<td>C934D01</td>
<td>$139.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-E</td>
<td>Recommended Practice for Materials and Fabrication of 1 1/4Cr-1 Mo Steel Pressure Vessels for Service Above 825 °F (440 °C)</td>
<td>2nd</td>
<td>2018</td>
<td>C934E02</td>
<td>$140.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-F</td>
<td>Impact of Hydrogen Embrittlement on Minimum Pressurization Temperature for Thick-Wall Cr-Mo Steel Reactors in High-Pressure H2 Service—Initial Technical Basis for RP 934-F</td>
<td>1st</td>
<td>2017</td>
<td>C934F01</td>
<td>$192.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-F</td>
<td>Literature Review of Fracture Mechanics-Based Experimental Data for Internal Hydrogen-Assisted Cracking of Vanadium-Modified 2 1/4Cr-1Mo Steel</td>
<td>1st</td>
<td>2017</td>
<td>C934F201</td>
<td>$128.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-F</td>
<td>Subcritical Cracking of Modern 2 1/4Cr-1Mo-1W Steel Due to Dissolved Internal Hydrogen and H2 Environment, Research Report</td>
<td>1st</td>
<td>2017</td>
<td>C934F01</td>
<td>$180.00</td>
<td></td>
</tr>
<tr>
<td>TR 934-F</td>
<td>The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels</td>
<td>1st</td>
<td>2018</td>
<td>C934F401</td>
<td>$180.00</td>
<td></td>
</tr>
<tr>
<td>RP 934-G</td>
<td>Design, Fabrication, Operational Effects, Inspection, Assessment, and Repair of Coke Drums and Peripheral Components in Delayed Coking Units</td>
<td>1st</td>
<td>2016</td>
<td>C934G01</td>
<td>$155.00</td>
<td></td>
</tr>
<tr>
<td>Pub 935</td>
<td>Thermal Conductivity Measurement Study of Refractory Castables</td>
<td>1st</td>
<td>1999</td>
<td>C93501</td>
<td>$62.00</td>
<td></td>
</tr>
<tr>
<td>Std 936</td>
<td>Refractory Installation Quality Control—Inspection and Testing Monolithic Refractory Linings and Materials</td>
<td>4th</td>
<td>2014</td>
<td>C93604</td>
<td>$155.00</td>
<td></td>
</tr>
<tr>
<td>Pub 937</td>
<td>Evaluation of Design Criteria for Storage Tanks with Frangible Roof Joints</td>
<td>1st</td>
<td>1996</td>
<td>C93701</td>
<td>$139.00</td>
<td></td>
</tr>
<tr>
<td>Pub 937-A</td>
<td>Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell and Shell-to-Bottom Joints</td>
<td>1st</td>
<td>2005</td>
<td>C937A0</td>
<td>$126.00</td>
<td></td>
</tr>
<tr>
<td>Pub 938-A</td>
<td>An Experimental Study of Causes and Repair of Cracking of 1 1/4Cr-1 Mo Steel Equipment</td>
<td>1st</td>
<td>1996</td>
<td>C938B01</td>
<td>$169.00</td>
<td></td>
</tr>
<tr>
<td>Publ Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>936-B</td>
<td>Use of 9Cr-1Mo-V (Grade 91) Steel in the Oil Refining Industry</td>
<td>1st</td>
<td>2008</td>
<td>C936801</td>
<td>$112.00</td>
<td>114</td>
</tr>
<tr>
<td>938-A</td>
<td>Research Report on Characterization and Monitoring of Cracking in Wet H₂S Service</td>
<td>1st</td>
<td>1994</td>
<td>C938801</td>
<td>$161.00</td>
<td>114</td>
</tr>
<tr>
<td>938-B</td>
<td>Repair and Remediation Strategies for Equipment Operating in Wet H₂S Service</td>
<td>1st</td>
<td>2002</td>
<td>C938801</td>
<td>$176.00</td>
<td>114</td>
</tr>
<tr>
<td>939-C</td>
<td>Guidelines for Avoiding Sulfidation (Sulfnic) Corrosion Failures in Oil Refineries</td>
<td>1st</td>
<td>2009</td>
<td>C939801</td>
<td>$117.00</td>
<td>114</td>
</tr>
<tr>
<td>939-D</td>
<td>Stress Corrosion Cracking of Carbon Steel in Fuel Grade Ethanol— Review, Experience Survey, Field Monitoring, and Laboratory Testing</td>
<td>2nd</td>
<td>2007</td>
<td>C939801</td>
<td>$165.00</td>
<td>101, 104</td>
</tr>
<tr>
<td>939-E</td>
<td>Identification, Repair, and Mitigation of Cracking of Steel Equipment in Fuel Ethanol Service</td>
<td>2nd</td>
<td>2013</td>
<td>C939801</td>
<td>$165.00</td>
<td>114</td>
</tr>
<tr>
<td>939-B</td>
<td>Steel for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants</td>
<td>8th</td>
<td>2016</td>
<td>C940801</td>
<td>$144.00</td>
<td>115</td>
</tr>
<tr>
<td>941</td>
<td>The Technical Basis Document for API RP 941</td>
<td>1st</td>
<td>2008</td>
<td>C941801</td>
<td>$204.00</td>
<td>115</td>
</tr>
<tr>
<td>942-A</td>
<td>Materials, Fabrication, and Repair Considerations for Hydrogen Reformer Furnace Outlet Pigtauls and Manifolds</td>
<td>1st</td>
<td>2014</td>
<td>C942801</td>
<td>$144.00</td>
<td>115</td>
</tr>
<tr>
<td>942-B</td>
<td>Material, Fabrication, and Repair Considerations for Austenitic Alloys Subject to Embrittlement and Cracking in High Temperature 565 °C to 760 °C (1050 °F to 1400 °F) Refinery Services</td>
<td>1st</td>
<td>2017</td>
<td>C942801</td>
<td>$178.00</td>
<td>115</td>
</tr>
<tr>
<td>959</td>
<td>Characterization Study of Tempe Embrittlement of Chromium-Molybdenum Steels</td>
<td>1st</td>
<td>1982</td>
<td>C95801</td>
<td>$162.00</td>
<td>115</td>
</tr>
<tr>
<td>970</td>
<td>Corrosion Control Documents</td>
<td>1st</td>
<td>2017</td>
<td>C97001</td>
<td>$139.00</td>
<td>116</td>
</tr>
<tr>
<td>976</td>
<td>Refractory Installation Quality Control—Inspection and Testing of AES/RCF Fiber Linings and Materials</td>
<td>1st</td>
<td>2018</td>
<td>C976801</td>
<td>$124.00</td>
<td>116</td>
</tr>
<tr>
<td>977</td>
<td>ASTM C704 Test Reliability Reduced to Allow Further Optimization of Erosion-Resistant Refractories for Critical Oil Refining Applications</td>
<td>1st</td>
<td>2018</td>
<td>C977801</td>
<td>$114.00</td>
<td>116</td>
</tr>
<tr>
<td>979</td>
<td>Applications of Refractory Lining Materials</td>
<td>1st</td>
<td>2018</td>
<td>C979801</td>
<td>$135.00</td>
<td>116</td>
</tr>
<tr>
<td>980</td>
<td>Monolithic Refractories: Installation and Dryout</td>
<td>1st</td>
<td>2018</td>
<td>C980801</td>
<td>$149.00</td>
<td>116</td>
</tr>
<tr>
<td>997</td>
<td>Comprehensive Report of API Crude Oil Characterization Measurements</td>
<td>1st</td>
<td>2000</td>
<td>C997801</td>
<td>$217.00</td>
<td>110</td>
</tr>
<tr>
<td>1004</td>
<td>Bottom Loading and Vapor Recovery for MC-306 & DOT-406 Tank Motor Vehicles</td>
<td>8th</td>
<td>2003</td>
<td>A10084</td>
<td>$114.00</td>
<td>78, 89</td>
</tr>
<tr>
<td>1007</td>
<td>Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles</td>
<td>1st</td>
<td>2001</td>
<td>A10078</td>
<td>$40.00</td>
<td>78, 89</td>
</tr>
<tr>
<td>1102</td>
<td>Steel Pipelines Crossing Railroads and Highways</td>
<td>7th</td>
<td>2007</td>
<td>D11021</td>
<td>$119.00</td>
<td>83</td>
</tr>
<tr>
<td>1104</td>
<td>Welding of Pipelines and Related Facilities</td>
<td>21st</td>
<td>2013</td>
<td>D110421</td>
<td>$355.00</td>
<td>83, 89</td>
</tr>
<tr>
<td>1104-KZ</td>
<td>Welding of Pipelines and Related Facilities—Kazakh</td>
<td>21st</td>
<td>2013</td>
<td>D110421K</td>
<td>$284.00</td>
<td>84, 89, 170</td>
</tr>
<tr>
<td>1104-PT</td>
<td>Welding of Pipelines and Related Facilities—Portuguese</td>
<td>21st</td>
<td>2013</td>
<td>D110421P</td>
<td>$355.00</td>
<td>84, 89, 170</td>
</tr>
<tr>
<td>1104-RU</td>
<td>Welding of Pipelines and Related Facilities—Russian</td>
<td>21st</td>
<td>2013</td>
<td>D110421R</td>
<td>$284.00</td>
<td>84, 89, 174</td>
</tr>
<tr>
<td>1104-SP</td>
<td>Welding of Pipelines and Related Facilities—Spanish</td>
<td>21st</td>
<td>2013</td>
<td>D110421SP</td>
<td>$355.00</td>
<td>84, 89, 176</td>
</tr>
<tr>
<td>1109</td>
<td>Line Markers and Signage for Hazardous Liquid Pipelines and Facilities</td>
<td>5th</td>
<td>2017</td>
<td>D11095</td>
<td>$101.00</td>
<td>84</td>
</tr>
<tr>
<td>1110</td>
<td>Recommended Practice for the Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids, or Carbon Dioxide</td>
<td>6th</td>
<td>2013</td>
<td>D11106</td>
<td>$98.00</td>
<td>84</td>
</tr>
<tr>
<td>1111</td>
<td>Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design)</td>
<td>5th</td>
<td>2015</td>
<td>D11115</td>
<td>$144.00</td>
<td>84</td>
</tr>
<tr>
<td>1112</td>
<td>Developing a Highway Emergency Response Plan for Incidents Involving Hazardous Materials</td>
<td>3rd</td>
<td>1997</td>
<td>A11123</td>
<td>$78.00</td>
<td>80, 89</td>
</tr>
<tr>
<td>1115</td>
<td>Design and Operation of Solution-Mined Salt Caverns Used for Liquid Hydrocarbon Storage</td>
<td>2nd</td>
<td>2018</td>
<td>D11152</td>
<td>$156.00</td>
<td>84</td>
</tr>
<tr>
<td>1117</td>
<td>Recommended Practice for Movement in In-Service Pipelines</td>
<td>3rd</td>
<td>2008</td>
<td>D11173</td>
<td>$136.00</td>
<td>85</td>
</tr>
<tr>
<td>1130</td>
<td>Computational Pipeline Monitoring for Liquids</td>
<td>1st</td>
<td>2007</td>
<td>D11301</td>
<td>$115.00</td>
<td>85</td>
</tr>
<tr>
<td>1133</td>
<td>Managing Hydrotechnical Hazards for Pipelines Located Onshore or Within Coastal Areas</td>
<td>2nd</td>
<td>2017</td>
<td>D11332</td>
<td>$167.00</td>
<td>85</td>
</tr>
<tr>
<td>1145</td>
<td>Preparation of Response Plans for Oil Spills from Offshore Facilities</td>
<td>2nd</td>
<td>2018</td>
<td>D11452</td>
<td>$120.00</td>
<td>48</td>
</tr>
<tr>
<td>1149</td>
<td>Pipeline Variable Uncertainties and Their Effects on Leak Detectability</td>
<td>2nd</td>
<td>2015</td>
<td>D11492</td>
<td>$170.00</td>
<td>85</td>
</tr>
<tr>
<td>1149-3</td>
<td>Canine Oil Detection: Field Trials Report</td>
<td>2016</td>
<td>I114930</td>
<td>See Listing</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>1149-4</td>
<td>Canine Oil Detection (K9-SCAT) Guidelines</td>
<td>2016</td>
<td>I114940</td>
<td>See Listing</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>1151-4</td>
<td>Mechanical Treatment of Sand Beaches Historical Library Report</td>
<td>2016</td>
<td>I115140</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1153-1</td>
<td>Tidal Inlet Protection Strategies (TIPS): Phase 1—Final Report</td>
<td>2014</td>
<td>I115310</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1153-2</td>
<td>Tidal Inlet Protection Strategies (TIPS) Field Guide</td>
<td>2016</td>
<td>I115320</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1154-1</td>
<td>Sunken Oil Detection and Recovery</td>
<td>2016</td>
<td>I115410</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1154-2</td>
<td>Sunken Oil Detection and Recovery Operational Guide</td>
<td>2016</td>
<td>I115420</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1155-1</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Library Report</td>
<td>2016</td>
<td>I115510</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1155-2</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Fact Sheet</td>
<td>2016</td>
<td>I115520</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1155-3</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Job Aid</td>
<td>2016</td>
<td>I115530</td>
<td>See Listing</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>1160</td>
<td>Managing System Integrity for Hazardous Liquid Pipelines</td>
<td>2nd</td>
<td>2013</td>
<td>D116002</td>
<td>$221.00</td>
<td>85</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>RP</td>
<td>1161</td>
<td>Recommended Practice for Pipeline Operator Qualification (OQ)</td>
<td>3rd</td>
<td>2014</td>
<td>D11613</td>
<td>$216.00</td>
</tr>
<tr>
<td>RP</td>
<td>1162</td>
<td>Public Awareness Programs for Pipeline Operators</td>
<td>2nd</td>
<td>2010</td>
<td>D11622</td>
<td>$128.00</td>
</tr>
<tr>
<td>Std</td>
<td>1163</td>
<td>In-Line Inspection Systems Qualification</td>
<td>2nd</td>
<td>2013</td>
<td>D11632</td>
<td>$135.00</td>
</tr>
<tr>
<td>Std</td>
<td>1164</td>
<td>Pipeline SCADA Security</td>
<td>2nd</td>
<td>2009</td>
<td>D11642</td>
<td>$150.00</td>
</tr>
<tr>
<td>RP</td>
<td>1165</td>
<td>Recommended Practice for Pipeline SCADA Displays</td>
<td>1st</td>
<td>2007</td>
<td>D11651</td>
<td>$157.00</td>
</tr>
<tr>
<td>TR</td>
<td>1166</td>
<td>Excavation Monitoring and Observation for Damage Prevention</td>
<td>2nd</td>
<td>2015</td>
<td>D11662</td>
<td>$109.00</td>
</tr>
<tr>
<td>RP</td>
<td>1167</td>
<td>Pipeline SCADA Alarm Management</td>
<td>2nd</td>
<td>2016</td>
<td>D116702</td>
<td>$129.00</td>
</tr>
<tr>
<td>RP</td>
<td>1168</td>
<td>Pipeline Control Room Management</td>
<td>2nd</td>
<td>2015</td>
<td>D11682</td>
<td>$93.00</td>
</tr>
<tr>
<td>RP</td>
<td>1169</td>
<td>Recommended Practice for Basic Inspection Requirements—New Pipeline Construction</td>
<td>1st</td>
<td>2013</td>
<td>D11691</td>
<td>$118.00</td>
</tr>
<tr>
<td>RP</td>
<td>1170</td>
<td>Design and Operation of Solution-Mined Salt Caverns Used for Natural Gas Storage</td>
<td>1st</td>
<td>2015</td>
<td>D117001</td>
<td>$124.00</td>
</tr>
<tr>
<td>RP</td>
<td>1171</td>
<td>Functional Integrity of Natural Gas Storage in Depleted Hydrocarbon Reservoirs and Aquifer Reservoirs</td>
<td>1st</td>
<td>2015</td>
<td>D117101</td>
<td>$124.00</td>
</tr>
<tr>
<td>RP</td>
<td>1172</td>
<td>Recommended Practice for Construction Parallel to Existing Underground Transmission Pipelines</td>
<td>1st</td>
<td>2014</td>
<td>D11721</td>
<td>$88.00</td>
</tr>
<tr>
<td>RP</td>
<td>1173</td>
<td>Pipeline Safety Management Systems</td>
<td>1st</td>
<td>2015</td>
<td>D117301</td>
<td>$88.00</td>
</tr>
<tr>
<td>RP</td>
<td>1174</td>
<td>Recommended Practice for Onshore Hazardous Liquid Pipeline Emergency Preparedness and Response</td>
<td>1st</td>
<td>2015</td>
<td>D11741</td>
<td>$96.00</td>
</tr>
<tr>
<td>RP</td>
<td>1175</td>
<td>Pipeline Leak Detection—Program Management</td>
<td>1st</td>
<td>2015</td>
<td>D11751</td>
<td>$165.00</td>
</tr>
<tr>
<td>RP</td>
<td>1176</td>
<td>Recommended Practice for Assessment and Management of Cracking in Pipelines</td>
<td>1st</td>
<td>2016</td>
<td>D117601</td>
<td>$173.00</td>
</tr>
<tr>
<td>RP</td>
<td>1177</td>
<td>Recommended Practice for Steel Pipeline Construction Quality Management Systems</td>
<td>1st</td>
<td>2017</td>
<td>D11701</td>
<td>$121.00</td>
</tr>
<tr>
<td>Bull</td>
<td>1178</td>
<td>Integrity Data Management and Integration</td>
<td>1st</td>
<td>2017</td>
<td>D11781</td>
<td>$107.00</td>
</tr>
<tr>
<td>TR</td>
<td>1253</td>
<td>API Selection and Training Guidelines for In Situ Burning Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>1254</td>
<td>In-Situ Burning Guidance for Safety Officers and Safety and Health Professionals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>1256</td>
<td>In Situ Burning: A Decision Maker's Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>1509</td>
<td>Engine Oil Licensing and Certification System</td>
<td>17th</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>1520</td>
<td>Directory of Licensees: API Engine Oil Licensing and Certification System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>1525</td>
<td>Bulk Oil Testing, Handling, and Storage Guidelines</td>
<td>1st</td>
<td>1997</td>
<td>F15251</td>
<td>$67.00</td>
</tr>
<tr>
<td>RP</td>
<td>1543</td>
<td>Documentation, Monitoring and Laboratory Testing of Aviation Fuel During Shipment from Refinery to Airport</td>
<td>1st</td>
<td>2009</td>
<td>A154301</td>
<td>$61.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1571</td>
<td>Diesel Fuel—Questions and Answers for Highway and Off-Highway Use</td>
<td>4th</td>
<td>1996</td>
<td>F15714</td>
<td>$133.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1593</td>
<td>Gasoline Marketing in the United States Today</td>
<td>3rd</td>
<td>1992</td>
<td>A15930</td>
<td>$118.00</td>
</tr>
<tr>
<td>RP</td>
<td>1595</td>
<td>Design, Construction, Operation, Maintenance, and Inspection of Aviation Pre-Airfield Storage Terminals</td>
<td>2nd</td>
<td>2012</td>
<td>C159502</td>
<td>$239.00</td>
</tr>
<tr>
<td>RP</td>
<td>1604</td>
<td>Closure of Underground Petroleum Storage Tanks</td>
<td>3rd</td>
<td>1996</td>
<td>A16043</td>
<td>$78.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1612</td>
<td>Guidance Document for Discharging of Petroleum Distribution Terminal Effluents to Publicly Owned Treatment Works</td>
<td>1st</td>
<td>1996</td>
<td>A16121</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP</td>
<td>1615</td>
<td>Installation of Underground Petroleum Storage Systems</td>
<td>6th</td>
<td>2011</td>
<td>A16156</td>
<td>$211.00</td>
</tr>
<tr>
<td>RP</td>
<td>1621</td>
<td>Bulk Liquid Stock Control at Retail Outlets</td>
<td>5th</td>
<td>1993</td>
<td>A16210</td>
<td>$85.00</td>
</tr>
<tr>
<td>RP</td>
<td>1626</td>
<td>Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Filling Stations</td>
<td>2nd</td>
<td>2010</td>
<td>A16262</td>
<td>$160.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1629</td>
<td>Guide for Assessing and Remediating Petroleum Hydrocarbons in Soils</td>
<td>1st</td>
<td>1993</td>
<td>A16290</td>
<td>$150.00</td>
</tr>
<tr>
<td>Std</td>
<td>1631</td>
<td>Interior Lining and Periodic Inspection of Underground Storage Tanks</td>
<td>5th</td>
<td>2001</td>
<td>A16315</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP</td>
<td>1637</td>
<td>Using the API Color-Symbol System to Mark Equipment and Vehicles for Product Identification at Gasoline Dispensing Facilities and Distribution Terminals</td>
<td>3rd</td>
<td>2006</td>
<td>A16373</td>
<td>$68.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1638</td>
<td>Waste Management Practices for Petroleum Marketing Facilities</td>
<td>1st</td>
<td>1994</td>
<td>A16381</td>
<td>$78.00</td>
</tr>
<tr>
<td>RP</td>
<td>1639</td>
<td>Owner/Operator's Guide to Operation and Maintenance of Vapor Recovery Systems at Gasoline Dispensing Facilities</td>
<td>1st</td>
<td>2003</td>
<td>A16391</td>
<td>$89.00</td>
</tr>
<tr>
<td>RP</td>
<td>1640</td>
<td>Product Quality in Light Product Storage and Handling Operations</td>
<td>1st</td>
<td>2013</td>
<td>A164001</td>
<td>$165.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1642</td>
<td>Alcohol, Ethers, and Gasoline-Alcohol and -Ether Blends</td>
<td>1st</td>
<td>1996</td>
<td>A16421</td>
<td>$62.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1645</td>
<td>Slag II Cost Study</td>
<td>1st</td>
<td>2002</td>
<td>A16451</td>
<td>$59.00</td>
</tr>
<tr>
<td>RP</td>
<td>1646</td>
<td>Safe Work Practices for Contractors Working at Retail Petroleum/Convenience Facilities</td>
<td>2nd</td>
<td>2017</td>
<td>A164602</td>
<td>$151.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1669</td>
<td>Results of a Retail Gasoline Outlet and Commercial Parking Lot Storm Water Runoff Study</td>
<td>1st</td>
<td>1994</td>
<td>A16691</td>
<td>$85.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1673</td>
<td>Compilation of Air Emission for Petroleum Distribution Dispensing Facilities</td>
<td>2nd</td>
<td>2009</td>
<td>A16732</td>
<td>$83.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1830</td>
<td>National Used Oil Collection Study</td>
<td>1st</td>
<td>1996</td>
<td>B18301</td>
<td>$61.00</td>
</tr>
<tr>
<td>Publ</td>
<td>1835</td>
<td>Study of Used Motor Oil Recycling in Eleven Selected Countries</td>
<td>1st</td>
<td>1997</td>
<td>B18351</td>
<td>$61.00</td>
</tr>
<tr>
<td>Std</td>
<td>2000</td>
<td>Venting Atmospheric and Low-Pressure Storage Tanks</td>
<td>7th</td>
<td>2014</td>
<td>C20007</td>
<td>$232.00</td>
</tr>
<tr>
<td>RP</td>
<td>2001</td>
<td>Fire Protection in Refineries</td>
<td>9th</td>
<td>2012</td>
<td>C200109</td>
<td>$118.00</td>
</tr>
<tr>
<td>RP</td>
<td>2003</td>
<td>Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents</td>
<td>8th</td>
<td>2015</td>
<td>K20038</td>
<td>$196.00</td>
</tr>
<tr>
<td>Publication</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Std 215</td>
<td>Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks</td>
<td>8th</td>
<td>2018</td>
<td>K20158</td>
<td>$204.00</td>
<td>101, 128</td>
</tr>
<tr>
<td>RP 2021</td>
<td>Management of Atmospheric Storage Tank Fires</td>
<td>4th</td>
<td>2001</td>
<td>K20214</td>
<td>$138.00</td>
<td>128</td>
</tr>
<tr>
<td>RP 2023</td>
<td>Guide for Safe Storage and Handling of Heated Petroleum Derived Asphalt Products and Crude Oil Residua</td>
<td>3rd</td>
<td>2001</td>
<td>K20233</td>
<td>$113.00</td>
<td>128</td>
</tr>
<tr>
<td>RP 2026</td>
<td>Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service</td>
<td>3rd</td>
<td>2017</td>
<td>K20263</td>
<td>$94.00</td>
<td>101, 128</td>
</tr>
<tr>
<td>RP 2027</td>
<td>Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service</td>
<td>4th</td>
<td>2018</td>
<td>C20274</td>
<td>$125.00</td>
<td>101, 125</td>
</tr>
<tr>
<td>RP 2028</td>
<td>Flame Arresters in Piping Systems</td>
<td>3rd</td>
<td>2002</td>
<td>K20283</td>
<td>$61.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2201</td>
<td>Safe Hot Tapping Practices in the Petroleum and Petrochemical Industries</td>
<td>5th</td>
<td>2003</td>
<td>K22015</td>
<td>$89.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2207</td>
<td>Preparing Tank Bottoms for Hot Work</td>
<td>7th</td>
<td>2017</td>
<td>K22077</td>
<td>$104.00</td>
<td>101, 128</td>
</tr>
<tr>
<td>RP 2210</td>
<td>Flame Arresters for Vents of Tanks Storing Petroleum Products</td>
<td>3rd</td>
<td>2000</td>
<td>K22103</td>
<td>$67.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2216</td>
<td>Ignition Risk of Hydrocarbon Vapors by Hot Surfaces in the Open Air</td>
<td>3rd</td>
<td>2003</td>
<td>K22163</td>
<td>$61.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2217A</td>
<td>Safe Work in Inert Confined Spaces in the Petroleum and Petrochemical Industries</td>
<td>5th</td>
<td>2017</td>
<td>K2217A5</td>
<td>$149.00</td>
<td>126</td>
</tr>
<tr>
<td>RP 2218</td>
<td>Fireproofing Practices in Petroleum and Petrochemical Processing Plants</td>
<td>3rd</td>
<td>2013</td>
<td>K22183</td>
<td>$165.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2219</td>
<td>Safe Operation of Vacuum Trucks Handling Flammable and Combustible Liquids in Petroleum Service</td>
<td>4th</td>
<td>2016</td>
<td>K22194</td>
<td>$170.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2220</td>
<td>Contractor Safety Performance Process</td>
<td>3rd</td>
<td>2011</td>
<td>K222003</td>
<td>$94.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2220</td>
<td>Contractor Safety Performance Process—Chinese</td>
<td>3rd</td>
<td>2011</td>
<td>K222003C</td>
<td>$66.00</td>
<td>126, 169</td>
</tr>
<tr>
<td>RP 2221</td>
<td>Contractor and Owner Safety Program Implementation</td>
<td>3rd</td>
<td>2011</td>
<td>K222103</td>
<td>$172.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2350</td>
<td>Overfill Protection for Storage Tanks in Petroleum Facilities</td>
<td>4th</td>
<td>2012</td>
<td>K235004</td>
<td>$117.00</td>
<td>80, 119, 128</td>
</tr>
<tr>
<td>Std 2510</td>
<td>Design and Construction of LPG Installations</td>
<td>8th</td>
<td>2001</td>
<td>C25108</td>
<td>$106.00</td>
<td>101</td>
</tr>
<tr>
<td>Std 2510</td>
<td>Design and Construction of LPG Installations—Spanish</td>
<td>8th</td>
<td>2001</td>
<td>C25108SP</td>
<td>$106.00</td>
<td>101, 176</td>
</tr>
<tr>
<td>Pub 2510A</td>
<td>Fire Protection Considerations for the Design and Operation of Liquefied Petroleum Gas (LPG) Storage Facilities</td>
<td>2nd</td>
<td>1996</td>
<td>K2510A</td>
<td>$104.00</td>
<td>128</td>
</tr>
<tr>
<td>Pub 2524</td>
<td>Impact Assessment of New Data on the Validity of American Petroleum Institute Marine Transfer Operation Emission Factors</td>
<td>1992</td>
<td>H25240</td>
<td>$162.00</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Std 2552</td>
<td>Measurement and Calibration of Spheres and Spheroids</td>
<td>1st</td>
<td>1966</td>
<td>H25520</td>
<td>$100.00</td>
<td>52</td>
</tr>
<tr>
<td>Std 2554</td>
<td>Measurement and Calibration of Tank Cars</td>
<td>1st</td>
<td>1966</td>
<td>H25540</td>
<td>$118.00</td>
<td>52</td>
</tr>
<tr>
<td>Std 2555</td>
<td>Liquid Calibration of Tanks</td>
<td>1st</td>
<td>1966</td>
<td>H25550</td>
<td>$100.00</td>
<td>52</td>
</tr>
<tr>
<td>RP 2556</td>
<td>Correcting Gauge Tables for Incrustation</td>
<td>2nd</td>
<td>1993</td>
<td>H25560</td>
<td>$78.00</td>
<td>52</td>
</tr>
<tr>
<td>Pub 2558</td>
<td>Wind Tunnel Testing of External Floating-Roof Storage Tanks</td>
<td>1st</td>
<td>1993</td>
<td>H25580</td>
<td>$201.00</td>
<td>71</td>
</tr>
<tr>
<td>Pub 2566</td>
<td>State of the Art Multiphase Flow Metering</td>
<td>1st</td>
<td>2004</td>
<td>H25661</td>
<td>$131.00</td>
<td>74</td>
</tr>
<tr>
<td>TR 2568</td>
<td>Evaporative Loss from the Cleaning of Storage Tanks</td>
<td>1st</td>
<td>2007</td>
<td>H25680</td>
<td>$110.00</td>
<td>71</td>
</tr>
<tr>
<td>TR 2569</td>
<td>Evaporative Loss from Closed-Vent Internal Floating-Roof Storage Tanks</td>
<td>1st</td>
<td>2008</td>
<td>H25690</td>
<td>$110.00</td>
<td>71</td>
</tr>
</tbody>
</table>
Publications by Number

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)
Phone Orders: +1 303 397 7956 (Local and International)

<table>
<thead>
<tr>
<th>Pub</th>
<th>Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>2570</td>
<td>Continuous On-Line Measurement of Water Content in Petroleum (Crude Oil and Condensate)</td>
<td>1st</td>
<td>2010</td>
<td>H25701</td>
<td>$5.00</td>
<td>60</td>
</tr>
<tr>
<td>TR</td>
<td>2571</td>
<td>Fuel Gas Measurement</td>
<td>1st</td>
<td>2010</td>
<td>H25701</td>
<td>$12.00</td>
<td>74</td>
</tr>
<tr>
<td>TR</td>
<td>2572</td>
<td>Carbon Content, Sampling, and Calculation</td>
<td>1st</td>
<td>2013</td>
<td>H257201</td>
<td>$10.00</td>
<td>75</td>
</tr>
<tr>
<td>TR</td>
<td>2573</td>
<td>Standard Guide for Sediment and Water Determination in Crude Oil</td>
<td>1st</td>
<td>2013</td>
<td>H257301</td>
<td>$4.00</td>
<td>60</td>
</tr>
<tr>
<td>TR</td>
<td>2574</td>
<td>Field Testing Protocol for Characterization of Total Gaseous Nonmethane Organics (TGNMO), Methane, and Ethane in Air-Vapor Mixture During Filling of a Cargo Vessel with Crude Oil</td>
<td>1st</td>
<td>2016</td>
<td>H257401</td>
<td>$10.00</td>
<td>71</td>
</tr>
<tr>
<td>TR</td>
<td>2575</td>
<td>Measurement of Thermally Cracked Gas</td>
<td>1st</td>
<td>2014</td>
<td>H257501</td>
<td>$6.00</td>
<td>75</td>
</tr>
<tr>
<td>TR</td>
<td>2576</td>
<td>Short-Term Evaporative Loss Estimation from Atmospheric Storage Tanks</td>
<td>1st</td>
<td>2016</td>
<td>H257601</td>
<td>$11.00</td>
<td>71</td>
</tr>
<tr>
<td>TR</td>
<td>2577</td>
<td>Performance of Full-Bore Vortex Meters for Measurement of Liquid Flows</td>
<td>1st</td>
<td>2018</td>
<td>H257701</td>
<td>$7.00</td>
<td>75</td>
</tr>
<tr>
<td>TR</td>
<td>2578</td>
<td>Flow Conditioner Installation and Effects on Turbine Meters</td>
<td>1st</td>
<td>2017</td>
<td>H257801</td>
<td>$6.00</td>
<td>75</td>
</tr>
<tr>
<td>Std</td>
<td>2610</td>
<td>Design, Construction, Operation, Maintenance, and Inspection of Terminal and Tank Facilities</td>
<td>3rd</td>
<td>2018</td>
<td>C26103</td>
<td>$18.00</td>
<td>79, 101</td>
</tr>
<tr>
<td>RP</td>
<td>2611</td>
<td>Terminal Piping Inspection—Inspection of In-Service Terminal Piping Systems</td>
<td>1st</td>
<td>2011</td>
<td>A261101</td>
<td>$10.00</td>
<td>88</td>
</tr>
<tr>
<td>RP</td>
<td>3000</td>
<td>Classifying and Loading of Crude Oil into Rail Tank Cars</td>
<td>1st</td>
<td>2014</td>
<td>A30001</td>
<td>$12.00</td>
<td>83</td>
</tr>
<tr>
<td>Publ</td>
<td>4261</td>
<td>Alcohols and Ethers: A Technical Assessment of Their Application as Fuels and Fuel Components</td>
<td>3rd</td>
<td>2001</td>
<td>C42613</td>
<td>$16.00</td>
<td>117</td>
</tr>
<tr>
<td>Publ</td>
<td>4262</td>
<td>Methanol Vehicle Emissions</td>
<td>1990</td>
<td>F42620</td>
<td>$12.00</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4452</td>
<td>1987 Oil Spill Conference Proceedings</td>
<td>1987</td>
<td>I44520</td>
<td>$5.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4465</td>
<td>Evaluation of the Treatment Technologies for Listed Petroleum Refinery Wastes</td>
<td>1987</td>
<td>I44650</td>
<td>$7.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4479</td>
<td>1989 Oil Spill Conference Proceedings</td>
<td>1990</td>
<td>I44790</td>
<td>$5.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4525</td>
<td>A Compilation of Field-Collected Cost and Treatment Effectiveness Data for the Removal of Dissolved Gasoline Components from Groundwater</td>
<td>1990</td>
<td>I45250</td>
<td>$8.00</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4527</td>
<td>Evaluation of Limiting Constituents Suggested for Land Disposal of Exploration and Production Wastes</td>
<td>1993</td>
<td>I45270</td>
<td>$6.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4529</td>
<td>1991 Oil Spill Conference Proceedings</td>
<td>1993</td>
<td>I45290</td>
<td>$5.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4531</td>
<td>Chemical Fate and Impact of Oxygenates in Groundwater: Solubility of BTEx from Gasoline-Octane Mixtures</td>
<td>1991</td>
<td>I45310</td>
<td>$6.00</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4558</td>
<td>Options for Minimizing Environmental Impacts of Freshwater Spill Responses</td>
<td>1995</td>
<td>I45580</td>
<td>$9.00</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4575</td>
<td>Proceedings of the 1991 Oil Spill Conference Infobase</td>
<td>1993</td>
<td>I45750</td>
<td>$6.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4580</td>
<td>1993 Oil Spill Conference Proceedings</td>
<td>1993</td>
<td>I45800</td>
<td>$6.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4587</td>
<td>Remote Sensing Feasibility Study of Refinery Fenceline Emissions</td>
<td>1994</td>
<td>I45870</td>
<td>$7.00</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4588</td>
<td>Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 1</td>
<td>1993</td>
<td>I45880</td>
<td>$12.00</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4589</td>
<td>Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations</td>
<td>1993</td>
<td>I45890</td>
<td>$14.00</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4592</td>
<td>Odor Threshold Studies Performed with Gasoline and Gasoline Combined with MTBE, ETBE and TAME</td>
<td>1994</td>
<td>I45920</td>
<td>$8.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4593</td>
<td>Transport and Fate of Non-BTEX Petroleum Chemicals in Soils and Groundwater</td>
<td>1994</td>
<td>I45930</td>
<td>$6.00</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4594</td>
<td>A Critical Review of Toxicity Values and an Evaluation of the Persistence of Petroleum Products for Terminals, Volume 1</td>
<td>1994</td>
<td>I45940</td>
<td>$12.00</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4595</td>
<td>Interlaboratory Study of Three Methods for Analyzing Petroleum Hydrocarbons in Soils</td>
<td>1994</td>
<td>I45950</td>
<td>$6.00</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4601</td>
<td>Transport and Fate of Dissolved Methanol, MTBE and Monoanomotic Hydrocarbons in a Shallow Sand Aquifer</td>
<td>1994</td>
<td>I46010</td>
<td>$12.00</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4602</td>
<td>Minimization, Handling, Treatment and Disposal of Petroleum Products Terminal Wastewaters</td>
<td>1994</td>
<td>I46020</td>
<td>$13.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4605</td>
<td>Investigation of MOBILE5a Emission Factors: Evaluation of IM240-to-FTP Correlation and Base Emission Rate Equations</td>
<td>1994</td>
<td>I46050</td>
<td>$6.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4608</td>
<td>User’s Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs</td>
<td>1994</td>
<td>I46080</td>
<td>$6.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4609</td>
<td>In-Situ Air Sparging: Evaluation of Petroleum Industry Sites and Considerations for Applicability, Design and Operation</td>
<td>1995</td>
<td>I46090</td>
<td>$10.00</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4610</td>
<td>Critical Review of Draft EPA Guidance on Assessment and Control of Bioconcentratable Contaminants in Surface Waters</td>
<td>1995</td>
<td>I46100</td>
<td>$7.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4611</td>
<td>Interlaboratory Study of EPA Methods 1662, 1654A and 1663 for the Determination of Diesel, Mineral and Crude Oils in Drilling Muds from Offshore and Gas Industry Discharges</td>
<td>1995</td>
<td>I46110</td>
<td>$7.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4612</td>
<td>1993 Study of Refinery Fugitive Emissions from Equipment Leaks, Volumes I and II</td>
<td>1994</td>
<td>I46120</td>
<td>$14.00</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4613</td>
<td>1993 Study of Refinery Fugitive Emissions from Equipment Leaks, Volume III</td>
<td>1994</td>
<td>I46130</td>
<td>$10.00</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4615</td>
<td>Emission Factors for Oil and Gas Production Operation</td>
<td>1995</td>
<td>I46150</td>
<td>$6.00</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4616</td>
<td>The Importance of Using Alternative Base Cases in Photochemical Modeling</td>
<td>1994</td>
<td>I46160</td>
<td>$14.00</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4617</td>
<td>A Monte Carlo Approach to Generating Equivalent Ventilation Rates in Population Exposure Assessments</td>
<td>1995</td>
<td>I46170</td>
<td>$8.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Pub 4618</td>
<td>Characteristics and Performance of Supercritical Fluid Extraction (SFE) in the Analysis of Petroleum Hydrocarbons in Soils and Sludges</td>
<td>1995</td>
<td>I46180</td>
<td>$61.00</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Pub 4619</td>
<td>A Study to Characterize Air Concentrations of Methyl Tertiary Butyl Ether (MTBE) at Service Stations in the Northeast</td>
<td>1995</td>
<td>I46190</td>
<td>$81.00</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub 4620</td>
<td>1995 Oil Spill Conference Proceedings</td>
<td>1995</td>
<td>I46200</td>
<td>$61.00</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Pub 4621</td>
<td>1995 Oil Spill Conference White Papers</td>
<td>1995</td>
<td>I46210</td>
<td>$61.00</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Pub 4623</td>
<td>Anecdotal Health-Related Complaint Data Pertaining to Possible Exposures to Methyl Tertiary Butyl Ether (MTBE): 1993 and 1994 Follow-Up Surveys</td>
<td>1995</td>
<td>I46230</td>
<td>$63.00</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Pub 4625</td>
<td>Service Station Personnel Exposures to Oxygenated Fuel Components</td>
<td>1995</td>
<td>I46250</td>
<td>$67.00</td>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Pub 4628</td>
<td>A Guidance Manual for Modeling Hypothetical Accidental Releases to the Atmosphere</td>
<td>1996</td>
<td>I46280</td>
<td>$146.00</td>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Pub 4629</td>
<td>Hexavalent Chromium Exposures During Hot Work</td>
<td>2007</td>
<td>I46290</td>
<td>$88.00</td>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Pub 4631</td>
<td>Petroleum Contaminated Low Permeability Soil: Hydrocarbon Distribution Processes, Exposure Pathways and In-Situ Remediation Technologies</td>
<td>1995</td>
<td>I46310</td>
<td>$90.00</td>
<td></td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Pub 4632</td>
<td>Reducing Uncertainty in Laboratory Sediment Toxicity Tests</td>
<td>1995</td>
<td>I46320</td>
<td>$63.00</td>
<td></td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Pub 4633</td>
<td>Barium in Produced Water: Fate and Effects in the Marine Environment</td>
<td>1995</td>
<td>I46330</td>
<td>$61.00</td>
<td></td>
<td>142, 151</td>
<td></td>
</tr>
<tr>
<td>Pub 4634</td>
<td>Index and Abstracts of API Health-Related Research</td>
<td>1995</td>
<td>I46340</td>
<td>$81.00</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Pub 4635</td>
<td>Compilation of Field Analytical Methods for Assessing Petroleum Product Releases</td>
<td>1996</td>
<td>I46350</td>
<td>$90.00</td>
<td></td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Pub 4637</td>
<td>Analysis of Causes of Failure in High Emitter Cars</td>
<td>1996</td>
<td>I46370</td>
<td>$72.00</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub 4638</td>
<td>Calculation Workbook for Oil and Gas Production Equipment Fugitive Emissions</td>
<td>1996</td>
<td>I46380</td>
<td>$63.00</td>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Pub 4639</td>
<td>Estimation of Fugitive Emissions from Petroleum Refinery Process Drains</td>
<td>1996</td>
<td>I46390</td>
<td>$90.00</td>
<td></td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Pub 4641</td>
<td>Summary of Produced Water Toxicity Identification Evaluation Research</td>
<td>1996</td>
<td>I46410</td>
<td>$91.00</td>
<td></td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Pub 4642</td>
<td>A Study to Quantify On-Road Emissions of Dioxins and Furans from Mobile Sources: Phase 2</td>
<td>1996</td>
<td>I46420</td>
<td>$134.00</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub 4643</td>
<td>Estimation of Infiltration and Recharge for Environmental Site Assessment</td>
<td>1996</td>
<td>I46430</td>
<td>$100.00</td>
<td></td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Pub 4644</td>
<td>A Methodology for Estimating Incremental Benzene Exposures and Risks Associated with Glycerol Dehydrators</td>
<td>1997</td>
<td>I46440</td>
<td>$81.00</td>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Pub 4646</td>
<td>Evaluation of Fuel Tank Flammability of Low RVP Gasolines</td>
<td>1996</td>
<td>I46460</td>
<td>$100.00</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub 4647</td>
<td>Brain Glial Fibrillary Acidic Protein (GFAP) as a Marker of Neurotoxicity During Inhalation Exposure to Toluene</td>
<td>1997</td>
<td>I46470</td>
<td>$81.00</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Pub 4648</td>
<td>Human Neurobehavioral Study Methods: Effects of Subject Variables on Results</td>
<td>1996</td>
<td>I46480</td>
<td>$100.00</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Pub 4649</td>
<td>The Use of Chemical Countermeasures Product Data for Oil Spill Planning and Response, Volumes I and II</td>
<td>1995</td>
<td>I46490</td>
<td>$59.00</td>
<td></td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Pub 4650</td>
<td>Analysis of High-Mileage-Vehicle Emissions Data from Late-Model, Fuel-Injected Vehicles</td>
<td>1997</td>
<td>I46500</td>
<td>$71.00</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Pub 4651</td>
<td>1997 Oil Spill Conference Proceedings</td>
<td>1997</td>
<td>I46510</td>
<td>$61.00</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Pub 4652</td>
<td>1997 Oil Spill Conference Issue Papers</td>
<td>1997</td>
<td>I46520</td>
<td>$61.00</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Pub 4653</td>
<td>Fugitive Emission Factors for Crude Oil and Product Pipeline Facilities</td>
<td>1997</td>
<td>I46530</td>
<td>$81.00</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Pub 4654</td>
<td>Field Studies of BTEX and MTBE Intrinsic Bioremediation</td>
<td>1997</td>
<td>I46540</td>
<td>$78.00</td>
<td></td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Pub 4655</td>
<td>Field Evaluation of Biological and Non-Biological Treatment Technologies to Remove MTBE/ Oxygenates from Petroleum Product Terminal Wastewaters</td>
<td>1997</td>
<td>I46550</td>
<td>$127.00</td>
<td></td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Pub 4656</td>
<td>Bioaccumulation: How Chemicals Move from the Water into Fish and Other Aquatic Organisms</td>
<td>1997</td>
<td>I46560</td>
<td>$90.00</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Pub 4657</td>
<td>Effects of Sampling and Analytical Procedures on the Measurement of Geochemical Indicators of Intrinsic Bioremediation: Laboratory and Field Studies</td>
<td>1997</td>
<td>I46570</td>
<td>$63.00</td>
<td></td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Pub 4658</td>
<td>Methods for Measuring Indicators of Intrinsic Bioremediation: Guidance Manual</td>
<td>1997</td>
<td>I46580</td>
<td>$72.00</td>
<td></td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Pub 4661</td>
<td>Exploration and Production Emission Calculator II (EPEC II) User’s Guide</td>
<td>2007</td>
<td>I46610</td>
<td>$129.00</td>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Pub 4662</td>
<td>Evaluation of a Petroleum Production Tank Emissions Model</td>
<td>1997</td>
<td>I46620</td>
<td>$121.00</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Pub 4663</td>
<td>Remediation of Salt-Affected Soils at Oil and Gas Production Facilities</td>
<td>1997</td>
<td>I46630</td>
<td>$113.00</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Pub 4664</td>
<td>Mixing Zone Modeling and Dilution Analysis for Water-Quality-Based NPDES Permit Limits</td>
<td>1998</td>
<td>I46640</td>
<td>$100.00</td>
<td></td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Pub 4665</td>
<td>Analysis and Reduction of Toxicity in Biologically Treated Petroleum Product Terminal Bottoms Water</td>
<td>1998</td>
<td>I46650</td>
<td>$81.00</td>
<td></td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Pub 4666</td>
<td>The Toxicity of Common Ions to Freshwater and Marine Organisms</td>
<td>1999</td>
<td>I46660</td>
<td>$100.00</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Pub 4667</td>
<td>Vehicle Emissions Testing of Rapidly Aged Catalysts</td>
<td>1997</td>
<td>I46670</td>
<td>$63.00</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Pub 4668</td>
<td>Delimitation and Characterization of the Borden MTBE Plume: An Evaluation of Eight Years of Natural Attenuation Processes</td>
<td>1998</td>
<td>I46680</td>
<td>$63.00</td>
<td></td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Pub 4669</td>
<td>Review of Air Quality Models for Particulate Matter</td>
<td>1998</td>
<td>See Listing</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 4670</td>
<td>Selecting Field Analytical Methods—A Decision-Tree Approach</td>
<td>1998</td>
<td>I46700</td>
<td>$90.00</td>
<td></td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>
Publications by Number

<table>
<thead>
<tr>
<th>Pub Number</th>
<th>Technical Bulletin on Oxygen Releasing Materials for In-Situ Groundwater Remediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4671</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>The Use of Treatment Wetlands for Petroleum Industry Effluents</td>
</tr>
<tr>
<td>4672</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Impacts of Petroleum Product Marketing Terminals on the Aquatic Environment</td>
</tr>
<tr>
<td>4673</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Assessing the Significance of Subsurface Contaminant Vapor Migration to Enclosed Spaces—Site-Specific Alternative to Generic Estimates</td>
</tr>
<tr>
<td>4674</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Fate and Environmental Effects of Oil Spills in Freshwater Environments</td>
</tr>
<tr>
<td>4675</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Guide to Dispersants: A Review of the Theory and Operational Requirements</td>
</tr>
<tr>
<td>4677</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Fugitive Emissions from Refinery Process Drains, Volume I; Fugitive Emission Factors for Refinery Process Drains</td>
</tr>
<tr>
<td>4678</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Chemical Human Health Hazards Associated with Oil Spill Response</td>
</tr>
<tr>
<td>4679</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants</td>
</tr>
<tr>
<td>4690</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Fate of Spilled Oil in Marine Waters: Where Does It Go? What Does It Do? How Do Dispersants Affect It?</td>
</tr>
<tr>
<td>4691</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Decision-Maker's Guide to Dispersants: A Review of the Theory and Operational Requirements</td>
</tr>
<tr>
<td>4692</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Effects of Oil and Chemically Dispersed Oil in the Environment</td>
</tr>
<tr>
<td>4693</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Laboratory Analysis of Petroleum Industry Wastewaters</td>
</tr>
<tr>
<td>4694</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants</td>
</tr>
<tr>
<td>4695</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Production Tank Emissions Model (E&P TANK, Version 3.0)</td>
</tr>
<tr>
<td>4697</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Review of Technologies to Measure the Oil and Grease Content of Produced Water from Offshore Oil and Gas Production Operations</td>
</tr>
<tr>
<td>4698</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE</td>
</tr>
<tr>
<td>4699</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Primer for Evaluating Ecological Risk at Petroleum Release Sites</td>
</tr>
<tr>
<td>4700</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Bioaccumulation: An Evaluation of Federal and State Regulatory Initiatives</td>
</tr>
<tr>
<td>4701</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal</td>
</tr>
<tr>
<td>4702</td>
<td></td>
</tr>
<tr>
<td>4703</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Gas Fired Heater—Test Report Site B: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
</tr>
<tr>
<td>4704</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Environmental Considerations for Marine Oil Spill Response</td>
</tr>
<tr>
<td>4705</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Risk-Based Methodologies for Evaluating Petroleum Hydrocarbon Impacts at Oil and Natural Gas E&P Sites</td>
</tr>
<tr>
<td>4706</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>2003 Oil Spill Conference Proceedings</td>
</tr>
<tr>
<td>4710</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Methods for Determining Inputs to Environmental Petroleum Hydrocarbon Mobility and Recovery Models</td>
</tr>
<tr>
<td>4711</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Gas-Fired Steam Generator—Test Report Site C: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
</tr>
<tr>
<td>4712</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Test Report: Fluidized Catalytic Cracking Unit at a Refinery (Site A), Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
</tr>
<tr>
<td>4713</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>A Guide to Polycyclic Aromatic Hydrocarbons for the Non-Specialist</td>
</tr>
<tr>
<td>4714</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Evaluating Hydrocarbon Removal from Source Zones and its Effect on Dissolved Plume Longevity and Concentration</td>
</tr>
<tr>
<td>4715</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Buried Pressurized Piping Systems Leak Detection Guide</td>
</tr>
<tr>
<td>4716</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Predictors of Water-Soluble Organics (WSOs) in Produced Water—A Literature Review</td>
</tr>
<tr>
<td>4717</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>2005 Oil Spill Conference Proceedings</td>
</tr>
<tr>
<td>4718</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Comparison of API and EPA Toxic Air Pollutant Emission Factors for Combustion Sources</td>
</tr>
<tr>
<td>4720</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Analytical Detection and Quantification Limits: Survey of State and Federal Approaches</td>
</tr>
<tr>
<td>4721</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Publ</td>
<td>4722</td>
</tr>
<tr>
<td>Publ</td>
<td>4723</td>
</tr>
<tr>
<td>Publ</td>
<td>4723-A</td>
</tr>
<tr>
<td>Publ</td>
<td>4724</td>
</tr>
<tr>
<td>Publ</td>
<td>4730</td>
</tr>
<tr>
<td>Publ</td>
<td>4733</td>
</tr>
<tr>
<td>Publ</td>
<td>4734</td>
</tr>
<tr>
<td>Publ</td>
<td>4735</td>
</tr>
<tr>
<td>Publ</td>
<td>4736</td>
</tr>
<tr>
<td>Publ</td>
<td>4739</td>
</tr>
<tr>
<td>Publ</td>
<td>4740</td>
</tr>
<tr>
<td>Publ</td>
<td>4743</td>
</tr>
<tr>
<td>Publ</td>
<td>4750</td>
</tr>
<tr>
<td>Publ</td>
<td>4751</td>
</tr>
<tr>
<td>Publ</td>
<td>4756</td>
</tr>
<tr>
<td>Publ</td>
<td>4758</td>
</tr>
<tr>
<td>Publ</td>
<td>4760</td>
</tr>
<tr>
<td>Publ</td>
<td>4761</td>
</tr>
<tr>
<td>Publ</td>
<td>4762</td>
</tr>
<tr>
<td>Publ</td>
<td>4772</td>
</tr>
<tr>
<td>Publ</td>
<td>4775</td>
</tr>
<tr>
<td>Publ</td>
<td>4776</td>
</tr>
<tr>
<td>Publ</td>
<td>4782</td>
</tr>
<tr>
<td>Publ</td>
<td>4783</td>
</tr>
<tr>
<td>Publ</td>
<td>4784</td>
</tr>
<tr>
<td>Publ</td>
<td>7100</td>
</tr>
<tr>
<td>Publ</td>
<td>7101</td>
</tr>
<tr>
<td>Publ</td>
<td>7102</td>
</tr>
<tr>
<td>Publ</td>
<td>7103</td>
</tr>
<tr>
<td>Publ</td>
<td>7104</td>
</tr>
<tr>
<td>Publ</td>
<td>7105</td>
</tr>
<tr>
<td>Publ</td>
<td>9100</td>
</tr>
<tr>
<td>Publ</td>
<td>9100A</td>
</tr>
<tr>
<td>Publ</td>
<td>9100B</td>
</tr>
<tr>
<td>Publ</td>
<td>31101</td>
</tr>
<tr>
<td>Publ</td>
<td>45592</td>
</tr>
<tr>
<td>Publ</td>
<td>45881</td>
</tr>
<tr>
<td>Publ</td>
<td>46201</td>
</tr>
<tr>
<td>Title</td>
<td>Edition</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1989 Summary of Occupational Injuries, Illnesses and Fatalities in</td>
<td>1989</td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>1990 Summary of Occupational Injuries, Illnesses and Fatalities in</td>
<td>1991</td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>1991 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>1992</td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>1992 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>1993</td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>1993 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>1994</td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>in the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>in the Petroleum Industry</td>
<td></td>
</tr>
<tr>
<td>A Guidebook for Implementing Curbside and Drop-Off Used Motor Oil</td>
<td>1st</td>
</tr>
<tr>
<td>Collection Programs</td>
<td></td>
</tr>
<tr>
<td>Achieving Common Sense Environmental Regulation: Oil and Gas</td>
<td>1996</td>
</tr>
<tr>
<td>Exploration & Production</td>
<td></td>
</tr>
<tr>
<td>API Coke Drum Survey 1996, Final Report</td>
<td>2003</td>
</tr>
<tr>
<td>API Guidelines for Right-of-Way Activities, Brochure</td>
<td></td>
</tr>
<tr>
<td>API Monograph Series</td>
<td></td>
</tr>
<tr>
<td>API MPMS Draft Standard: Application of Hydrocarbon Phase Behavior</td>
<td>1st</td>
</tr>
<tr>
<td>Modeling in Upstream Measurement and Allocation Systems</td>
<td></td>
</tr>
<tr>
<td>API Risk-Based Inspection Software</td>
<td></td>
</tr>
<tr>
<td>API Soil and Groundwater Research Bulletins</td>
<td></td>
</tr>
<tr>
<td>API Tools for Estimating GHG Emissions</td>
<td></td>
</tr>
<tr>
<td>API/NPRA Survey, Final Reports</td>
<td></td>
</tr>
<tr>
<td>Basic Petroleum Data Book</td>
<td>2nd</td>
</tr>
<tr>
<td>(2 Issues)</td>
<td></td>
</tr>
<tr>
<td>Community Matters: Community Outreach Guidance Manual for</td>
<td>1st</td>
</tr>
<tr>
<td>Exploration and Production Facilities</td>
<td></td>
</tr>
<tr>
<td>Compendium of Greenhouse Gas Emissions Estimation Methodologies for</td>
<td>1st</td>
</tr>
<tr>
<td>the Oil and Gas Industry</td>
<td></td>
</tr>
<tr>
<td>Cumulative Impact of Environmental Regulations on the U.S. Petroleum</td>
<td></td>
</tr>
<tr>
<td>Refining, Transportation and Marketing Industries</td>
<td></td>
</tr>
<tr>
<td>Electronic Version of the API Technical Data Book</td>
<td></td>
</tr>
<tr>
<td>Exploration and Production: Protecting the Environment</td>
<td>1997</td>
</tr>
<tr>
<td>For Safety’s Sake—MC 306 Cargo Tank Vehicle Inspection</td>
<td>1989</td>
</tr>
<tr>
<td>Fuel-Less, You Can’t Be Cool Without Fuel</td>
<td>1996</td>
</tr>
<tr>
<td>Gas Lift (Book 6 in the Vocational Training Series)</td>
<td>3rd</td>
</tr>
<tr>
<td>Get the Dirt, Video</td>
<td></td>
</tr>
<tr>
<td>Guidelines for Commercial Exploration and Production Waste</td>
<td>2001</td>
</tr>
<tr>
<td>Management Facilities</td>
<td></td>
</tr>
<tr>
<td>Human Factors in New Facility Design Tool</td>
<td>2nd</td>
</tr>
<tr>
<td>Human Factors Tool for Existing Operations</td>
<td>1st</td>
</tr>
<tr>
<td>Impact of Gasoline Blended with Ethanol on the Long-Term Structural</td>
<td>2003</td>
</tr>
<tr>
<td>Integrity of Liquid Petroleum Storage Systems and Components</td>
<td></td>
</tr>
<tr>
<td>Imports and Exports of Crude Oil and Petroleum Products (12 Issues)</td>
<td></td>
</tr>
<tr>
<td>Introduction to Oil and Gas Production (Book 1 in the Vocational</td>
<td>5th</td>
</tr>
<tr>
<td>Training Series</td>
<td></td>
</tr>
<tr>
<td>Inventories of Natural Gas Liquids and Liquefied Refinery Gases</td>
<td></td>
</tr>
<tr>
<td>Investigation and Prediction of Cooling Rates During Pipeline</td>
<td>v4.2</td>
</tr>
<tr>
<td>Maintenance Welding, and User’s Manual for Battelle’s Hot-Tap</td>
<td></td>
</tr>
<tr>
<td>Thermal-Analysis Models</td>
<td></td>
</tr>
<tr>
<td>Joint Association Survey on Drilling Costs (JAS)</td>
<td></td>
</tr>
<tr>
<td>Manual of Petroleum Measurement Standards (Complete Set)</td>
<td></td>
</tr>
<tr>
<td>Marine Spill Response Corporation (MSRC) Research & Development</td>
<td></td>
</tr>
<tr>
<td>Technical Reports</td>
<td></td>
</tr>
<tr>
<td>Mechanical Equipment Residual Unbalance Worksheets</td>
<td></td>
</tr>
<tr>
<td>Monthly Statistical Report</td>
<td></td>
</tr>
<tr>
<td>Motor Oil Shelf Cards</td>
<td></td>
</tr>
<tr>
<td>Overview of Exploration and Production Waste Volumes and Waste</td>
<td>2000</td>
</tr>
<tr>
<td>Management Practices in the United States</td>
<td></td>
</tr>
<tr>
<td>Protecting Livestock: Answers to Frequently Asked Questions about</td>
<td>2006</td>
</tr>
<tr>
<td>Crude Oil in Oilfield Operations</td>
<td></td>
</tr>
<tr>
<td>Quarterly Well Completion Report (QWCR)</td>
<td></td>
</tr>
<tr>
<td>Reports Issued by Research Project 49</td>
<td>1951</td>
</tr>
<tr>
<td>Sales of Natural Gas Liquids and Liquefied Refinery Gases</td>
<td></td>
</tr>
<tr>
<td>Subsurface Salt Water Injection and Disposal (Book 3 in the</td>
<td>3rd</td>
</tr>
<tr>
<td>Vocational Training Series</td>
<td></td>
</tr>
<tr>
<td>The API Composite List</td>
<td></td>
</tr>
<tr>
<td>The API Specification Database</td>
<td></td>
</tr>
<tr>
<td>The Economics of Energy Security</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic Properties and Characterization of Petroleum Fractions</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Edition</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Validation of Heavy Gas Dispersion Models with Experimental Results of the Thorney Island Trials, Volumes I & II</td>
<td>1986</td>
</tr>
<tr>
<td>Weekly Statistical Bulletin (WSB)</td>
<td></td>
</tr>
<tr>
<td>Wireline Operations and Procedures (Book 5 in the Vocational Training Series)</td>
<td>3rd</td>
</tr>
</tbody>
</table>
That's why we offer more than 100 e-learning courses, designed to provide flexible training opportunities, and a wide variety of instructor-led courses developed and taught by the most knowledgeable industry experts.

Below is a selection of meetings, conferences, workshops, and API-U courses. For additional information, please visit our website at https://www.api.org/products-and-services/events or https://www.api.org/products-and-services/training/api-u.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Exploration and Production Winter Standards Meeting</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>January 21–25</td>
<td>API/AGA Joint Committee on Pipeline Welding Practices</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>January 28–31</td>
<td>API Inspection and Mechanical Integrity Summit</td>
<td>Galveston, TX</td>
</tr>
<tr>
<td>March 18–22</td>
<td>Spring Committee on Petroleum Measurement Standards Meeting</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>March 24–26</td>
<td>API International Trade and Customs Conference</td>
<td>Austin, TX</td>
</tr>
<tr>
<td>April 9–11</td>
<td>API Pipeline Conference and Control Room Forum</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>April 29–30</td>
<td>85th Annual API Federal Tax Forum</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>May 6–9</td>
<td>Spring Refining and Equipment Standards Meeting</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>May 8</td>
<td>API/AFPM Spring Operating Practices Symposium</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>June 11–12</td>
<td>API Excise Tax Forum</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>June 19–20</td>
<td>3rd Annual API-IOGP Cybersecurity Europe Conference for the Oil and Natural Gas Industry</td>
<td>London, UK</td>
</tr>
<tr>
<td>June 24–28</td>
<td>Exploration and Production Standards Conference on Oilfield Equipment and Materials</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>September 24–25</td>
<td>API Offshore Safe Lifting Conference & Expo</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>October 14–17</td>
<td>API Storage Tank Conference & Expo</td>
<td>Denver, CO</td>
</tr>
<tr>
<td>October 14–18</td>
<td>Fall Committee on Petroleum Measurement Standards Meeting</td>
<td>Westminster, CO</td>
</tr>
<tr>
<td>November 12–13</td>
<td>14th Annual API Cybersecurity Conference for the Oil & Natural Gas Industry</td>
<td>The Woodlands, TX</td>
</tr>
<tr>
<td>November 18–21</td>
<td>Fall Refining and Equipment Standards Meeting</td>
<td>Atlanta, GA</td>
</tr>
<tr>
<td>November 20</td>
<td>API/AFPM Fall Operating Practices Symposium</td>
<td>Atlanta, GA</td>
</tr>
<tr>
<td>2020</td>
<td>API Pipeline Conference and Cybernetics Symposium</td>
<td>TBD</td>
</tr>
<tr>
<td>April 28–30</td>
<td>API Pipeline Conference and Cybernetics Symposium</td>
<td>TBD</td>
</tr>
</tbody>
</table>
The Stakes are High

The Oil & Gas industry is highly regulated, with thousands of standards affecting all aspects of operations. To stay competitive, companies must:

- Quickly adapt to constantly changing regulations and reporting requirements
- Accelerate the transfer of knowledge to new technical employees in the face of an aging workforce
- Efficiently maintain aging infrastructure and/or construct new plants
- Identify new ways to reduce operational expense and risks

IHS Markit is the only single-source that can enable knowledge discovery across trusted industry standards, authoritative reference content, and your internal technical knowledge that helps companies achieve these operational excellence goals, maintain safe work environments, and innovate more effectively.

IHS Markit is your source for standards and specifications from API, available in hardcopy, online PDF, or enterprise access.

Learn more global.ihs.com | Call +1 800 854 7179 / +1 303 397 7956
API Statistical Data is your distinct advantage when you need to access timely, accurate, and in-depth oil and natural gas information to analyze trends and make effective decisions.

With API Statistical Data, users can gain knowledge about:

- U.S. refinery operations
- U.S. drilling expenditures
- Historic and current worldwide petroleum activities
- Natural gas inventories and sales
- Imports and exports
- Drilling activity

IHS Markit is your source for all the latest API standards and keeps you current with revisions and new standards and publications. Automatic alerts to updates and revisions help you remove the information gaps that can plague operations.

Learn more https://global.ihs.com/api_statistical_data.cfm | Call +1 800 854 7179 / +1 303 397 7956
Mail Orders

Use the API Publications Order Form when placing an order by mail. Send mail orders to:

API Publications
IHS Markit
15 Inverness Way East
c/o Retail Sales
Englewood, CO 80112-5776
USA

Payment by check or money order is required except for established accounts. State and local taxes, $10 processing fee, and 5% shipping must be added.

Phone Orders

1 800 854 7179 (Toll-free in the U.S. and Canada)
303 397 7956 (Local and International)

If ordering by telephone, a $10 processing fee and actual freight costs will be added to the order. No processing fee will be added to orders delivered electronically. To avoid duplicate orders, do not mail/fax confirmation of an order placed by phone.

Fax Orders

303 397 2740

Use the API Publications Order Form when placing an order by fax. Shipping and processing charges will be added to your order. No processing fee will be added to orders delivered electronically. To avoid duplicate orders, do not mail/fax confirmation.

Online Orders

global.ihs.com

API publications may be ordered securely online through the IHS Markit website. No processing fee will be added to orders containing electronic documents only.

Purchase Orders

Purchase orders are accepted from established accounts. Invoice will include actual freight cost, a $10 processing fee, plus state and local taxes. To establish an account, call the IHS Markit Sales Department at 1 800 854 7179 (toll-free in the U.S. and Canada) or 303 397 7956 (local and international). Or you may contact the IHS Sales Department by email at global@ihs.com.

Deposit Accounts

Receive a 10% discount on most documents and publications when you open an IHS Markit Deposit Account. This service facilitates order processing and reduces paperwork. A $500 minimum deposit is required. Additional amount increments of $250. Processing fee is $10.

Credit Cards

Payments made by VISA, MasterCard, American Express, Diners Club, and Discover are accepted. Please include complete account number, name as it appears on card, card expiration date, and authorized signature.

Sales Tax

All U.S. purchases must include applicable state and local sales tax. Customers claiming tax-exempt status must provide IHS Markit with a copy of their exemption certificate.

Shipping (U.S. Orders)

Orders shipped within the U.S. are sent via traceable means. Most orders are shipped the same day. Subscription updates are sent by First-Class Mail. Other options, including next-day service, air service, and fax transmission are available at additional cost. Call 1 800 854 7179 for more information.

Shipping (International Orders)

Standard international shipping is by air express courier service. Subscription updates are sent by World Mail. Normal delivery is 3-4 days from shipping date.

Shipping Point

Shipments are F.O.B., Englewood, Colorado, USA.

Rush Shipping Fee

Next Day Delivery orders charge is $20 in addition to the carrier charges. Next Day Delivery orders must be placed by 2:00 p.m. MST to ensure overnight delivery.

Returns

All returns must be pre-approved by calling the IHS Markit Customer Service Department at 1 800 624 3974 for information and assistance. There may be a 15% restocking fee. Special order items, electronic documents, and age-dated materials are non-returnable.

Prices

Prices quoted on API documents and materials are subject to change without notice. Printing and clerical errors are subject to correction. All orders will be filled at prices current at the time the order is invoiced and shipped.

Standing Orders

Standing orders are being accepted for any standard, specification, recommended practice, or bulletin published by API. To indicate that a new edition of a publication should be shipped and billed automatically as a new edition is published, place a check mark in the SO column on the order form and sign where indicated.

Customer Care

CustomerCare@ihsmarkit.com
Americas
T +1 800 447 2273
+1 303 858 6187 (Outside US/Canada)
Europe, Middle East, Africa
T +44 1344 328 300
Asia Pacific
T +604 291 3600

Billing Issues

Please contact us with any questions.
T 1 800 624 3974 ext. 5172 (Toll-free in the U.S. and Canada)
7:00 a.m. – 4:30 p.m. MST
F 303 790 0730
E global.finance@ihs.com

Sales

For revision checks and pricing contact the IHS Markit Sales Department.
T 1 800 854 7179 (Toll-free in the U.S. and Canada)
303 397 7956 (Local and International)
E global@ihs.com
IHS Markit Locations
IHS provides fast, efficient service to customers during real-time business hours, using local language and local currency.

NORTH AMERICA/LATIN AMERICA
IHS Markit World Headquarters
15 Inverness Way East
Englewood, CO 80112-5776
USA
T +01 303 479 7956
F +01 303 397 2740
E global@ihsmarkit.com
United States

IHS Markit/Canada
Canada
Stampede Station
S200, 1331 McLeod Trail S.E
Calgary AB Canada
T2G 0K3
T +01 403 267 8220 (toll-free)/
+01 403 237 4250
F +01 403 237 4251
E jennifer.hockley@ihsmarkit.com

IHS Markit de Mexico
Insurgentes Sur 813-Desp. 605
Col. Napoles, Mexico D.F. 03810
MEXICO
T +52(55)3067 6440 ext.6452
01800 874 4476(Mexico only)
F +52(55)1107 3040
E Rodrigo.plata@ihsmarkit.com

ASIA/AUSTRALIA
IHS Markit/APAC
8/F No. 1 Chatham Road South
Tsim Sha Tsui, Kowloon
HONG KONG
T +852 2368 5733
F +852 2368 5269
E global.hongkong@ihsmarkit.com

IHS Markit Customer Care
Toll Free +880 10002233
International +804 291 3600
Monday – Friday 0800 -1800 (+8 GMT)

EUROPE/AFRICA/MIDDLE EAST
IHS Markit/EMEA
Willoughby Road
Bracknell Berkshire
RG12 8FB
UNITED KINGDOM
T +44 1344 328039
English +44 1344 328039
French +44 1344 328316
German +44 1344 328315
Italian +44 1344 328025
F +44 1344 328005
E emearestore@ihsmarkit.com

IHS Markit Customer Care
T +44 1344 328230
Monday – Friday 0800 - 1800 GMT

Language and local currency.
IHS provides fast, efficient service to customers during real-time business hours, using local language and local currency.
WHY API COMPASS?

ONE PLATFORM. ALL OF YOUR CONTENT.

When the workforce in your organization needs access to more than just a few API standards and specifications, purchasing a subscription can save you and your business time and money. If you’re looking for the latest technology to bring value to your API subscription, selecting the API Compass platform is your best option.

The API Compass subscription gives you organization-wide, 24/7 access to all of the API standards and specifications you need to ensure, safety, compliance, and interoperability. With a subscription on API Compass, you are ensured consistent and up-to-date access to the latest API standards that help you deliver reliability, efficiency, and peace of mind.

Contact us at www.astm.org/api-wl-contact.htm or call us at 1-866-284-0169 and find out how easy it is to obtain a customized subscription to help reduce risk and save your organization time and money.

©2019 – American Petroleum Institute, all rights reserved. API and the API logo are trademarks or registered trademarks of API in the United States and/or other countries.
The Only API Standard That’s Completely Interactive.

The API Tech Data Book™ – 10th Edition is the only API standard that’s completely interactive, letting you read the standards, check referenced methods, and run computations all at the same time.

Published by EPCON International™ and powered by API®, the API Tech Data Book is updated annually, giving you the latest, most technically accurate data, methods, and standards on petroleum refining.

Whether you need to run calculations for characterization properties, distillation interconversions, pure component properties, mixture properties, or property estimation, the API Tech Data Book is your complete solution.

You don’t need to use complicated simulation software to get the physical property data you need for process equipment sizing, fluid flow computations, etc. You just need the API Tech Data Book. Download your free 30-day trial today and read, reference, run, and refine in a whole new way.

Try It Free for 30 Days!

Visit www.apidatabook.com or call 1-800-367-3585 to learn more about this product.

It All Starts With API Standards.™
API Monogram™ Licensing Program
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: certification@api.org
Web: www.api.org/monogram

API Quality Registrar (APIQR™)
- ISO 9001
- ISO 14001
- OHSAS 18001
- API Spec Q1®
- API Spec Q2™
- Dual Registration
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: certification@api.org
Web: www.api.org/apiqr

API Individual Certification Programs (ICP™)
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: icp@api.org
Web: www.api.org/icp

API Engine Oil Licensing and Certification System (EOLCS™)
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: eolcs@api.org
Web: www.api.org/eolcs

Motor Oil Matters™
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: motoroilmatters@api.org
Web: www.motoroilmatters.org

API Diesel Exhaust Fluid™ Certification Program
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: apidef@api.org
Web: www.apidef.org

API Perforator Design™ Registration Program
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: perfdesign@api.org
Web: www.api.org/perforators

API WorkSafe™
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: apiworksafe@api.org
Web: www.api.org/worksafe

API-U®
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: training@api.org
Web: www.api.org/apiu

API Data™ Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Service: (+1) 202-682-8042
Email: data@api.org
Web: www.api.org/data

API Standards
Order Info
Web: www.api.org/standards
www.techstreet.com/api

Technical Info
Email: standards@api.org
Web: www.api.org/standards

API WorkSafe™
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: apiworksafe@api.org
Web: www.api.org/worksafe

API-U®
Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Email: training@api.org
Web: www.api.org/apiu

API Data™ Sales: 877-562-5187
 (Toll-free U.S. and Canada)
 (+1) 202-682-8041
 (Local and International)
Service: (+1) 202-682-8042
Email: data@api.org
Web: www.api.org/data

API Standards
Order Info
Web: www.api.org/standards
www.techstreet.com/api

Technical Info
Email: standards@api.org
Web: www.api.org/standards

Check out more of API’s certification, training, events, standards, statistics, and safety programs.
API’s web-based training, API WorkSafe, offers a way for operators to make sure that their workers and contractors have been trained to industry safety standards. Its programs include training modules and qualification exams on API safety documents as well as Federal and State training requirements. With training for E&P onshore operators, Class A, B and C Underground Storage Tank operators, and service station contractors, API WorkSafe™ proves that when we all work together to improve safety, everybody works safe.

Take operator training on your schedule.
Go to www.APIWorkSafe.org and register.
All prices and discounts in this catalog are effective January 1, 2019. Members receive a 30% discount except where noted.