Serving the oil and natural gas industry with information

API is pleased to present its 2020 publications programs and services catalog.

The 2020 edition lists API standards, recommended practices, equipment specifications, other technical documents, and reports and studies to help the oil and natural gas industry safely, efficiently, and responsibly supply energy to billions of people around the world.

Each year, API distributes more than 300,000 copies of its publications.

For upstream, API publications cover offshore structures and floating production systems, tubular goods, valves and wellhead equipment, and drilling and production equipment. In the downstream arena, API publications address marketing and pipeline operations and refinery equipment, including storage tanks, pressure-relieving systems, compressors, turbines, and pumps. API also has publications that cut across industry sectors, covering fire and safety protection and petroleum measurement. API information technology standards cover EDI, eBusiness, telecommunications, and information technology applications for the oil and natural gas industry.

Other API publications cataloged here include economic analysis, toxicological test results, opinion research reports, and educational materials that provide basic information about the oil and natural gas industry and how technology is transforming it.

The publications in the catalog are intended for all segments of the oil and natural gas industry.

Please direct questions about the catalog to the API Standards Department at 202-682-8417.

Sincerely,

Scott Garten
Director, Intellectual Property
API
2020 Publications Programs and Services

Table of Contents

Exploration and Production
- General: Oil Field Equipment and Materials: 1
- Offshore Structures: 3
- Derrick and Masts: 8
- Tubular Goods: 8
- Valves and Wellhead Equipment: 12
- Drilling Equipment: 16
- Hoisting Tools: 17
- Wire Rope: 18
- Oil Well Cements: 18
- Field Operating Equipment: 21
- Lease Production Vessels: 24
- Drilling, Completion, and Fracturing Fluids: 25
- Offshore Safety and Antipollution: 27
- Fiberglass and Plastic Pipe: 28
- Drilling Well Control Equipment and Systems: 30
- Subsea Production Systems: 31
- Completion Equipment: 37
- Supply Chain Management: 41
- Drilling and Production Operations: 43
 - Training: 46
- Community Engagement: 47
- Health, Environment, and Safety
 - Exploration and Production Safety Standards: 47
 - General: 49
 - Naturally Occurring Radioactive Materials: 49
 - Waste: 50
 - Security: 50

Petroleum Measurement

Marketing
- General: 77
- Aviation: 77
- Marketing Operations: 78
- Used Oil: 79
- Tank Truck Operations: 79
- Motor Oils and Lubricants: 80
- Diesel Fuel: 80
- Health, Environment, and Safety
 - General: 80
 - Waste: 80
 - Water: 80
 - Soil and Groundwater: 81
 - Security: 81

Transportation
- Rail Transportation: 83
- Pipeline Public Education and Awareness: 83
- Pipeline Operations Publications: 83
- Pipeline Maintenance Welding: 89
- Tank Truck Operations: 89
- Security: 90

Refining
- Inspection of Refinery Equipment: 91
- Mechanical Equipment Standards for Refinery Service: 94
 - Equipment Datasheets: 98
- Storage Tanks: 98
- Pressure-Relieving Systems for Refinery Service: 102
- Piping Component and Valve Standards: 103
- Electrical Installations and Equipment: 107
- Instrumentation and Control Systems: 109
- Technical Data Book Petroleum Refining: 110
 - Related Items: 110
- Characterization and Thermodynamics: 111
- Materials Engineering Publications: 111
- Petroleum Products and Petroleum Product Surveys: 117
- Process Safety Standards: 117
- Health, Environment, and Safety
 - General: 119
 - Soil and Groundwater: 119
 - Security: 120

Safety and Fire Protection
- Upstream Safety Standards: 121
- Multi-Segment Publications: 122
- Storage Tank Safety Standards: 128

Health and Environmental Issues
- Air Research: 129
 - Emissions: General: 129
 - Emissions: Exploration and Production: 131
 - Emissions: Marketing: 132
 - Emissions: Refining: 132
 - Emissions: Vehicles: 134
 - Exposure: Assessment and Monitoring: 134
 - Modeling: 135
 - Ozone: 135
- Environment and Safety Data: 136
- Human Health Related Research: 137
- Natural Resource Damage Assessment: 139
- Pollution Prevention: 139
- Soil and Groundwater Research: 140
 - Contaminant Fate and Transport: 142
 - Remedial Technologies: 143
 - Site Characterization: 144
- Environmental Stewardship Program Publications: 146
- Storage Tank Research: 147
- Surface Water Research: 148
 - Biomonitoring: 150
 - Effluents: Exploration and Production: 151
 - Effluents: Marketing: 151
 - Effluents: Refining: 152
 - Oil Spills: 152
 - Oil Spills: MSRC Reports: 156
- Biennial Oil Spill Conference Proceedings: 158
- Sediments: 159
- Waste Research: 159
American Petroleum Institute | 200 Massachusetts Avenue NW | Suite 1100 | Washington, DC 20001-5571 | USA
www.api.org

All prices and discounts in this catalog are effective January 1, 2020.

Copyright 2020—API, all rights reserved. API, API Data, the API logo, and the API Monogram logo are either trademarks or registered trademarks of API in the United States and/or other countries. Adobe, the Adobe logo, Acrobat, the Acrobat logo, and PostScript are either trademarks or registered trademarks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft, Windows, Windows 95, and Windows NT are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards

NOTE Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

GENERAL: OIL FIELD EQUIPMENT AND MATERIALS

The API Composite List

This is a directory of companies licensed to use the API Monogram and APIQR Registration Mark. This directory also lists the companies who have registered Perforator Designs with API. It provides an alphabetical list of approximately 1,400 manufacturers licensed (at the time of publication) to mark their products with the API Monogram. It also contains a classified listing (by specific API specification) of these licensed manufacturers, as well as over 200 APIQR ISO 9000 registered firms. This directory was developed to assist those individuals desiring to purchase products and services meeting API specifications from companies whose quality systems and capabilities are verified by API's Quality Programs. It is updated and published quarterly.

A searchable on-line version of the composite list is updated weekly and can be found at https://mycerts.api.org/Search/CompositeSearch.

Free*

Spec Q1

Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Russian

Russian translation of Spec Q1.

9th Edition | June 2013 | Product Number: G0Q109R | Price: $104.00

Spec Q2

Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese

Chinese translation of Spec Q2.

Product Number: G0Q201C | Price: $61.00

Spec Q2

Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Portuguese

Portuguese translation of Spec Q2.

1st Edition | December 2011 | Product Number: G0Q201P | Price: $87.00

Spec Q2

Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Russian

Russian translation of Spec Q2.

1st Edition | December 2011 | Product Number: G0Q201R | Price: $70.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

- This publication is a new entry in this catalog.
- This publication is related to an API licensing, certification, or accreditation program.
Focuses on an evaluation process for HPHT equipment in the petroleum and natural gas industries. The document identifies requirements for service providers of lifecycle management and the activities required to perform lifecycle management including determination of product lifecycle management status, actions required to maintain a status, and development of the lifecycle management plan.

Multiple products used together as part of a system application may be included in the scope of this document, but only as individual products. This document was developed for upstream activities application. This document is intended for pressure-containing and/or pressure-controlling products for wellbore fluids but may also be applied to other equipment that is specified by the product owner or customer. While this document and/or portions thereof could be applicable to other industry segments, it is recommended that other segments carefully review these requirements in order to determine their applicability and, if necessary, to develop an applicable annex identifying any segment-specific requirements.

This document does not include technical requirements for products and does not include requirements for determination of fitness-for-service for a particular product. In addition, this document does not include requirements for original design and manufacture of product. Pages: 14

TR 18TR1

Guidance on Changes to API Q1, Ninth Edition

Written for experienced quality professionals seeking to implement the new requirements of API Q1, 9th Edition and to gain a deeper understanding of the requirements with an overall view to improving their quality management system (QMS) and conformance to API Q1, 9th Edition. While API Q1, 9th Edition was created independently of ISO 9001:2008, the specification continues to satisfy those requirements and the supplemental requirements in API Q1, 8th Edition. The formatting of API Q1, 9th Edition was revised to align with API Q2, 1st Edition and to follow a chronological order in the production and delivery of the product. Pages: 22

TR 18TR2

Guidance to API Specification Q2

Provides guidance on the intent and use of API Q2. This document is not intended to provide training on the development and implementation of a quality management system.

This document will not provide guidance to each section of the API Q2. Pages: 13

TR 18TR4

Evaluation of Welding Requirements as Applicable to API Product Specifications

A result of an evaluation of the consistency of welding requirements between API Product Specifications that are primarily used in exploration and production. The intent of the evaluation was to identify a means to standardize welding requirements across API Product Specifications. Pages: 117

*These translated versions are provided for convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedethe English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Exploration and Production

OFFSHORE STRUCTURES

RP 2A-LRFD
Planning, Designing, and Constructing Fixed Offshore Platforms—Load and Resistance Factor Design

Specifies requirements and provides recommendations applicable to the following types of fixed steel offshore structures for the petroleum and natural gas industries: free-standing and braced caissons, jackets, monotowers, and towers. In addition, it is applicable to compliant bottom founded structures, steel gravity structures, jack-ups, other bottom founded structures, and other structures related to offshore structures (such as underwater oil storage tanks, bridges, and connecting structures), to the extent to which its requirements are relevant. This document contains requirements for planning and engineering of the following tasks: design, fabrication, transportation, and installation of new structures, as well as their future removal; in-service inspection and integrity management of both new and existing structures; assessment of existing structures; and evaluation of structures for reuse at different locations. Pages: 518

2nd Edition | August 2019 | Product Number: G2ALRFD2 | Price: $387.00

RP 2A-WSD
Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design

Contains requirements for the design and construction of new fixed offshore platforms and for the relocation of existing platforms used for drilling, development, and storage of hydrocarbons in offshore areas. In addition, this document should be used in conjunction with RP 29IM for the assessment of existing platforms in the event that it becomes necessary to make a determination of the fitness-for-purpose of the structure. Pages: 310

22nd Edition | November 2014 | Product Number: G2AWSD22 | Price: $428.00

Spec 2B *
Specification for the Fabrication of Structural Steel Pipe

Covers the fabrication of structural steel pipe formed from plate steel with longitudinal and circumferential butt-welded seams. Pipe is typically in sizes of 14 in. outside diameter and greater, with a wall thickness 3/8 in. and greater (up to a nominal 40 ft in length), and is suitable for use in construction of welded offshore structures. The use of the ERW process or spiral welded pipe is not included in this specification. Pipe fabricated under this specification is intended to be used primarily in piling and main structural members, including tubular truss connections, where internal stiffeners are not usually required. Pages: 8

Spec 2B *
Specification for the Fabrication of Structural Steel Pipe—Chinese

Chinese translation of Spec 2B.

Spec 2C *
Offshore Pedestal-Mounted Cranes
(includes Errata 1 dated March 2013)

Provides requirements for design, construction, and testing of offshore pedestal mounted cranes. Offshore cranes are defined in this specification as pedestal mounted elevating and rotating lift devices for transfer of materials or personnel to or from marine vessels and structures. Offshore cranes are typically mounted on a fixed (bottom supported) or floating platform structure used in drilling and production operations. Spec 2C is not intended to be used for the design, fabrication, and testing of davits and/or emergency escape devices. Spec 2C is also not intended to be used for shipboard cranes or heavy lift cranes. Pages: 124

7th Edition | March 2012 | Effective Date: October 1, 2012 | Product Number: G02C07 | Price: $155.00

Spec 2C *
Offshore Pedestal-Mounted Cranes—Chinese

Chinese translation of Spec 2C.

7th Edition | March 2012 | Product Number: G02C07C | Price: $110.00

RP 2D
Operation and Maintenance of Offshore Cranes
(includes Errata 1 dated August 2015)

Intended to serve as a guide to crane owners and operators in developing operating and maintenance practices and procedures for use in the safe operation of pedestal-mounted revolving cranes on fixed or floating offshore platforms, jackup drilling rigs, semi-submersible drilling rigs and other types of mobile offshore drilling units (MODUs). Guidelines are also given for the pre-use inspection and testing of temporary cranes (also called self-erecting, leaping or bootstrap cranes) that are erected offshore.

Equipment (e.g. davits, launch frames) used only for launching life-saving appliances (life boats or life rafts) are not included in the scope of this document. Pages: 120

7th Edition | December 2014 | Product Number: G02D07 | Price: $157.00

RP 2EQ/ISO 19901-2:2004
Seismic Design Procedures and Criteria for Offshore Structures
(includes Addendum 1 dated January 2019)

Contains requirements for defining the seismic design procedures and criteria for offshore structures and is a modified adoption of ISO 19901-2. The intent of the modification is to map the requirements of ISO 19901-2 to the United States’ offshore continental shelf (U.S. OCS). The requirements are applicable to fixed steel structures and fixed concrete structures. The effects of seismic events on floating structures and partially buoyant structures are also briefly discussed. The site-specific assessment of jack-ups in elevated condition is only covered to the extent that the requirements are applicable. This document defines the seismic requirements for new construction of structures in accordance with RP 2A-WSD, 22nd Edition and later. Earlier editions of RP 2A-WSD are not applicable. Only earthquake-induced ground motions are addressed in detail. Other geologically induced hazards such as liquefaction, slope instability, faults, tsunamis, mud volcanoes, and shock waves are mentioned and briefly discussed. The requirements are intended to reduce risks to persons, the environment, and assets to the lowest levels that are reasonably practicable.

This edition of RP 2EQ is the modified national adoption of ISO 19901-2:2004. Pages: 54

1st Edition | November 2014 | Product Number: GG2EQ01 | Price: $136.00

Spec 2F *
Specification for Mooring Chain

Covers flash-welded chain and forged center connecting links used for mooring of offshore floating vessels such as drilling vessels, pipe lay barges, dredge barges, and storage tankers. Pages: 16

Spec 2F *
Specification for Mooring Chain—Chinese

Chinese translation of Spec 2F.

6th Edition | June 1997 | Product Number: G02F06C | Price: $69.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 2FB
Recommended Practice for Design of Offshore Facilities Against Fire and Blast Loading
Provides an assessment process for the consideration of fire and blast in the design of offshore structures and includes guidance and examples for setting performance criteria. This document complements the contents of the Section 18 of RP 2A-WSD, 21st Edition with more comprehensive guidance in design of both fixed and floating offshore structures against fire and blast loading. Guidance on the implementation of safety and environmental management practices and hazard identification, event definition and risk assessment can be found in RP 75 and the RP 14 series. The interface with these documents is identified and emphasized throughout, as structural engineers need to work closely with facilities engineers experienced in performing hazard analysis as described in RP 14U, and with the operator’s safety management system as described in RP 75. Pages: 63
1st Edition | April 2006 | Reaffirmed: January 2012
Product Number: G2FB01 | Price: $171.00

RP 2FPS
Planning, Designing, and Constructing Floating Production Systems
Provides guidelines for design, fabrication, installation, inspection, and operation of floating production systems (FPSs). A FPS may be designed with the capability of one or more stages of hydrocarbon processing, as well as drilling, well workover, production storage, and export. This document addresses only floating systems where a buoyant hull of some form supports the deck, production, and other systems. Bottom-fixed components, such as suction caissons risers, and stationary risers and platforms are beyond the scope of this RP. The requirements of this RP do not apply to mobile offshore units (MOUs) used in support of construction operations. For integrity management (IM) considerations, these units are typically governed by RCS rules. Pages: 191
2nd Edition | October 2011 | Product Number: G2FPS02 | Price: $202.00

RP 2FSIM
Floating Systems Integrity Management
Provides guidance for floating system integrity management (FSIM) of floating production systems (FPSs), which include tension leg platforms (TLPs), used by the petroleum and natural gas industries to support drilling, production, storage, and/or offloading operations. FPSs described in this recommended practice are governed by local regulatory requirements and recognized classification society (RCS) rules (if classed). No specific regulatory compliance or RCS requirements are restated in this RP. The requirements of this RP do not apply to mobile offshore drilling units (MODUs) or to mobile offshore units (MOUs) used in support of construction operations. For integrity management (IM) considerations, these units are typically governed by RCS rules. Pages: 101
1st Edition | September 2019
Product Number: G2FSIM01 | Price: $175.00

RP 2GEO/ISO 19901-4:2003
Geotechnical and Foundation Design Considerations
(includes Addendum 1 dated October 2014)
Contains requirements and recommendations for those aspects of geoscience and foundation engineering that are applicable to a broad range of offshore structures, rather than to a particular structure type. Such aspects are site characterization, soil and rock characterization, design and installation of foundations supported by the seabed (shallow foundations), identification of hazards, and design of pile foundations.
Aspects of soil mechanics and foundation engineering that apply equally to offshore and onshore structures are not addressed. The user of this document is expected to be familiar with such aspects.
This edition of RP 2GEO is the modified national adoption of ISO 19901-4:2003. Pages: 103
1st Edition | April 2011 | Product Number: G2GEO001 | Price: $167.00

Spec 2H
Specification for Carbon Manganese Steel Plate for Offshore Structures
Covers two grades of intermediate strength steel plates up to 4 in. thick for use in welded construction of offshore structures, in selected critical portions that must resist impact, plastic fatigue loading, and lamellar tearing. These steels are intended for fabrication primarily by cold forming and welding as per Spec 2B. The welding procedure is of fundamental importance and it is presumed that procedures will be suitable for the steels and their intended service. Conversely, the steels should be amenable to fabrication and welding under shipyard and offshore conditions. Pages: 24
9th Edition | July 2006 | Effective Date: February 1, 2007
Reaffirmed: January 2012 | Product Number: G2H09 | Price: $102.00

Bull 2HINS
Guidance for Post-Hurricane Structural Inspection of Offshore Structures
Provides guidance for above- and below-water post-hurricane structural inspections of fixed and floating structures in the Gulf of Mexico. The goal of these special inspections is to determine if a structure sustained hurricane-induced damage that affects the safety of personnel, the primary structural integrity of the asset, or its ability to perform the purpose for which it was intended. This document should be used in conjunction with the applicable API recommended practices for the structure as well as any structure specific owner or regulatory requirements. Pages: 16
1st Edition | May 2009 | Product Number: G2HINS01 | Price: $90.00

RP 2I
In-Service Inspection of Mooring Hardware for Floating Structures
Provides guidelines for inspecting mooring components of mobile offshore drilling units (MODUs) and permanent floating installations. This edition includes:
• inspection guidelines for steel permanent moorings on permanent floating installations are added;
• inspection guidelines for fiber ropes used for permanent and MODU moorings are included;
• special guidance for MODU mooring inspection in the areas of tropical cyclone is provided.
Although this recommended practice was developed for the primary moorings of MODUs and permanent floating installations, some of the guidelines may be applicable to moorings of other floating vessels such as pipe-laying barges and construction vessels. Also some of the guidelines may be applicable to secondary or emergency moorings such as mooring for jack-up units, shuttle tanker mooring, and dynamic positioning (DP) vessel harbor mooring. The applicability of this document to other floating vessels and moorings is left to the discretion of the user. Pages: 73
3rd Edition | April 2008 | Reaffirmed: June 2015
Product Number: G2I03 | Price: $160.00

RP 2MET
Derivation of Metocean Design and Operating Considerations
Gives general requirements for the determination and use of meteorological and oceanographic (metocean) conditions for the design, construction and operation of offshore structures of all types used in the petroleum and natural gas industries.
The requirements are divided into two broad types:
• those that relate to the determination of environmental conditions in general, together with the metocean parameters that are required to adequately describe them;
• those that relate to the characterization and use of metocean parameters for the design, the construction activities or the operation of offshore structures.
Exploration and Production

Fax Orders: +1 303 397 2740 Online Orders: global.ihs.com

The environmental conditions and metocean parameters discussed are:

- extreme and abnormal values of metocean parameters that recur with given return periods that are considerably longer than the design service life of the structure;
- long-term distributions of metocean parameters, in the form of cumulative, conditional, marginal or joint statistics of metocean parameters; and normal environmental conditions that are expected to occur frequently during the design service life of the structure.

Metocean parameters are applicable to:

- the determination of actions for the design of new structures;
- the determination of actions for the assessment of existing structures;
- the site-specific assessment of mobile offshore units;
- the determination of limiting environmental conditions, weather windows, actions and action effects for pre-service and post-service situations (i.e. fabrication, transportation and installation or decommissioning and removal of a structure); and facility operations, where appropriate.

Pages: 280

2nd Edition | November 2019
Product Number: GG2MET02 | Price: $227.00

RP 2MIM ■ Mooring Integrity Management

Provides guidance for the integrity management (IM) of mooring systems connected to a permanent floating production system (FPS) used for the drilling, development, production, and/or storage of hydrocarbons in offshore areas. The scope of this recommended practice (RP) extends from the anchor to the connection to the floating unit (e.g. chain stopper) and includes components critical to the mooring system (e.g. turret bearings, fairleads, chain stoppers, anchors, suction piles).

Specific guidance is provided for the inspection, monitoring, evaluation of damage, fitness-for-service assessment, risk reduction, mitigation planning, and the process of decommissioning. This RP incorporates and expands on the IM recommendations found in API 21 and API 25K. In the event of any discrepancy between API 2MMI and API 2/I 25K, API 2/I 25K will govern.

Pages: 83

1st Edition | September 2019
Product Number: G2MIM01 | Price: $137.00

RP 2MOP/ISO 19901-6:2009

Marine Operations

(includes Errata 1 dated April 2015)

Provides requirements and guidance for the planning and engineering of marine operations, encompassing the design and analysis of the components, systems, equipment, and procedures required to perform marine operations, as well as the methods or procedures developed to carry them out safely. This document is also applicable to modifications of existing structures, e.g. installation of additional topsides modules.

This edition of RP 2MOP is the identical national adoption of ISO 19901-6:2009.

Pages: 168

1st Edition | July 2010 | Reaffirmed: April 2015
Product Number: GG2MOP1 | Price: $263.00

Spec 2MT2 ◆ Rolled Shapes with Improved Notch Toughness

(includes Addendum 1 dated December 2019)

Covers rolled shapes (wide flange shapes, angles, etc.), having a specified minimum yield strength of 50 ksi (345 Mpa), intended for use in offshore structures. Commonly available Class A, Class B, and Class C beams refer to degrees of fracture criticality as described in RP 2A-WSD, with Class C being for the least critical applications. For special critical applications, Class AAZ shapes may be specified, by agreement, using Supplement S101.

1st Edition | June 2002 | Effective Date: December 1, 2002
Reaffirmed: June 2015 | Product Number: G2MT21 | Price: $86.00

RP 2N/ISO 19906:2010

Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions

Specifies requirements and provides recommendations and guidance for the design, construction, transportation, installation, and removal of offshore structures, related to the activities of the petroleum and natural gas industries in arctic and cold regions. Reference to arctic and cold regions includes both the Arctic and other cold regions that are subject to similar sea ice, iceberg, and icing conditions. The objective of this standard is to ensure that offshore structures in arctic and cold regions provide an appropriate level of reliability with respect to personnel safety, environmental protection, and asset value to the owner, to the industry, and to society in general.

This standard does not contain requirements for the operation, maintenance, service-life inspection, or repair of arctic and cold region offshore structures, except where the design strategy imposes specific requirements. While this standard does not apply specifically to mobile offshore drilling units, the procedures relating to ice actions and ice management contained herein are applicable to the assessment of such units. This standard does not apply to mechanical, process, and electrical equipment or any specialized process equipment associated with arctic and cold region offshore operations except in so far as it is necessary for the structure to sustain safely the actions imposed by the installation, housing, and operation of such equipment.

This edition of RP 2N is the modified national adoption of ISO 19906:2010.

Pages: 458

3rd Edition | April 2015 | Product Number: G02N03 | Price: $216.00

Std 2RD

Dynamic Risers for Floating Production Systems

Addresses structural analysis procedures, design guidelines, component selection criteria, and typical designs for all new riser systems used on FPSs. Guidance is also given for developing load information for the equipment attached to the ends of the risers. The recommended practice for structural design of risers, as reflected in this document, is generally based on the principles of limiting stresses in the risers and related components under normal, extreme, and accidental conditions. This document assumes that the risers will be made of steel or titanium pipe or unbonded flexible pipe. However, other materials, such as aluminum, are not excluded if risers built using these materials can be shown to be fit for purpose. Design considerations for unbonded flexible pipe are included primarily by reference to RP 17B and Spec 171.

Pages: 81

2nd Edition | September 2013 | Product Number: G2RD02 | Price: $265.00

RP 2RIM ◆ Integrity Management of Risers from Floating Production Facilities

Provides guidance for the integrity management (IM) of risers connected to a permanent floating production system (FPS) used for the drilling, development, production, and storage of hydrocarbons in offshore areas.

For the purposes of this recommended practice, a riser has a top boundary that is somewhere at or above the point where it transfers load to the platform structure, and it has a lower boundary where it transfers load into a foundation, which could be a wellhead, pipeline, or subsea structure.

Pages: 72

1st Edition | September 2019
Product Number: G2RIM01 | Price: $137.00

This publication is a new entry in this catalog.
◆ This publication is related to an API licensing, certification, or accreditation program.
Design of Windlass Wildcats for Floating Offshore Structures

Covers the design of windlass Wildcats to ensure proper fit and function between windlass and mooring chain. Wildcats are of the five-whelp type for use with studlink anchor chain conforming to the classification society Grades 1, 2, and 3, ORQ and Grade 4 chain. Wildcat dimensions are provided for chains in integral 1/8 in. (3 mm) steps, ranging in size from 2 in. to 4 in. (51 mm to 102 mm). Wildcat dimensions for chain in intermediate 1/16 in. (1.5 mm) steps are not provided, but wildcats in these sizes are permitted within the scope of this publication. Pages: 7

Product Number: G02S02 | Price: $82.00

Design and Analysis of Stationkeeping Systems for Floating Structures (includes Addendum 1 dated May 2008)

Presents a rational method for analyzing, designing, or evaluating mooring systems used with floating units. This method provides a uniform analysis tool that, when combined with an understanding of the environment at a particular location, the characteristics of the unit being moored, and other factors, can be used to determine the adequacy and safety of the mooring system. Some design guidelines for dynamic positioning systems are also included. Appendix K of 2SK replaces RP 95F. Pages: 181

Product Number: G2SK03 | Price: $138.00

Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring

Covers the design, manufacture, and installation of synthetic fiber ropes to include the design and analysis considerations of mooring systems, design criteria for mooring components, rope design and testing, quality assurance, and in-service maintenance and inspection. This document applies to synthetic fiber ropes used in the form of taut leg or catenary moorings for both permanent and temporary offshore installations such as:
- monohull-based floating production, storage, and offloading units (FPSOs);
- monohull-based floating storage units (FSOs, FSUs);
- monohull or semi-submersible based floating production units (FPUs, FPSs);
- mobile offshore drilling units (MODUs);
- spar platforms;
- catenary anchor leg mooring (CALM) buoys;
- mobile offshore units. Pages: 108

2nd Edition | July 2014 | Product Number: G2SM02 | Price: $201.00

Planning, Designing and Constructing Tension Leg Platforms

Contains a guide to the designer in organizing an efficient approach to the design of a tension leg platform (TLP). Emphasis is placed on participation of all engineering disciplines during each stage of planning, development, design, construction, installation, and inspection. This publication contains guidelines developed from the latest practices in designing tension leg platforms and are adapted from successful techniques employed for related structural systems in the offshore and marine industries. Pages: 254

3rd Edition | July 2010 | Reaffirmed: June 2015
Product Number: G02T03 | Price: $246.00

Guidelines for Tie-Downs on Offshore Production Facilities for Hurricane Season

Addresses the need to evaluate the tie-downs in use on offshore production facilities for drilling rigs, permanent equipment, and facilities such as quarters, helidecks, etc. The information contained in this document is presented as recommendations to improve tie-down performance during hurricanes. Bull 2TD also addresses situations where failure of a drilling or workover rig would result in significant damage to the platform or adjacent infrastructure. Pages: 3

1st Edition | June 2006 | Product Number: G2TD01 | Price: $56.00
Requirements in API 2TOP concerning modifications and maintenance relate to those aspects that are of direct relevance to the structural integrity of the topsides structure. Pages: 136

1st Edition | August 2019 | Product Number: G2TOP1 | Price: $156.00

The interrelationship between joint design, the significance of defects in welds, and the ability of NDE personnel to detect critical-size defects is also possible and modified only where needed to conform to standards and practices of API.

RP 2TOP

Topsides Structure
Provides requirements for the design, fabrication, transportation, installation, modification, and structural integrity management for the topsides structure for an oil and gas platform. It complements API 2A-WSD, API 2A-LRFD, ISO 19903, API 2FPS, API 2T, ISO 19905-1, and API 2N, which give requirements for various forms of substructures. It is based on ISO 19901-3:2010 (Corrected version, 15-Dec-2011) and is consistent with ISO 19901-3:2014. In fact, ISO 19901-3 was followed to the fullest extent possible and modified only where needed to conform to standards and practices of API.

Requirements in API 2TOP concerning modifications and maintenance relate only to those aspects that are of direct relevance to the structural integrity of the topsides structure. Pages: 136

1st Edition | August 2019 | Product Number: G2TOP1 | Price: $156.00

The interrelationship between joint design, the significance of defects in welds, and the ability of NDE personnel to detect critical-size defects is also possible and modified only where needed to conform to standards and practices of API.

Spec 2Y

Specification for Steel Plates, Quenched-and-Tempered, for Offshore Structures
Covers two grades of high strength steel plate for use in welded construction of offshore structures, in selected critical portions that must resist impact, plastic fatigue loading, and lamellar tearing. Grade 50 is covered in thicknesses up to 6 in. (150 mm) inclusive, and Grade 60 is covered in thicknesses up to 4 in. (100 mm) inclusive. Pages: 13

5th Edition | December 2006 | Effective Date: June 1, 2007
Reaffirmed: January 2012 | Product Number: G02Y05 | Price: $102.00

RP 2Z

Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures
Covers requirements for preproduction qualification, by special welding and mechanical testing, of specific steelmaking and processing procedures for the manufacture of steel of a specified chemical composition range by a specific steel producer. This is a recommended practice for material selection and qualification, but not for the performance of production weld joints. This recommended practice was developed in conjunction with, and is intended primarily for use with, Specs 2W and 2Y. However, it may be used as a supplement to other material specifications (e.g. Spec 2H) if so desired. Pages: 19

Product Number: G02Z04 | Price: $130.00

Spec 2W

Steel Plates Produced by Thermo-Mechanically Controlled Processing for Offshore Structures
Covers four grades of steel plates that are to be produced by thermomechanically controlled processing (TMCP) for use in welded construction of offshore structures. Pages: 27

6th Edition | January 2019 | Product Number: G02W06 | Price: $105.00

Spec 2W

Russian translation of Spec 2W.

Russian translation of Spec 2W.

4th Edition | September 2005 | Product Number: G02W04R | Price: $103.00

RP 95J

Gulf of Mexico Jackup Operations for Hurricane Season
 Presents an interim approach to siting jackup mobile offshore drilling units (MODUs) and to recommend certain operational procedures to enhance jackup survivability and stationkeeping during hurricane season in the Gulf of Mexico during drilling and workover and while stacked (idled) at a non-sheltered location. This RP provides guidance and processes, and when combined with an understanding of the environment at a particular location, the characteristics of the unit being utilized, and other factors, it may be used to enhance operational integrity. This RP was developed through a cooperative arrangement with the International Association of Drilling Contractors’ (IADC) Jackup Rig Committee. Specifically, this RP provides guidance in the following areas:

- site—including location-specific, geotechnical, and metocean;
- preloading process;
- air gap recommendations;
- unit preparations and evacuation;
- post storm recovery; and
- post storm inspections. Pages: 15

Product Number: G95J01 | Price: $88.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Line Pipe, and Drill Stem Elements—Russian

RP 5A3/ISO 13678:2010 *

Product Number: GX5A303 | Price: $125.00

This edition of RP 5A3 is the identical national adoption of ISO 13678:2010. Pages: 47

RP 5A5/ISO 15463:2003 *

Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe—Chinese

Product Number: GX5A507C | Price: $119.00

Spec 5B *

Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads—Russian

Product Number: G5B016R | Price: $126.00

Spec 5B *

Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads—Chinese

Product Number: GX5A507C | Price: $119.00

Spec 5B *

Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads—Kazakh

Product Number: G05B15K | Price: $123.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Exploration and Production

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

RP 5B1 *
Gauging and Inspection of Casing, Tubing and Pipe Line Threads—Russian
Russian translation of RP 5B1.
5th Edition | October 1999 | Product Number: G05B15R | Price: $123.00

RP 5C1
Recommended Practice for Care and Use of Casing and Tubing
Covers use, transportation, storage, handling, and reconditioning of casing and tubing. Pages: 31
Product Number: G05C18 | Price: $124.00

RP 5C1 *
Recommended Practice for Care and Use of Casing and Tubing—Chinese
Chinese translation of RP 5C1.
18th Edition | May 1999 | Product Number: G05C18C | Price: $88.00

TR 5C3
Calculating Performance Properties of Pipe Used as Casing or Tubing
Illustrates the equations and templates necessary to calculate the various pipe properties, including:
- pipe performance properties, such as axial strength, internal pressure resistance, and collapse resistance;
- minimum physical properties;
- product assembly force (torque);
- product test pressures;
- critical product dimensions related to testing criteria;
- critical dimensions of testing equipment; and
- critical dimensions of test samples.
For equations related to performance properties, extensive background information is also provided regarding their development and use. Pages: 400
7th Edition | June 2018 | Product Number: G5C307 | Price: $246.00

RP 5C5
Procedures for Testing Casing and Tubing Connections
Defines tests to perform to determine the galling tendency, sealing performance, and structural integrity of threaded casing and tubing connections. The words “casing” and “tubing” apply to the service application and not to the diameter of the pipe. This recommended practice addresses the primary loads to which casing and tubing strings are subjected: fluid pressure (internal and/or external), axial force (tension and/or compression), bending (buckling and/or wellbore deviation), and temperature variations. Pages: 197

RP 5C5 *
Procedures for Testing Casing and Tubing Connections—Russian
Russian translation of RP 5C5.

RP 5C6
Pipe with Welded Connectors
Provides a practice for facility or field welding of connectors to pipe. The technical content contains guidance and requirements for welding procedure qualification, welder performance qualification, materials, testing, production welding, and inspection. Additionally, this standard covers the weld fabrication of connectors and handling attachments such as lift eyes and landing pads to pipe. This standard also includes practices used within industry and is intended to be analogous to API 6A PSL 1, with additional requirements specific to the equipment fabrication. Pages: 28
3rd Edition | May 2018 | Product Number: G05C62 | Price: $103.00

RP 5C8
Care, Maintenance, and Inspection of Coiled Tubing
Covers the care, maintenance, and inspection of used low alloy carbon steel coiled tubing. Commonly manufactured coiled tubing outside diameters range from 25.4 mm (1.000 in.) to 88.9 mm (3.5 in.). Pages: 122
1st Edition | January 2017 | Product Number: G05C801 | Price: $131.00

Spec 5CRA/ISO 13680:2008 *
Specification for Corrosion Resistant Alloy Seamless Tubes for Use as Casing, Tubing and Coupling Stock
(includes Errata 1 dated December 2018 and Errata 2 dated May 2019)
Specifies the technical delivery conditions for corrosion-resistant alloy seamless tubulars for casing, tubing, and coupling stock for two product specification levels. This edition of Spec 5CRA is the identical national adoption of ISO 13680:2010. Pages: 87
1st Edition | February 2010 | Effective Date: August 1, 2010
Reaffirmed: April 2015 | Product Number: G5G5CRA01 | Price: $168.00

Spec 5CRA/ISO 13680:2008 *
Specification for Corrosion Resistant Alloy Seamless Tubes for Use as Casing, Tubing and Coupling Stock—Russian
1st Edition | February 2010
Product Number: G5G5CRA01R | Price: $134.00

Spec 5CT *
Casing and Tubing
(includes Errata 1 dated December 2018 and Errata 2 dated May 2019)
Specifies the technical delivery conditions for steel pipes (casing, tubing, and pup joints), coupling stock, coupling material, and accessory material, and establishes requirements for three product specification levels (PSL-1, PSL-2, PSL-3). The requirements for PSL-1 are the basis of this standard. The requirements that define different levels of standard technical requirements for PSL-2 and PSL-3, for all grades except H-40, L-80, 9Cr, and C110, are provided.
For pipes covered by this standard, the sizes, masses, and wall thicknesses, as well as grades and applicable end-finishes, are provided. API 5L pipe may be ordered as casing in accordance with API 5C6. Pages: 307
10th Edition | June 2018 | Effective Date: July 1, 2019
Product Number: G5C7010 | Price: $282.00

Spec 5CT *
Casing and Tubing—Chinese
Chinese translation of Spec 5CT.
10th Edition | June 2018 | Product Number: G5C7010C | Price: $197.00

Spec 5CT *
Casing and Tubing—Russian
Russian translation of Spec 5CT.
10th Edition | June 2018 | Product Number: G5C7010R | Price: $225.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

■ This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program.
Spec 5DP/ISO 11961:2008
Specification for Drill Pipe

Specifies the technical delivery conditions for steel drill-pipes with upset pipe-body ends and weld-on tool joints for use in drilling and production operations in petroleum and natural gas industries for three product specification levels (P8L-1, PSL-2, and PSL-3). This International Standard covers the following grades of drill-pipe:

- grade E drill-pipe;
- high-strength grades of drill-pipe, grades X, G, and S.

This International Standard can also be used for drill-pipe with tool joints not specified by ISO or API standards. This International Standard is based on Spec 5D and Spec 7.

This edition of Spec 5DP is the identical national adoption of ISO 11961:2008. Pages: 112

1st Edition | August 2009 | Effective Date: August 1, 2010
Reaffirmed: April 2015 | Product Number: GX5DP01 | Price: $196.00

Russian translation of Spec 5DP

1st Edition | August 2009 | Product Number: GX5DP01C | Price: $138.00

Chinese translation of Spec 5DP

1st Edition | August 2009 | Product Number: GX5DP01 | Price: $138.00

Spec 5L
Line Pipe

(includes Errata 1 dated May 2018)

Specifies requirements for the manufacture of two product specification levels (PSL 1 and PSL 2) of seamless and welded steel pipes for use in pipeline transportation systems in the petroleum and natural gas industries. This specification is not applicable to cast pipe. Pages: 210

46th Edition | April 2018 | Effective Date: November 1, 2018
Product Number: G05L46 | Price: $298.00

Russian translation of Spec 5L

Product Number: G05L82 | Price: $136.00

Kazakh translation of Spec 5L

Chinese translation of Spec 5L

46th Edition | April 2018 | Product Number: G05L46C | Price: $209.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Exploration and Production

Fax Orders: +1 303 397 2740

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 5LC</td>
<td>$189.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRA Line Pipe</td>
<td></td>
<td></td>
<td></td>
<td>Methods of testing.</td>
</tr>
<tr>
<td>* (includes Errata 1 dated October 2015)</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 110</td>
</tr>
<tr>
<td>Covers seamless, centrifugal cast, and welded corrosion resistant alloy line pipe as well as austenitic stainless, martensitic stainless, duplex stainless, and Ni-base alloys. Also includes standard weight, regular weight, special, extra strong, and double extra strong plain end line pipe as well as processes of manufacturer, chemical and physical requirements, and methods of testing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Price</th>
<th>2nd Edition</th>
<th>October 2006</th>
<th>Effective Date: April 18, 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 5LCP</td>
<td>$158.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification on Coiled Line Pipe</td>
<td></td>
<td></td>
<td></td>
<td>Russian translation of Spec 5LC.</td>
</tr>
<tr>
<td>(includes Errata 1 dated July 2007)</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 42</td>
</tr>
<tr>
<td>Provides standards for pipe suitable for use in conveying gas, water, and oil in both the oil and natural gas industries. Covers welded steel continuously milled coiled line pipe in the size range 0.5 in. (12.7 mm) to 6.625 in. (168.3 mm). Pipe that is pipe-to-pipe welded outside the confines of the manufacturing plant is not included within this document.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Price</th>
<th>2nd Edition</th>
<th>October 2006</th>
<th>Reaffirmed: November 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 5LD</td>
<td>$128.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRA Clad or Lined Steel Pipe</td>
<td></td>
<td></td>
<td></td>
<td>Russian translation of Spec 5LC.</td>
</tr>
<tr>
<td>(includes Errata 1 dated June 2017)</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 38</td>
</tr>
<tr>
<td>Covers seamless, centrifugal cast, and welded clad steel line pipe, and lined steel pipe with improved corrosion-resistant properties. The clad and lined steel line pipe specified in this document shall be composed of a base metal outside and CRA layer inside the pipe. The base material shall conform to Spec 5L, except as modified in the 5LC document. Provides standards for pipe with improved corrosion resistance suitable for use in conveying gas, water, and oil in both the oil and natural gas industries.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 5LT</td>
<td>$65.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Practice for Truck Transportation of Line Pipe</td>
<td></td>
<td></td>
<td></td>
<td>Russian translation of RP 5LT.</td>
</tr>
<tr>
<td>Applies to the transportation on railcars of Spec 5L steel line pipe in sizes 2 3/8 in. and larger in lengths longer than single random. These recommendations cover coated or uncoated pipe, but they do not encompass loading practices designed to protect pipe coating from damage.</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 5LW</td>
<td>$65.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels</td>
<td></td>
<td></td>
<td></td>
<td>Russian translation of RP 5LW.</td>
</tr>
<tr>
<td>Applies to the transportation of Spec 5L steel line pipe by ship or barge. Covers both inland and marine waterways except in cases where the specific requirement of a paragraph references only marine or only inland-waterway transport.</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 5ST</td>
<td>$145.00</td>
<td>1-Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification for Coiled Tubing—U.S. Customary and SI Units</td>
<td></td>
<td></td>
<td></td>
<td>Chinese translation of Spec 5ST.</td>
</tr>
<tr>
<td>Covers the manufacturing, inspection, and testing of all carbon and low alloy steel coiled tubing in Grades CT70, CT80, CT90, CT100, and CT110, in the designations and wall thicknesses given in Table A.5, that can be used as work strings, completion strings, and static installations in oil and gas wells. Coiled tubing may be ordered to this specification.</td>
<td></td>
<td></td>
<td></td>
<td>Pages: 64</td>
</tr>
</tbody>
</table>

Footnotes

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

- [] This publication is a new entry in this catalog.
- [] This publication is related to an API licensing, certification, or accreditation program.

11
Exploitation et Production

Product Number: G5TP01 | Price: $124.00

connection is optimized. Pages: 30

5CT. Pages: 24

5C1 needed to produce and inspect these connections. By agreement between the purchaser and manufacturer, the supplemental requirements

Inspection requirements and acceptance criteria are not defined in this document, and are found instead in the respective product specification. Pages: 65

11th Edition | October 2017 | Product Number: G05T111R | Price: $111.00

TR 5TP

Torque-Position Assembly Guidelines for API Casing and Tubing Connections

Provides alternative connection assembly procedures to those found in Spec 5B (power turns) and those found in RP 5C1 (optimum torque). The procedures set forth are referred to as "torque-position" because the makeup torque and final position are used as acceptance criteria for the assembly operation. The connections are threaded in accordance with Spec 5B. The torque-position assembly parameters have been developed for most 5C (short round thread casing), LC (long round thread casing), BC (buttress thread casing), and EU (external upset tubing) connections. Torque-position is a precision assembly method that relies on a controlled process for successful implementation. When defined threading and assembly procedures are followed, the performance of the resulting assembled connection is optimized. Pages: 30

1st Edition | December 2013 | Product Number: G5TP01 | Price: $124.00

TR STRSR22

Technical Report in SR22 Supplementary Requirements for Enhanced Leak Resistance LTC

Covers the supplemental requirements for Enhanced Leak Resistance LTC (SC22) connections and the changes in Spec 5CT, Std 5B, 5B1, and RP 5C1 needed to produce and inspect these connections. By agreement between the purchaser and manufacturer, the supplemental requirements for SR22 shall apply to connections manufactured in accordance with Spec 5CT. Pages: 24

1st Edition | June 2002 | Product Number: GSR221 | Price: $96.00

RP 5UE

Recommended Practice for Ultrasonic Evaluation of Pipe Imperfections

(includes Addendum 1 dated April 2009)

Describes procedures that may be used to "prove-up" the depth or size of imperfections. Included in this practice are the recommended procedures for ultrasonic prove-up inspection of new pipe using the Amplitude Comparison Technique and the Amplitude-Distance Differential Technique for evaluation of

- surface-breaking imperfections in the body of pipe, and
- surface breaking and subsurface imperfections in the weld area of electric resistance, electric induction or laser welded pipe, and
- surface breaking and subsurface imperfections in the weld area of arc welded pipe. Pages: 22

Product Number: GSUE02 | Price: $86.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Produit N°: GX06A21 | Prix: $310.00

This publication is related to an API licensing, certification, or accreditation program.

VALVES AND WELLHEAD EQUIPMENT

Spec 6A *

Specification for Wellhead and Tree Equipment

(includes Errata 1 dated April 2019)

Provides requirements for the performance, dimensional and functional interchangeability, design, materials, testing, inspection, welding, marking, handling, storing, shipment, purchasing, repair, and remanufacture of wellhead and tree equipment for use in the petroleum and natural gas industries. This document does not apply to field use, field testing, or field repair of wellhead and Christmas tree equipment.

This document is applicable to the following specific equipment: wellhead equipment (integral, blind, and test flanges; ring gaskets; threaded connectors; tees and crosses; bullplugs; valve-removal plugs; standard and nonstandard top connectors; crossover connectors; other end connectors; adapter spools and spacer spools; gate, plug, and ball valves; actuated valves [manual and remote]; check valves [swing- and lift-type]; back-pressure valves; slip-type and mandrel-type casing and tubing hangers, casing and tubing heads [housings and adapters]; chokes [fixed, manually actuated, remotely actuated]; actuators [for valves and chokes]; surface safety valve [SSV] assemblies, valves prepared for actuators, and actuators; underwater safety valve [USV] assemblies, valves prepared for actuators, and actuators; boarding shutdown valve [BSDV] assemblies, valves prepared for actuators, and actuators; and tree assemblies).

This document defines service conditions in terms of pressure, temperature, and material class for the well-bore constituents, and operating conditions. This international standard establishes requirements for four product specification levels (PSL). These four PSL designations define different levels of technical quality requirements. Pages: 414

21st Edition | November 2018 | Effective Date: November 1, 2019

Product Number: GX06A21 | Price: $310.00

Spec 6A *

Specification for Wellhead and Tree Equipment—Russian

Russian translation of Spec 6A.

21st Edition | November 2018

Product Number: GX06A21R | Price: $248.00

Std 6ACRA

Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment

Provides requirements for age-hardened nickel-base alloys that are intended to supplement the existing requirements of Spec 6A. For downhole applications, refer to Spec SCRRA.

These additional requirements include detailed process control requirements and detailed testing requirements. The purpose of these additional requirements is to ensure that the age-hardened nickel-base alloys used in the manufacture of Spec 6A pressure-containing and pressure-controlling components are not embrittled by the presence of an excessive level of deleterious phases and meet the minimum metallurgical quality requirements.

This standard is intended to apply to pressure-containing and pressure-controlling components as defined in Spec 6A. Requirements of this standard may be applied by voluntary conformance by a manufacturer, normative reference in Spec 6A or other product specification(s), or by contractual agreement.

This document expands the scope of Std 6ACRA. With its issuance, it replaces Std 6AT18, 2nd Edition in its entirety. Pages: 33

1st Edition | August 2015 | Product Number: 6ACRA1 | $98.00

This publication is a new entry in this catalog.

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

Phone Orders: +1 303 397 7956 (Local and International)
bending moment. All flanges were analyzed with an axisymmetric finite
model for each of the four load cases. A post-processor program was written
to calculate the maximum moment capacity for various levels of pressure
and tension, based on linear superposition of results. Three different criteria
were used to establish the maximum moment:

- ASME Section VIII, Division 2 allowable stress categories for the flange
 with the basic membrane stress allowable established by API;
- allowable bolt stresses as established by API; and
- loss of preload on the ring joint.

The results of this post-processing are presented in plots of pressure vs.
allowable moment for various tension levels. Limitations to this work include:
the effects of transverse shear or torsion were not considered in the analysis;
dynamic, fatigue, or fretting phenomena were not considered in these
results; and thermal stresses or elevated temperature effects were not
considered. The charts are intended to be used only as general guidelines
considered were bolt makeup (preload), internal pressure, tension, and
bending moment. All flanges were analyzed with an axisymmetric finite
model for each of the four load cases. A post-processor program was written
to calculate the maximum moment capacity for various levels of pressure
and tension, based on linear superposition of results. Three different criteria
were used to establish the maximum moment:

- ASME Section VIII, Division 2 allowable stress categories for the flange
 with the basic membrane stress allowable established by API;
- allowable bolt stresses as established by API; and
- loss of preload on the ring joint.

The results of this post-processing are presented in plots of pressure vs.
allowable moment for various tension levels. Limitations to this work include:
the effects of transverse shear or torsion were not considered in the analysis;
dynamic, fatigue, or fretting phenomena were not considered in these
results; and thermal stresses or elevated temperature effects were not
considered. The charts are intended to be used only as general guidelines
for design. These charts are not intended to replace a critical evaluation of
assurance measure in Spec 6A equipment to screen materials with poor
notch toughness. Pages: 12

2nd Edition | September 1995 | Product Number: G66AM2 | Price: $82.00

Std 6AR

Repair and Remanufacture of Wellhead and Tree Equipment

Identifies the requirements for repair and remanufacture of wellhead and
tree equipment under a quality management system and manufactured in
conformance with API 6A for continued service when specified by the user/
purchaser of the equipment.

This standard applies to equipment manufactured to editions of API 6A in
which a product specification level (PSL) identifies the quality, material, and
testing requirements for a specific product. Equipment identified as
manufactured in conformance with API 6A prior to April 1986 (API 6A, 15th
Edition) is outside the scope of this document. A repair and remanufacture
specification level (RSL) is designated to provide the appropriate quality
control requirements for the repair and remanufacture of wellhead and tree
equipment under this standard. Pages: 25

2nd Edition | September 2019 | Product Number: G6AR02 | Price: $75.00

Spec 6AV1

Validation of Safety and Shutdown Valves for Sandy Service

There are three service classes—Class I, Class II, and Class III—for API 6A
surface safety valve (SSV), underwater safety valve (USV), or boarding
shutdown valve (BSDV). This standard establishes sandy service design
validation for valves to meet Class II and Class III.

Class II is intended to validate the valve bore sealing mechanism if
substances such as sand can be expected to cause safety or shutdown valve
failure.

Class III adds additional requirements and validation of the bonnet assembly
inclusive of stem seals and may be selected by the user/purchaser.
Validation to Class III also validates the same SSV/USV/BSDV for Class II
in accordance with scaling limitations specified in the document. Pages: 32

3rd Edition | July 2018 | Product Number: G6AV103 | Price: $105.00

Std 6AV2

Installation, Maintenance and Repair of Surface Safety Valves and
Underwater Safety Valves Offshore (Includes Errata 1 dated August 2014)

Provides requirements for installing and maintaining surface safety valves
(SSV) and underwater safety valves (USV). Included are requirements for
receiving inspection, installation and maintenance, field and offshore repair,
testing procedures with acceptance criteria, failure reporting, and
documentation. Power and control systems for SSV/USVs are not included.

This document is applicable to SSVs/USVs used or intended to be used as
part of a safety system, as defined by documents such as API 14C. This
standard is the revision of and supersedes RP 14H, 5th Edition. Pages: 29

1st Edition | March 2014 | Product Number: G6AV201 | Price: $146.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 6D ◆
Specification for Pipeline and Piping Valves
Specifies requirements and provides recommendations for the design, manufacturing, testing, and documentation of ball, check, gate, and plug valves for application in pipeline systems meeting ISO 13623 or similar requirements for the petroleum and natural gas industries. This specification is not applicable to subsea pipeline valves, as they are covered by a separate specification (Spec 6DSS). This specification is not for application to valves for pressure ratings exceeding PN 420 (Class 2500). Pages: 108
24th Edition | August 2014 | Effective Date: August 1, 2015
Product Number: G6D024 | Price: $163.00

Spec 6D ◆
Specification for Pipeline and Piping Valves—Chinese
Chinese translation of Spec 6D.
24th Edition | August 2014 | Product Number: G6D024C | Price: $114.00

Spec 6D ◆
Specification for Pipeline and Piping Valves—Russian
Russian translation of Spec 6D.

RP 6DR *
Recommended Practice for the Repair and Remanufacture of Pipeline Valves
Provides guidelines for the repair and remanufacture of steel ball, check, gate, and plug valves normally used in pipeline applications, as defined by Spec 6D. This RP covers repair or remanufacturing of end user’s (owner’s) valves for continued service in the owner’s production applications. Repaired or remanufactured valves may not meet API and/or the OEM standard requirements for new valves. The owner is responsible for the correct application of valves repaired or remanufactured per this document. It does not cover repair or remanufacture of used or surplus valves intended for resale. Furthermore, field repair is outside the scope of this document. Pages: 11
2nd Edition | May 2012 | Product Number: G06DR2 | Price: $84.00

RP 6DR *
Recommended Practice for the Repair and Remanufacture of Pipeline Valves—Russian
Russian translation of Spec RP 6DR.
2nd Edition | May 2012 | Product Number: G06DR2R | Price: $69.00

Spec 6DSS ◆
Specification for Subsea Pipeline Valves
(includes Errata 1 dated May 2018, Errata 2 dated July 2018 and Addendum 1 dated April 2019)
Defines the requirements for the design, manufacturing, quality control, assembly, testing, and documentation of ball, check, gate, plug, and axial on-off valves for application in subsea pipeline systems for the petroleum and natural gas industries. The document contains requirements for both full-opening and reduced-opening valves.

4th Edition | June 2018 | Product Number: G06F44 | Price: $95.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)
that the qualification test coupon (Q TC) is more representative of the intended to provide the manufacturer and end user with a means of ensuring the entire section thickness of the production part(s). These procedures are presented in two parts: Part I represents conditions in an onshore or open offshore location, and Part II represents conditions in an offshore platform well bay. Pages: 27

Std 6FA
Standard for Fire Test for Valves—Russian
Russian translation of Std 6FA.
4th Edition | June 2018 | Product Number: G06FA4R | Price: $76.00

Std 6FB
Standard for Fire Test for End Connectors
Establishes procedures for testing and evaluating the pressure-containing performance of API end connectors when exposed to fire. Valves, wellhead seals, or other related equipment are not included in the scope of this document. The performance requirements of this standard establish standard qualification criteria for all sizes and pressure ratings of end connectors. The procedures are presented in two parts: Part I represents conditions in an onshore or open offshore location, and Part II represents conditions in an offshore platform well bay. Pages: 27

Spec 6FD
Specification for Fire Test for Check Valves
Establishes the requirements for testing and evaluating the pressure containing performance of Spec 6A and Spec 6D check valves when exposed to fire. The performance requirements of this document are intended to establish standard limits of acceptability regardless of size or pressure rating. This document establishes acceptable levels of leakage through the test valve and also external leakage after exposure to a fire for a 30-minute time period. The burn period has been established on the basis that it represents the maximum time required to extinguish most fires. Fires of greater duration are considered to be of a major magnitude with consequences greater than those anticipated in this test. Pages: 9

Product Number: G06FD1 | Price: $97.00

Spec 6FD
Specification for Fire Test for Check Valves—Russian
Russian translation of Spec 6FD.
1st Edition | February 1995 | Product Number: G06FD1 | Price: $78.00

RP 6HT
Heat Treatment and Testing of Carbon and Low Alloy Steel Large Cross Section and Critical Section Components
Supplements the heat treatment and testing requirements found in the API 6A equipment specification and not to replace them altogether. Heat treatment is a critical process that must be appropriate and controlled in order to produce parts that comply with design requirements. The specified mechanical properties may not necessarily be required or achieved through the entire section thickness of the production part(s). These procedures are intended to provide the manufacturer and end user with a means of ensuring that the qualification test coupon (QTC) is more representative of the mechanical properties in a large cross section component than can be expected with a standard API equipment specification QTC. Furthermore, these procedures are intended to provide optimization of the heat treatment and heat treatment response of large cross section components, thereby ensuring that the component has the required mechanical properties at the depth below the surface established by the manufacture at all critical locations. The recommend practice described herein suggests the requirements for batch-type bath quench and water spray quench-type heat treating practices. Pages: 9

2nd Edition | June 2013 | Reaffirmed: November 2018
Product Number: G6HT02 | Price: $93.00

Bull 6J
Bulletin on Testing of Oilfield Elastomers—A Tutorial
Contains a tutorial for the evaluation of elastomer test samples of actual elastomeric seal members intended for use in the oil and gas industry. It is also a review of the testing criteria, environments, evaluation procedures, guidelines for comparisons, and effects of other considerations on the evaluation of elastomeric seal materials and members. Pages: 15

1st Edition | February 1992 | Product Number: G03230 | Price: $86.00

TR 6J1
Elastomer Life Estimation Testing Procedures
The proposed procedure discussed in this publication outlines a technique based on the Arrhenius principle of chemical reaction rates, which permits the life of an elastomeric material to be estimated when exposed to a severe service environment. This is a companion document to Bull 6J, 2nd Edition. Pages: 14

1st Edition | August 2000 | Product Number: G06J11 | Price: $86.00

TR 6MET
Metallic Material Limits for Wellhead Equipment Used in High Temperature for API 6A and API 17D Applications
Examines mechanical properties of metallic materials used for API 6A and API 17D wellhead equipment for service above 250 °F. A total of eleven different alloys meeting API 6A, PSL 3 conditions were supplied in “condition” for testing. Materials in this test program included alloys common to the oil and gas industry. The alloys tested included low alloy steels, martensitic, precipitation hardened and duplex stainless steels, and nickel alloys. Yield strength reduction ratios at temperatures of 300 °F, 350 °F, 400 °F, and 450 °F are reported. Testing resulted in yield strength reduction ratios at 300 °F to 450 °F that ranged from 92 % to 87 % for the low alloy steels, 92 % to 88 % for the martensitic stainless steels, 81 % to 73 % for super duplex, 99 % to 89 % for the precipitation-hardened stainless steel, and 94 % to 89 % for the nickel alloys. The reported results represent an average over the different heats for each type of material. These results are intended to expand the data shown in API 6A for design and rating of equipment for use at elevated temperatures. Pages: 57

2nd Edition | August 2018 | Product Number: G6MET2 | Price: $118.00

Std 6X
Design Calculations for Pressure-Containing Equipment
Describes a design analysis methodology and requirements that apply to design verification of certain pressure-containing products and equipment in the oil and natural gas industry. The methods included in this document apply to designs where normative reference to this standard is made in an API product specification and to those components for which the methods of this standard are required or permitted. Methods are in accordance with the rules of Appendix 4 of the ASME Boiler and Pressure Vessel Code, 2004, Section VIII, Division 2. API has adopted slightly different stress limits from the ASME Boiler and Pressure Vessel Code, 2004. The criteria used assume defect-free, tough, and ductile material behavior. Pages: 20

2nd Edition | February 2019 | Product Number: G06X02 | Price: $71.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall not replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 7-1/ISO 10424-1:2004 *
Specification for Rotary Drill Stem Elements

- **Editions**:
 - 1st Edition | February 2006 | Product Number: GX7101 | Price: $176.00

Replaces, in part, Spec 7, 40th Edition. Spec 7, Addendum 2 removes the following products now covered by this standard:
- upper and lower Kelly valves,
- square and hexagon Kellys,
- drill stem sub,
- drill collars,
- drilling and coring bits.

Tool joints, rotary shouldered connections, and gauging will remain in Spec 7 until they are moved into ISO documents in the future. This edition of Spec 7-1 is the identical national adoption of ISO 10424-1:2004. Pages: 87

1st Edition | February 2006 | Effective Date: September 1, 2006
Reaffirmed: April 2015 | Product Number: GX7101 | Price: $176.00

2nd Edition | January 2017 | Product Number: GX70202 | Price: $206.00

Spec 7-2 *
Threading and Gauging of Rotary Shouldered Connections

- **Editions**:

Provides a method by which results will be reproducible, under a specified set of conditions, for conducting tests that determine casing wear due to rotation of drill stem elements. This standard is intended to be used in a laboratory environment and is not intended for use in the field during operations. The testing requirements in this standard are not represented at well conditions. This standard is divided into four major areas: machine apparatus, procedures, materials, and reporting.

This standard will not address the significance of specific data values. It is the responsibility of the user of this standard to establish the appropriate test data values that are acceptable based on their respective application, operational limitations, and safety practices. Pages: 18

1st Edition | June 2015 | Product Number: G7CW01 | Price: $93.00

Spec 7F *
Oil Field Chain and Sprockets

- **Editions**:
 - 8th Edition | November 2010 | Effective Date: May 1, 2011 | Product Number: G7F008 | Price: $125.00
 - 9th Edition | November 2010 | Product Number: G7F008C | Price: $89.00

Covers the manufacture of the components for, and the assembly and packaging of, single and multiple strand, numbers 40 through 240, standard and heavy series roller chains for oil field applications, including chain designation, chain length tolerance, tensile strength specifications, pin and bushing press-out specifications, and dynamic test requirements. For informational purposes, Annex A provides recommendations for installation, lubrication, and maintenance of oil field chain drives, and Annex B includes a basic description of roller chain sprockets. Pages: 29

1st Edition | June 2015 | Product Number: G7F008 | Price: $125.00

RP 7G *
Recommended Practice for Drill Stem Design and Operating Limits

- **Editions**:

Covers recommendations for the design and selection of drill string members and includes considerations of hole angle control, drilling fluids, weight, and rotary speed. Tables and graphs are included that present dimensional, mechanical, and performance properties of new and used drill pipe; new tool joints used with new and used drill pipe; drill collars; and Kellys. Recommended standards for inspection of used drill pipe, used tubing work strings, and used tool joints are included. Pages: 154

1st Edition | June 2015 | Product Number: G7CW01 | Price: $93.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 7G *
Recommended Practice for Drill Stem Design and Operating Limits—Russian
Russian translation of RP 7G.

Recommended Practice for Inspection and Classification of Drill Stem Element Inspection
(includes Errata 1 dated October 2009)
Specifies the requirements for each level of inspection and procedures for the inspection and testing of used drill elements. This document has been prepared to address the practices and technology commonly used in inspection. This document also specifies the qualification of inspection personnel, a description of inspection methods, and apparatus calibration and standardization procedures for various inspection methods. The evaluation of imperfections and the marking of inspected drill elements is included.
This edition of RP 7G-2 is the identical national adoption of ISO 10407-2:2008. Pages: 213
Product Number: G7XG201 | Price: $152.00

RP 7G-2/ISO 10407-2:2008 *
Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish
Spanish translation of RP 7G-2.
1st Edition | August 2009 | Product Number: G7XG201SP | Price: $152.00

RP 7HU1
Safe Use of 2-Inch Hammer Unions for Oilfield Applications
(includes Errata 1 dated February 2014)
Sets forth procedural recommendations as well as an engineering solution to the mismatching of a female 2-in. Figure 402, a female 2-in. Figure 602, or a female 2-in. Figure 1002 hammer union component (sub) with a male 2-in. Figure 1502 hammer union component (wing nut) as described in 3.2. The procedural recommendations described in this recommended practice should be implemented to reduce further incidents. The engineering solution, which makes impossible the mating of female 2-in. Figure 402, 2-in. Figure 602, and/or 2-in. Figure 1002 sub with the wing nut of the 2-in. Figure 1502 hammer union, applies to the manufacture of new hammer union components and should not be applied in the modification of existing hammer union components due to unknown factors caused by field wear. Pages: 12
Product Number: H7HU11 | Price: $40.00

Spec 7K
Drilling and Well Servicing Equipment
(includes Errata 1 dated May 2016, Errata 2 dated August 2016, and Errata 3 dated October 2017)
Provides general principles and specifies requirements for design, manufacture, and testing of new drilling and well-servicing equipment and of replacement primary load-carrying components manufactured subsequent to the publication of this specification. This specification is applicable to the following equipment:
- rotary tables;
- rotary bushings;
- high-pressure mud and cement hoses;
- piston mud-pump components;
- drawworks components;
- manual tongs;
- safety clamps not used as hoisting devices;
- blowout preventer (BOP) handling systems;
- pressure-relieving devices for high-pressure drilling fluid circulating systems;

Spec 7K
Drilling and Well Servicing Equipment
(includes Addendum 1 dated December 2019)
Provides guidelines and establishes requirements for inspection, maintenance, repair, and remanufacture of hoisting equipment manufactured according to Spec 8A, Spec 8C, or ISO 13535 used in drilling and production operations, in order to maintain the serviceability of this equipment. Items of drilling and production hoisting equipment covered are:
- crown-block sheaves and bearings;
- traveling blocks and hook blocks;
- block-to-hook adapters;
- connectors and link adapters;
- drilling hooks;

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Drilling and Production Hoisting Equipment (PSL 1 and PSL 2) (includes Errata dated May 2014)

Provides requirements for the design, manufacture, and testing of hoisting equipment suitable for use in drilling and production operations. This specification is applicable to numerous drilling and production hoisting equipment, some of which include: hoisting sheaves, traveling and hook blocks; elevator links, casing elevators, sucker rod elevators, rotary and power swivels, drilling hooks, wireline anchors, drill string motion compensators, and safety clamps. Pages: 53

5th Edition | April 2012 | Effective Date: October 1, 2012
Product Number: GX08C05 | Price: $152.00

Spec 8C*

Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)—Chinese

Chinese translation of Spec 8C.

5th Edition | April 2012 | Product Number: GX08C05C | Price: $107.00

WIRE ROPE

Spec 9A*

Specification for Wire Rope (includes Errata dated October 2012 and Addendum 1 dated November 2016)

Specifies the minimum requirements and terms of acceptance for the manufacture and testing of steel wire ropes not exceeding rope grade 2160 for the petroleum and natural gas industries. The following products are covered by this specification:

- wire rope,
- bright- or drawn-galvanized wire rope,
- well-measuring wire, and
- weld-measuring strand.

Typical applications include tubing lines, rod hanger lines, sand lines, cable-tool drilling and clean out lines, cable tool casing lines, rotary drilling lines, winch lines, hose head pumping unit lines, torpedo lines, mast raising lines, guideline tensioner lines, riser tensioner lines, and mooring and anchor lines.

8th Edition | May 2014 | Product Number: G08B08 | Price: $103.00

Spec 8C

Drilling and Production Hoisting Equipment (PSL 1 and PSL 2) (includes Errata dated May 2014)

Provides requirements for the design, manufacture, and testing of hoisting equipment suitable for use in drilling and production operations. This specification is applicable to numerous drilling and production hoisting equipment, some of which include: hoisting sheaves, traveling and hook blocks; elevator links, casing elevators, sucker rod elevators, rotary and power swivels, drilling hooks, wireline anchors, drill string motion compensators, and safety clamps. Pages: 53

5th Edition | April 2012 | Effective Date: October 1, 2012
Product Number: GX08C05 | Price: $152.00

Spec 9A

Specification for Wire Rope

This specification is applicable to numerous drilling and production hoisting equipment, some of which include: hoisting sheaves, traveling and hook blocks; elevator links, casing elevators, sucker rod elevators, rotary and power swivels, drilling hooks, wireline anchors, drill string motion compensators, and safety clamps. Pages: 53

5th Edition | April 2012 | Effective Date: October 1, 2012
Product Number: GX08C05C | Price: $107.00

WIRE ROPE

Spec 9A

Specification for Wire Rope (includes Errata 1 dated October 2012 and Addendum 1 dated November 2019)

Provides requirements for the design, manufacture, and testing of hoisting equipment suitable for use in drilling and production operations. This specification is applicable to numerous drilling and production hoisting equipment, some of which include: hoisting sheaves, traveling and hook blocks; elevator links, casing elevators, sucker rod elevators, rotary and power swivels, drilling hooks, wireline anchors, drill string motion compensators, and safety clamps. Pages: 53

5th Edition | April 2012 | Effective Date: October 1, 2012
Product Number: GX08C05 | Price: $152.00

Spec 9B

Application, Care, and Use of Wire Ropes for Oil Field Service

Covers typical wire rope applications for the oil and gas industry. Typical practices in the application of wire rope to oil field service are indicated in Table 1, which shows the sizes and constructions commonly used. Because of the variety of equipment designs, the selection of other constructions than those shown is justifiable.

In oilfield service, wire rope is often referred to as wire line or cable. For the purpose of clarity, these various expressions are incorporated in this recommended practice. Pages: 44

14th Edition | October 2015 | Product Number: G9B014 | Price: $131.00

OIL WELL CEMENTS

Bull E3

Wellbore Plugging and Abandonment Practices

Addresses the environmental concerns related to well abandonment and inactive well practices. The primary environmental concerns are protection of usable aquifers from fluid migration; and isolation of hydrocarbon production and water injection intervals. Additional issues in the document include protection of surface soils and surface waters, future use and, permanent documentation of plugged and abandoned wellbore locations and conditions. Pages: 22

2nd Edition | April 2018 | Product Number: G11008 | Price: $149.00

Spec 10A

Cements and Materials for Well Cementing (includes Addendum 1 dated November 2019)

Specifies requirements and gives recommendations for six classes of well cements, including their chemical and physical requirements and procedures for physical testing.

This specification is applicable to well cement classes A, B, C, and D, which are the products obtained by grinding Portland cement clinker and, if needed, calcium sulfate, as an interground additive. Processing additives can be used in the manufacture of cement of these classes. Suitable set-modifying agents can be interground or blended during manufacture of class D cement. This specification is also applicable to well cement classes G and H, which are the products obtained by grinding Portland cement clinker with no additives other than one or more forms of calcium sulfate, water, or chemical additives as required for chromium (VI) reduction. Pages: 76

25th Edition | March 2019 | Effective Date: September 2019
Product Number: GX10A25 | Price: $163.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
the mitigation of shallow water flow zones in deepwater wells, which is based on API 10B-2, take into account the specialized testing requirements in areas including the North Sea, Norwegian Sea, Barents Sea, Kara Sea, Beaufort Sea, Chukchi Sea, Caspian Sea, and Black Sea. Temperatures are found at shallow water depths. These conditions are found in areas including the North Sea, Norwegian Sea, Barents Sea, Kara Sea, Beaufort Sea, Chukchi Sea, Caspian Sea, and Black Sea. The test methods contained in this recommended practice, though generally independent of water depth.

The procedures contained in this document serve as guidance for the testing of cement slurries and related materials under simulated well conditions. The term “deepwater” includes areas where low seafloor temperatures exist, independent of water depth. The procedures contained in this document as guidance for the testing of well cement slurries used in deepwater well construction. Additionally, testing methods contained in this document (most notably at mudline conditions) may also be used in those circumstances where low seafloor temperatures are found at shallow water depths. These conditions are found in areas including the North Sea, Norwegian Sea, Barents Sea, Kara Sea, Beaufort Sea, Chukchi Sea, Caspian Sea, and Black Sea. The test methods contained in this recommended practice, though generally based on API 10B-2, take into account the specialized testing requirements and unique wellbore temperature profiles found in deepwater wells or wells in areas with low seafloor temperatures. This document does not address the mitigation of shallow water flow zones in deepwater wells, which is addressed in RP 65. The testing of well cements has been developed for foaming cement slurries at atmospheric pressure; they may be modified to accommodate other gases such as nitrogen. Slurries that are foamed with nitrogen, and their properties, will also be discussed within this standard as they are relevant to the scope of the standard. This standard does not address testing at pressures above atmospheric conditions nor does this standard include or consider the effects of nitrogen solubility in the nitrogen fraction calculations.

RP 10B-5/ISO 10426-5:2004 Recommended Practice on Determination of Shrinkage and Expansion of Well Cement Formulations at Atmospheric Pressure

Provides the methods for the testing of well cement formulations to determine the dimension changes during the curing process (cement hydration) at atmospheric pressure only. This is a base document, because under real well cementing conditions shrinkage and expansion take place under pressure and different boundary conditions. This edition of RP 10B-5 is the identical national adoption of ISO 10426-5:2004.

Product Number: GX10B501 | Price: $87.00

RP 10B-6/ISO 10426-6:2008 Recommended Practice on Determining the Static Gel Strength of Cement Formulations

This document specifies requirements and provides test methods for the determination of static gel strength (SGS) of the cement slurries and related materials under simulated well conditions. This edition of RP 10B-6 is the modified national adoption of ISO 10426-6:2008.

1st Edition | August 2010 | Reaffirmed: April 2015
Product Number: GG10B601 | Price: $68.00

Spec 10D/ISO 10427-1:2001 Specification for Bow-Spring Casing Centralizers

Provides minimum performance requirements, test procedures, and marking requirements for bow-spring casing centralizers for the petroleum and natural gas industries. The procedures provide verification testing for the manufacturer's design, materials, and process specifications and periodic testing to confirm the consistency of product performance. Spec 10D is not applicable to rigid or positive centralizers. This edition of Spec 10D is the identical national adoption of ISO 10427-1:2001.

6th Edition | March 2002 | Effective Date: September 1, 2002
Reaffirmed: April 2015 | Product Number: GX10D06 | Price: $97.00

Spec 10D/ISO 10427-1:2001 Specification for Bow-Spring Casing Centralizers—Chinese

Chinese translation of Spec 10D.

Provides calculations for determining centralizer spacing, based on centralizer performance and desired standoff, in deviated and dogleg holes in wells for the petroleum and natural gas industries. It also provides a procedure for testing stop collars and reporting test results. This edition of RP 10D-2 is the identical national adoption of ISO 10427-2:2004.

Product Number: GG10D21 | Price: $83.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 10F
Cementing Float Equipment Testing
Provides testing and marking requirements for cementing float equipment to be used in oil and natural gas well construction. Pages: 28

Spec 10F *
Cementing Float Equipment Testing—Russian
Russian translation of Spec 10F.

TR 10TR1
Cement Sheath Evaluation
Provides the current principles and practices regarding the evaluation and repair of primary cementations of casing strings in oil and gas wells. Cement bond logs, compensated logging tools, ultrasonic cement logging tools, and borehole fluid-compensated logging tools are covered. Pages: 124
2nd Edition | September 2008
Product Number: G10TR12 | Price: $157.00

TR 10TR1 *
Cement Sheath Evaluation—Kazakh
Kazakh translation of TR 10TR1.
2nd Edition | September 2008
Product Number: G10TR12K | Price: $125.00

TR 10TR1 *
Cement Sheath Evaluation—Russian
Russian translation of TR 10TR1.
2nd Edition | September 2008
Product Number: G10TR12R | Price: $125.00

TR 10TR2
Shrinkage and Expansion in Oilwell Cements
Presents the results of research into shrinkage and expansion of oilwell cements in the wellbore as well as a series of test methods and procedures developed to measure these phenomena. Pages: 57
Product Number: G10TR2 | Price: $133.00

TR 10TR2 *
Shrinkage and Expansion in Oilwell Cements—Russian
Russian translation of TR 10TR2.
1st Edition | July 1997 | Product Number: G10TR2R | Price: $105.00

TR 10TR3
Technical Report on Temperatures for API Cement Operating Thickening Time Tests
Summarizes work performed by the 1984-91 API Task Group on Cementing Temperature Schedules to update the temperatures in API well-simulation test schedules found in RP 10B. The Task Group reviewed the largest set of temperature data available to the industry to date, resulting in significant improvements to the temperatures in the well-simulation test schedules. Pages: 97
1st Edition | May 1999 | Reaffirmed: May 2005
Product Number: G10TR3 | Price: $171.00

TR 10TR3 *
Technical Report on Temperatures for API Cement Operating Thickening Time Tests—Russian
Russian translation of TR 10TR3.
1st Edition | May 1999 | Product Number: G10TR3R | Price: $136.00

TR 10TR4
Selection of Centralizers for Primary Cementing Operations
Provides the petroleum industry with information for three types of centralizers, their selection and application, and their advantages and limitations. Pages: 23
1st Edition | May 2008 | Product Number: G10TR40 | Price: $67.00

TR 10TR4 *
Selection of Centralizers for Primary Cementing Operations—Kazakh
Kazakh translation of TR 10TR4.
1st Edition | May 2008 | Product Number: G10TR40K | Price: $53.00

TR 10TR4 *
Selection of Centralizers for Primary Cementing Operations—Russian
Russian translation of TR 10TR4.
1st Edition | May 2008 | Product Number: G10TR40R | Price: $53.00

TR 10TR5
Methods for Testing of Solid and Rigid Centralizers
Provides the industry with methods for testing rigid and solid centralizers. Pages: 16
1st Edition | May 2008 | Product Number: G10TR50 | Price: $67.00

TR 10TR5 *
Methods for Testing of Solid and Rigid Centralizers—Kazakh
Kazakh translation of TR 10TR5.
1st Edition | May 2008 | Product Number: G10TR50K | Price: $53.00

TR 10TR5 *
Methods for Testing of Solid and Rigid Centralizers—Russian
Russian translation of TR 10TR5.
1st Edition | May 2008 | Product Number: G10TR50R | Price: $53.00

TR 10TR6
Evaluation and Testing of Mechanical Cement Wiper Plugs
Provides recommended testing, evaluation, and performance requirements for mechanical cement wiper plugs. Mechanical cementing wiper plugs are used in most application including casing, liners, drill pipe, and tubing for primary and remedial cementing operations where they serve multiple functions in well operations, such as the following:

• separation of fluids inside of pipe,
• wiping of materials from the inner surface of pipe,
• operation of a downhole tool,
• surface indication of a downhole event, and
• formation of a temporary pressure barrier. Pages: 46

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
The objectives of this guideline are two-fold. The first is to help prevent and/or control flows just prior to, during, and after primary cementing operations to prevent or mitigate annular fluid flow or pressure. Pages: 83

27th Edition | May 2010 | Effective Date: November 1, 2010
Product Number: G11B27 | Price: $168.00

Spec 11B *
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees
(includes Errata 1 dated October 2010 and Errata 2 dated February 2011)
The specification covers subsurface sucker rod pump assemblies (including insert and tubing), components, and fittings in commonly used bore sizes for the sucker rod lift method. Sufficient dimensional and material requirements are provided to assure interchangeability and standardization of all component parts. The specification does not cover specialty subsurface sucker rod pump accessories or special design components. Also, installation, operation, and maintenance of these products are not included in this specification; however, recommendations can be found in RP 11AR. Pages: 107

Product Number: G11AX13 | Price: $189.00

Spec 11AX *
Specification for Sucker Rod Pump Assemblies, Components, and Fittings—Russian
Russian translation of Spec 11AX.

Spec 11B *
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees
(includes Addendum 1 dated May 2019)
Provides the requirements and guidelines for the design of subsurface sucker rod pumps and their components as defined herein for use in the sucker rod lift method for the petroleum and natural gas industry.

27th Edition | May 2010 | Product Number: G11B27C | Price: $118.00

Spec 11B *
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Chinese
Chinese translation of Spec 11B.

27th Edition | May 2010 | Product Number: G11B27C | Price: $118.00

Spec 11B *
Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Russian
Russian translation of Spec 11B.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
RP 11BR
Recommended Practice for the Care and Handling of Sucker Rods
Covers the care and handling of steel sucker rods, including guidelines on selection, allowable stress, proper joint makeup, corrosion control, and used rod inspection. Pages: 28
Product Number: G11BR09 | Price: $114.00

RP 11BR *
Recommended Practice for the Care and Handling of Sucker Rods—Chinese
Chinese translation of RP 11BR.
9th Edition | August 2008 | Product Number: G11BR09C | Price: $80.00

Spec 11E *
Specification for Pumping Units (includes Errata 1 dated August 2015 and Addendum 1 dated April 2018)
Provides the requirements and guidelines for the design and rating of beam pumping units for use in the petroleum and natural gas industry. Included are all components between the carrier bar and the speed reducer input shaft. This includes the beam pump structure, the pumping unit gear reducer, and the pumping unit chain reducer. Only loads imposed on the structure and/or gear reducer by the polished rod load are considered in this specification. Also included are the requirements for the design and rating of enclosed speed reducers wherein the involute gear tooth designs include helical and herringbone gearing. The rating methods and influences identified in this specification are limited to single and multiple stage designs applied to beam pumping units in which the pitch-line velocity of any stage does not exceed 5,000 ft/min and the speed of any shaft does not exceed 3,600 r/min. This standard does not cover chemical properties and design of surface mounted beam pumping units, varieties of which are described in Spec 11E. Information provided in this document is of a general nature and is not intended to replace specific instruction provided by the pumping unit manufacturer. This document further establishes certain minimum requirements intended to promote the safe installation, operation, and servicing of pumping unit equipment. Pages: 26
5th Edition | November 2013 | Reaffirmed: July 2019
Product Number: G11G05 | Price: $93.00

TR 11L
Design Calculations for Sucker Rod Pumping Systems (Conventional Units)
Covers recommendations for design calculations for conventional unit sucker rod pumping systems based on test data submitted to API by Sucker Rod Pumping Research, Inc. The topics include vibration characteristics of sucker rod strings, physical characteristics of sucker rods, and dimensional analysis of sucker rod pumping systems. The calculations apply to the broad category of average, normal pumping wells fitting the assumed conditions defined therein. Unused or out-of-the-ordinary conditions will cause deviations from calculated performance. Pages: 24
5th Edition | June 2008 | Product Number: G11L05 | Price: $115.00

Bull 11L2
Bulletin on Catalog of Analog Computer Dynamometer Cards
Contains over 1100 polished rod dynamometer cards taken with the electronic analog simulator and arranged in convenient form for comparison with field tests. Pages: 77
1st Edition | December 1969 | Reaffirmed: September 1999
Product Number: G05700 | Price: $133.00

Bull 11L3
Sucker Rod Pumping System Design Book
(includes Errata 1 dated November 1973 and Supplement 1 dated February 1977)
Contains print-out tables of computer calculated values for selecting sucker rod systems. Values are included for depths of 200 ft to 12,000 ft in increments of 500 feet, and production rates of 100 barrels per day to over 1,500 barrels per day in varying increments. Various rod string pump stroke, pump size, and pumping speed combinations that will do the job within the limiting parameters are listed. Pages: 574
1st Edition | May 1970 | Product Number: G05800 | Price: $143.00

TR 11L6
Technical Report on Electric Motor Prime Mover for Beam Pumping Unit Service
Covers polyphase, squirrel-cage, induction motors for use as the prime mover for beam pumping units (size range of 200 hp and below). Motors to be operated from solid-state or other types of variable frequency/variable voltage power supplies for adjustable speed applications will require individual consideration to provide satisfactory performance and are beyond the scope of this document. Motors conforming to this document are suitable for operation in accordance with their full load rating under ambient temperature at a maximum altitude of 1000 m (3300 ft) above sea level with outdoor sever duty application, including blowing dust or snow, corrosive atmospheres, high humidity, and cyclic loading. Pages: 13
2nd Edition | May 2008 | Product Number: G11L602 | Price: $94.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Exploration and Production

Fax Orders: +1 303 397 2740

TR 11L6 * Technical Report on Electric Motor Prime Mover for Beam Pumping Unit Service—Chinese

Spec 11PL Plunger Lift Lubricators and Related Equipment
Provides requirements and guidelines for plunger lift lubricators, which includes plunger catchers as defined herein for use in the petroleum and natural gas industry. Threaded and flanged external connections are covered by the applicable API or proprietary connection design requirements. This specification provides requirements for the functional specification and technical specification, including design requirements (outlet locations, specified and optional), design extensions, design verification and validation, welding, materials, quality controls, marking, documentation and data control, shipment, and storage. Pages: 72
1st Edition | June 2019 | Effective Date: June 2020 | Product Number: G11L601 | Price: $121.00

11S Recommended Practice for the Operation, Maintenance and Troubleshooting of Electric Submersible Pump Installations
Covers all of the major components that comprise a standard electric submersible pumping system, their operation, maintenance, and troubleshooting. It is specifically prepared for installations in oil and water producing wells where the equipment is installed on tubing. It is not prepared for equipment selection or application. Pages: 18

RP 11S1 Recommended Practice for Electrical Submersible Pump Teardown Report
Covers a recommended electrical submersible pump teardown report form. It also includes equipment schematic drawings that may provide assistance in identifying equipment components. These schematics are for generic equipment components, and there may be differences between manufacturers on the exact description or configuration of the assemblies. Pages: 36

RP 11S2 Recommended Practice for Electric Submersible Pump Testing
Provides guidelines and procedures covering electric submersible pump performance testing intended to establish product consistency. These practices are generally considered appropriate for the majority of pump applications. This document covers the acceptance testing of electric submersible pumps (sold as new) by manufacturers, vendors, or users to the prescribed minimum specifications. Pages: 12
2nd Edition | August 1997 | Effective Date: October 1, 1997 | Reaffirmed: October 2013 | Product Number: G11S22 | Price: $90.00

RP 11S2 * Recommended Practice for Electric Submersible Pump Testing—Russian
Russian translation of RP 11S2.
2nd Edition | August 1997 | Product Number: G11S22R | Price: $73.00

RP 11S3 Recommended Practice for Electrical Submersible Pump Installations
Addresses the installation and replacement of all major components comprising an electrical submersible pumping system. Specifically, it addresses equipment installation on tubing in oil and gas production operations. Pages: 11

RP 11S3 * Recommended Practice for Electrical Submersible Pump Installations—Russian
Russian translation of RP 11S3.

RP 11S4 Recommended Practice for Sizing and Selection of Electric Submersible Pump Installations
Discusses in some detail each component of the ESP system (pump, motor, intake, seal or protector, cable, switchboard, etc.) as far as what must be considered for the best selection at a desired rate and well conditions. Examples are given to illustrate the basic design procedure and illustrate how PVT correlations, multiphase flow correlations, and inflow performance relationships are used. Summary designs and computer examples using the detailed design principles are presented that show how design considerations fit together and how tools such as computer programs allow faster solutions resulting in easier trial and error calculations for optimization of designs and study of existing installations. Topics such as PVT correlations, multiphase flow correlations, and inflow performance relationships are discussed in the appendices. Pages: 31

RP 11S5 Recommended Practice for the Application of Electrical Submersible Cable Systems
Covers the application (size and configuration) of electrical submersible cable systems by manufacturers, vendors, or users. The document addresses the various uses of different cable insulation systems, including jackets, braids, armor, and related coverings, as well as auxiliary cable components for cable conductors. The document also addresses splicing and terminating cables including splicing, lengthening, and repairs. Pages: 38

RP 11S6 Recommended Practice for Testing of Electric Submersible Pump Cable Systems
Covers field testing of electric submersible pump cable systems. This document is organized into three major topic categories. The first category provides general definitions and an overview of terms, safety considerations, and cable system preparation guidelines. The second category identifies various situations under which testing is performed. The third category identifies test methods and procedures. Pages: 18

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
RP 11S7
Recommended Practice on Application and Testing of Electric Submersible Pump Seal Chamber Sections

Applies to the seal chamber section used in support of an electric submersible motor. The recommended practice contains tutorial, testing, and failure evaluation information on the seal chamber section used in support of an electric submersible motor. The document provides a general understanding of construction and functioning of seal chamber sections, identification of well conditions, system requirements, and characteristics that influence component section and application. Pages: 28

Product Number: G05947 | Price: $97.00

RP 11S8
Recommended Practice on Electric Submersible System Vibrations

Provides guidelines to establish consistency in the control and analysis of electric submersible pump (ESP) system vibrations. This document is considered appropriate for the testing of ESP systems and subsystems for the majority of ESP applications. This RP covers the vibration limits, testing, and analysis of ESP systems and subsystems. Pages: 18

2nd Edition | October 2012 | Product Number: G11S802 | Price: $84.00

LEASE PRODUCTION VESSELS

Spec 12B
Specification for Bolted Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed and open top, bolted steel storage tanks in various standard sizes and capacities for internal pressures approximately atmospheric. This specification is designed to provide the oil production industry with safe and economical bolted tanks of adequate safety and reasonable economic use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 31

16th Edition | November 2014
Product Number: G12B156 | Price: $130.00

Spec 12D
Specification for Field-Welded Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed top, welded steel storage tanks with internal pressures approximately atmospheric at various sizes and capacities ranging from 500 to 10,000 barrels. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 29

12th Edition | June 2017 | Effective Date: December 1, 2017
Product Number: G12D12 | Price: $116.00

Spec 12F
Specification for Shop-Welded Tanks for Storage of Production Liquids

Covers material, design, fabrication, and testing requirements for new shop-fabricated vertical, cylindrical, aboveground, welded steel storage tanks in the standard sizes and capacities, and for internal pressures approximately atmospheric, given in Table 1.

This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 35

13th Edition | January 2019 | Effective Date: July 1, 2019
Product Number: G12F13 | Price: $146.00

Spec 12J
Specification for Indirect Type Oilfield Heaters

Covers minimum requirements for the design, fabrication, and shop testing of oil and gas separators and oil-gas-water separators that are used in the production of oil and gas and are located at some point on the producing flow line between the wellhead and pipeline. Separators covered by this specification may be vertical, spherical, or single or double barrel horizontal. Unless otherwise agreed upon between the purchaser and the manufacturer, the jurisdiction of this specification terminates with the pressure vessel as defined in Section VII, Division 1 of the ASME Boiler and Pressure Vessel Code. Pressure vessels covered by this specification are normally classified as natural resource vessels. Separators outside the scope of this specification include centrifugal separators, filter separators, and desanding separators. Pages: 25

8th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12J08 | Price: $105.00

Spec 12J
Specification for Oil and Gas Separators—Chinese

Chinese translation of Spec 12J.

8th Edition | October 2008 | Product Number: G12J08C | Price: $74.00

Spec 12J
Specification for Oil and Gas Separators—Russian

Russian translation of Spec 12J.

8th Edition | October 2008 | Product Number: G12J08R | Price: $84.00

Spec 12K
Specification for Indirect Type Oilfield Heaters

Covers minimum requirements for the design, fabrication, and shop testing of oilfield indirect type fired heaters that are used in the production of oil, gas, and associated fluid. The heaters are located at some point on the producing flowline between the wellhead and pipeline. Heater components covered by this specification include the pressurized coils, the shell, heater bath, firetube, and the firing system. For purposes of this specification, the termination of a heater coil is at the first bivel when coils are furnished beveled for welding, or the face of the first fitting when fittings are furnished as the inlet or outlet connection to the coil. All fittings and valves between the inlet and outlet of the coil are to be considered within the coil limit. Heaters outside the scope of this specification include steam and other vapor generators, reboilers, indirect heaters employing heat media other than water solutions, all types of direct fired heaters, shell-and-tube bundles or electrical heating elements, and coils operating at temperatures less than -20 °F. Pages: 36

8th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12K08 | Price: $124.00

Spec 12K
Specification for Indirect Type Oilfield Heaters—Chinese

Chinese translation of Spec 12K.

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Spec 12L ◆
Specification for Vertical and Horizontal Emulsion Treaters
Covers minimum requirements for material, design, fabrication, and testing of vertical and horizontal emulsion treaters. Emulsion treating is normally conducted on crude oil immediately after it is separated from its associated gas in a vessel referred to as a treater or sometimes as a heater treater. High gas-oil ratio wells or those produced by gas lift may require the installation of an oil and gas separator upstream of the treater to remove most of the associated gas before the emulsion enters the treater. Where the water to oil ratio is high, freewater knockout devices may be required upstream of the treater. The jurisdiction of this specification terminates with each pressure vessel as applicable: the emulsion treater with firetube(s) and, if used, the heat exchanger(s) and water siphon. Pressure vessels covered by this specification are classified as natural resource vessels. An emulsion treater is a pressure vessel used in the oil-producing industry for separating oil-water emulsions and gas and for breaking or resolving emulsified well streams into water and saleable clean oil components. Emulsion treaters are usually equipped with one or more removable firetubes or heat exchange elements through which heat is applied to the water and/or emulsion to aid the emulsion breaking process. Pages: 39
5th Edition | October 2008 | Effective Date: April 1, 2009
Product Number: G12L05 | Price: $105.00

RP 12N
Recommended Practice for the Operation, Maintenance and Testing of Firebox Flame Arrestors
Covers practices that should be considered in the installation, maintenance, and testing of firebox flame arrestors installed on the air intake of oilfield production equipment. Pages: 6
Product Number: G12N02 | Price: $90.00

Spec 12P ◆
Specification for Fiberglass Reinforced Plastic Tanks
Covers material, design, fabrication, and testing requirements for fiberglass reinforced plastic (FRP) tanks. Only shop-fabricated, vertical, cylindrical tanks are covered. Tanks covered by this specification are intended for above ground and atmospheric pressure service. This specification applies to new tanks. The requirements may be applied to existing tanks at the discretion of the owner/operator. This specification is intended to provide the petroleum industry with various standard sizes of FRP tanks. Because of the versatility of FRP tanks, the user shall be responsible for determining the suitability of FRP tanks for the intended service. Unsupported cone bottom tanks are outside the scope of this specification. Pages: 27
4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G12P04 | Price: $117.00

RP 12R1
Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service (includes Addendum 1 dated December 2017)
For use as a guide for new tank installations and maintenance of existing tanks, Spec 12R1 contains recommendations for good practices in the collection of well or lease production; gauging; delivery to pipeline carriers for transportation; and other production storage and treatment operations. This recommended practice is intended primarily for application to tanks fabricated to Specs 12F, 12D, 12F, and 12P when employed in on-land production service, but its basic principles are applicable to atmospheric tanks of other dimensions and specifications when they are employed in similar oil and gas production, treating, and processing services. It is not applicable to refineries, petrochemical plants, marketing bulk stations, or pipeline storage facilities operated by carriers. Pages: 63
2-Year Extension: November 2015
Product Number: G12R15 | Price: $143.00

DRILLING, COMPLETION, AND FRACTURING FLUIDS

Spec 13A ◆◆
Drilling Fluids Materials
Covers physical properties and test procedures for materials manufactured for use in oil- and gas-well drilling fluids. The materials covered are barite; hematite; bentonite; non-treated bentonite; attapulgite; sepiolite; technical grade, low-viscosity carboxymethyl cellulose (CMC-LVT); technical grade, high-viscosity carboxymethyl cellulose (CMC-HVT); starch; low-viscosity polyanionic cellulose (PAC-LV); high-viscosity polyanionic cellulose (PAC-HV); and drilling-grade xanthan gum. This specification is intended for the use of manufacturers, distributors, and end users of named products. Annex A (informative) contains information on the API Monogram Program and requirements for the approved use of the API Monogram by licensees. Pages: 120
19th Edition | October 2019 | Effective Date: April 2020
Product Number: G13A19 | Price: $205.00

RP 13B-1◆
Recommended Practice for Field Testing Water-Based Drilling Fluids
Provides standard procedures for determining the following characteristics of water-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- water, oil, and solids contents;
- sand content;
- methylene blue capacity;
- pH;
- alkalinity and lime content;
- chloride content;
- total hardness as calcium;
- low-gravity solids and weighting material concentrations.
Annex A through K provide additional test methods that may be used for:
- chemical analysis for calcium, magnesium, calcium sulfate, sulfide, carbonate, and potassium;
- determination of shear strength;
- determination of resistivity;
- removal of air;
- drill-pipe corrosion monitoring;
- sampling, inspection, and rejection;
- rig-site sampling;
- calibration and verification of glassware, thermometers, timers, viscometers, retort cup, and drilling fluid balances;
- permeability plugging testing at high temperature and high pressure for two types of equipment;
- sag testing. Pages: 132

RP 13B-2◆◆
Recommended Practice for Field Testing Oil-Based Drilling Fluids (includes Erata 1 dated August 2014, Erata 2 dated March 2018, and Addendum 1 dated August 2019)
Provides standard procedures for determining the following characteristics of oil-based drilling fluids:
- drilling fluid density (mud weight);
- viscosity and gel strength;
- filtration;
- oil, water, and solids concentrations;
- alkalinity, chloride concentration, and calcium concentration;
- electrical stability;
- lime and calcium concentrations, calcium chloride, and sodium chloride concentrations;
- low-gravity solids and weighting material concentrations.
The annexes provide additional test methods or examples that can optionally be used for the determination of:
- shear strength (Annex A);
- oil and water concentrations from cuttings (Annex B);
- drilling fluid activity (Annex C);
- aniline point (Annex D);
- lime, salinity, and solids concentration (Annex E);
- sampling, inspection, and rejection (Annex F);
- rig-site sampling (Annex G);
- cuttings activity (Annex H);
- active sulfide (Annex I);
- calibration and verification of glassware, thermometers, viscometers, retort kit cups, and drilling fluid balances (Annex J);
- high-temperature/high-pressure filtration using the permeability-plugging apparatus (PPA) (Annex K);
- elastomer compatibility (Annex L);
- sand content of oil-based fluid (Annex M);
- identification and monitoring of weight-material sag (Annex N);
- oil-based drilling fluid test report form (Annex O).

Pages: 141
5th Edition | October 2014 | Product Number: G13B205 | Price: $222.00

RP 13B-2 Recommended Practice for Field Testing Oil-Based Drilling Fluids—Russian

RP 13C Recommended Practice on Drilling Fluid Processing Systems Evaluation
Specifies a standard procedure for assessing and modifying the performance of solids control equipment systems commonly used in the field in petroleum and natural gas drilling fluids processing. The procedure described in this standard is not intended for the comparison of similar types of individual pieces of equipment. Pages: 60
5th Edition | October 2014 | Product Number: G13C05 | Price: $146.00

RP 13D Rheology and Hydraulics of Oil-Well Drilling Fluids
Provides a basic understanding of and guidance about drilling fluid rheology and hydraulics, and their application to drilling operations. For this recommended practice, rheology is the study of flow characteristics of a drilling fluid and how these characteristics affect movement of the fluid. Specific measurements are made on a fluid to determine rheological parameters under a variety of conditions. From this information the circulating system can be designed or evaluated regarding how it will accomplish certain desired objectives. Pages: 98
7th Edition | September 2017 | Product Number: G13D07 | Price: $167.00

RP 13I/ISO 10416:2008 Recommended Practice for Laboratory Testing of Drilling Fluids
Provides procedures for the laboratory testing of the physical, chemical, and performance properties of both drilling fluid materials and drilling fluid. It is applicable to both water- and oil-based drilling fluids, as well as the base or “make-up” fluid. It is not applicable as a detailed manual on drilling fluid control procedures. Recommendations regarding agitation and testing temperature are presented because the agitation history and temperature have a profound effect on drilling fluid properties.

This edition of RP 13I is the identical national adoption of ISO 10416:2008. Pages: 108
Product Number: GX13I8 | Price: $202.00

RP 13J Testing of Heavy Brines
Covers the physical properties, potential contaminants, and test procedures for heavy brine fluids manufactured for use in oil and gas well drilling, completion, fracturing, and workover fluids. RP 13J provides methods for assessing the performance and physical characteristics of heavy brines for use in field operations. It includes procedures for evaluating the density or specific gravity, the clarity or amount of particulate matter carried in the brines, the crystallization point or the temperature (both ambient and under pressure) at which the brines make the transition between liquid and solid, the pH, and iron contamination. It also contains a discussion of gas hydrate formation and mitigation, brine viscosity, corrosion testing, buffering capacity, and a standardized reporting form. RP 13J is intended for the use of manufacturers, service companies, and end users of heavy brines. Pages: 76
5th Edition | October 2014 | Product Number: G13J05 | Price: $141.00

RP 13K Recommended Practice for Chemical Analysis of Barite—Russian
Barite is used to increase the density of oil well drilling fluids. It is a mined product that can contain significant quantities of minerals other than its main component, barium sulfate. It is the objective of this publication to provide a comprehensive, detailed description of the chemical analytical procedures for quantitatively determining the mineral and chemical constituents of barite. These procedures are quite elaborate and will normally be carried out in a well-equipped laboratory. Pages: 51
Product Number: G13K03 | Price: $116.00

RP 13K Recommended Practice for Chemical Analysis of Barite Kazakh-Kazakh translation of RP 13K.
3rd Edition | May 2011 | Product Number: G13K03K | Price: $94.00

RP 13L Training and Qualification of Drilling Fluid Technologists
Seeks to formalize the specific knowledge base, professional skills, and application skills needed to ensure the competency and professionalism of individuals working in the drilling fluids industry. Drilling fluid technologists should use this recommended practice (RP) as an outline to self-determine any gaps in learning and seek to improve their skills. A company contracting the service of a drilling fluid technologist should use this RP as a checklist of knowledge that a technologist should be able to demonstrate proficiency in applying. Pages: 36
2nd Edition | November 2017 | Product Number: G13L02 | Price: $94.00
RP 13M/ISO 13503-1:2003
Recommended Practice for the Measurement of Viscous Properties of Completion Fluids
(RP 13M replaces RP 39)

Provides consistent methodology for determining the viscosity of completion fluids used in the petroleum and natural gas industries. For certain cases, methods are also provided to determine the rheological properties of a fluid. This edition of RP 13M is the identical national adoption of ISO 13503-1:2003. Pages: 21

1st Edition | July 2004 | Reaffirmed: September 2018
2-Year Extension: June 2015 | Product Number: GX13M01
Price: $107.00

RP 13M/ISO 13503-1:2003 *
Recommended Practice for the Measurement of Viscous Properties of Completion Fluids—Russian

Russian translation of RP 13M.

1st Edition | July 2004 | Product Number: GX13M01R | Price: $86.00

RP 13M-4/ISO 13503-4:2006
Recommended Practice for Measuring Stimulation and Gravel-Pack Fluid Leakoff Under Static Conditions

Provides for consistent methodology to measure fluid loss of stimulation and gravel-pack fluid under static conditions. However, the procedure in this recommended practice excludes fluids that react with porous media. This edition of RP 13M-4 is the identical national adoption of ISO 13503-4:2006. Pages: 14

Product Number: G613M41 | Price: $62.00

TR 13M-5
Procedure for Testing and Evaluating the Performance of Friction (Drag) Reducers in Aqueous-based Fluid Flowing in Straight, Smooth Circular Conduits

Provides a consistent methodology to test and evaluate the performance of friction (drag) reducers in straight, smooth circular conduits. This standard includes only smooth-walled tubing and excludes any rough-walled tubing. Pages: 22

1st Edition | October 2018 | Product Number: G13M501 | Price: $89.00

TR 13TR3
Size Measurement of Dry, Granular Drilling Fluid Particulates

Serves as a guide for selection of appropriate techniques to determine the particulate size distribution (PSD) of relatively large, dry solid additives for drilling fluids, especially lost circulation materials (LCMs). Detailed procedures for the utilization of any specific PSD method are not included. The technician should refer to and be guided by the measurement equipment manufacturer’s instructions.

The particulates range in size from approximately one micron to as much as several millimeters in diameter and are considered “granular” in shape, i.e., relatively isometric (of similar length, width, and height). The recommendations in this technical report generally are not applicable to the measurement of the PSD of non-isometric (high aspect ratio) materials, such as fibers or flakes. Pages: 32

1st Edition | October 2018 | Product Number: G13TR31 | Price: $103.00

OFFSHORE SAFETY AND ANTIPOLLUTION

Std 2CCU
Offshore Cargo Carrying Units

Defines the design, material, manufacture, inspection, repair, maintenance, and marking requirements for offshore cargo carrying units (CCU) and lifting sets to include dry goods boxes, baskets, and other skids designed to move equipment and goods offshore with maximum gross weight up to 70,000 kg (154,323 lb). Pages: 57

1st Edition | August 2017 | Product Number: G2CCU01 | Price: $114.00

RP 14B
Design, Installation, Operation, Test, and Redress of Subsurface Safety Valve Systems

Establishes requirements and provides guidelines for subsurface safety valve (SSSV) system equipment. This includes requirements for SSSV system design, installation, operation, testing, repair, support activities, documentation, and failure reporting. SSSV system equipment addressed by this document includes control systems, control lines, SSSVs, and secondary tools as defined herein. SSSV types including surface controlled (SCSSV), sub-surface controlled (SCSSV), and sub-surface injection safety valves (SSISV) are included. Requirements for testing of SSSVs including frequency and acceptance criteria are included. Alternate technology SSSV equipment and systems are included in these requirements.

This document is not applicable to design, qualification, or repair activities for SSSVs. This document does not specify when a SSSV is required. Pages: 37

NOTE: Spec 14A provides requirements for SSSV equipment design, qualification, and repair.

6th Edition | September 2015 | Product Number: G14B06 | Price: $137.00

RP 14C
Analysis, Design, Installation, and Testing of Safety Systems for Offshore Production Facilities

(includes Errata 1 dated May 2018)

Illustrates how system analysis methods can be used to determine safety requirements to protect common process components. This document also includes:

- a method to document and verify process safety system functions (i.e. SAFE chart);
- design guidance for ancillary systems such as pneumatic supply systems and liquid containment systems;
- a uniform method of identifying and symbolizing safety devices;
- procedures for testing common safety devices with recommendations for test data and acceptable test tolerances.

Pages: 132

8th Edition | February 2017 | Product Number: G14C08 | Price: $249.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 14E
Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems

Recommends minimum requirements and guidelines for the design and installation of new piping systems on offshore production platforms. Includes general recommendations on design and application of pipe, valves, and fittings for typical processes; general information on installation, quality control, and items related to piping systems such as insulation; and specific recommendations for the design of particular piping systems. Pages: 61

Product Number: G07185 | Price: $161.00

RP 14E *
Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems—Chinese

Chinese translation of RP 14E.

5th Edition | October 1991
Product Number: 811-07185 CN940 | Price: $114.00

RP 14F
Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Division 1, and Division 2 Locations

Recommends minimum requirements and guidelines for the design, installation, and maintenance of electrical systems on fixed and floating petroleum facilities located offshore. For facilities classified as Zone 0, Zone 1, or Zone 2, reference RP 14FZ. These facilities include drilling, producing, and pipeline transportation facilities associated with oil and gas exploration and production.

This RP is not applicable to Mobile Offshore Drilling Units (MODUs) without production facilities. This document is intended to bring together in one place a brief description of basic desirable electrical practices for offshore electrical systems. The recommended practices contained herein recognize that special electrical considerations exist for offshore petroleum facilities. Pages: 189

6th Edition | October 2018 | Product Number: G14F06 | Price: $171.00

RP 14FZ
Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Zone 0, Zone 1, and Zone 2 Locations

Recommends minimum requirements and guidelines for the design, installation, and maintenance of electrical systems on fixed and floating petroleum facilities located offshore. For facilities classified as Division 1 or Division 2, reference RP 14F. These facilities include drilling, producing, and pipeline transportation facilities associated with oil and gas exploration and production. This recommended practice (RP) is not applicable to Mobile Offshore Drilling Units (MODUs) without production facilities. This document is intended to bring together in one place a brief description of basic desirable electrical practices for offshore electrical systems. The recommended practices contained herein recognize that special electrical considerations exist for offshore petroleum facilities. These include:

- inherent electrical shock possibility presented by the marine environment and steel decks;
- space limitations that require that equipment be installed in or near hazardous (classified) locations;
- corrosive marine environment;
- motion and buoyancy concerns associated with floating facilities.

Pages: 177

2nd Edition | May 2013 | Product Number: G14FZ02 | Price: $303.00
Exploration and Production

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Spec 15HR ◆
High-Pressure Fiberglass Line Pipe
(includes Errata 1 dated August 2016)

Formulated to provide for the availability of safe, dimensionally, and functionally inter-changeable high-pressure fiberglass line pipe with a pressure rating from 500 lbf/in.² to 5000 lbf/in.² (3.45 MPa to 34.5 MPa), inclusive, in 250 lbf/in.² (1.72 MPa) increments for pipes ≤ than NPS 12 in. and 100 lbf/in.² (0.69 MPa) increments for pipes > than NPS 12 in. This specification is limited to mechanical connections and the technical content provides requirements for performance, design, materials, inspection, marking, handling, storing, and shipping. Critical components are items of equipment having requirements specified in this document. This specification is applicable to rigid pipe components made from thermosetting resins and reinforced with glass fibers. Typical thermosetting resins are epoxy, polyester, vinyl ester, and phenolic. Thermoplastic resins are excluded from the scope of this specification. Any internal liners applied shall be made also from thermosetting resins. Fiberglass line pipe for use in low-pressure systems are covered in Spec 15LR. This specification covers fiberglass pipe utilized for the production of oil and gas, and nonpotable water. The piping is intended for use in new construction, structural, pressure-rated liner, line extension, and repair of both aboveground and buried pipe applications. Specific equipment covered by this specification is listed as follows:

¢ PEX line pipe;
¢ fittings. Pages: 45

7th Edition | September 2018 | Product Number: G15PX1 | Price: $103.00

Spec 15S ◆
Spoolable Reinforced Plastic Line Pipe
(includes Errata 1 dated July 2016 and Addendum 1 dated October 2019)

Provides requirements for the manufacture and qualification of spoolable reinforced plastic line pipe in oilfield and energy applications including transport of multiphase fluids, hydrocarbon gases, hydrocarbon liquids, oilfield production chemicals, and nonpotable water. Also included are performance requirements for materials, pipe, and fittings. These products consist of a liner with helically wrapped steel or nonmetallic reinforcing elements and an outer cover. The helical reinforcing elements shall be a single material. Additional nonhelical reinforcing elements are acceptable. The spoolable reinforced line pipe under this specification is capable of being spooled for storage, transport, and installation. For offshore use, additional requirements may apply and are not within the scope of this document. This specification is confined to pipe, end-fittings, and couplings and does not relate to other system components and appurtenances. Where other system components (e.g. elbows, tees, valves) are of conventional construction, they will be governed by other applicable codes and practices. Pages: 62

2nd Edition | March 2016 | Effective Date: September 1, 2016
Product Number: G15S02 | Price: $143.00

Spec 15S ◆*
Spoolable Reinforced Plastic Line Pipe—Russian

Russian translation of Spec 15S.

2nd Edition | March 2016 | Product Number: G15S02R | Price: $114.00

RP 15TL4
Recommended Practice for Care and Use of Fiberglass Tubulars

Provides information on the transporting, handling, installing, and reconditioning of fiberglass tubulars in oilfield usage. Appendices are also included to cover adhesive bonding, repair procedures, and inspection practices. Pages: 20

2nd Edition | March 1999 | Reaffirmed: November 2018
Product Number: G15TL4 | Price: $105.00

Spec 15P ◆*
Specification for Crosslinked Polyethylene (PEX) Line Pipe

Covers PEX line pipe utilized for the production and transportation of oil, gas, and nonpotable water. The piping is intended for use in new construction, structural, pressure-rated liner, line extension, and repair of both aboveground and buried pipe applications. Specific equipment covered by this specification is limited to mechanical connections and the technical content provides requirements for performance, design, materials, inspection, marking, handling, storing, and shipping. Critical components are items of equipment having requirements specified in this document. This specification is confined to pipe, end-fittings, and couplings and does not relate to other system components and appurtenances. Where other system components (e.g. elbows, tees, valves) are of conventional construction, they will be governed by other applicable codes and practices. Pages: 45

7th Edition | August 2001 | Product Number: G15LRT7 | Price: $74.00

Spec 15L ◆*
Specification for Low Pressure Fiberglass Line Pipe—Chinese

Chinese translation of Spec 15L.

7th Edition | August 2001 | Product Number: G15LRT7C | Price: $74.00

Spec 15LE ◆
Specification for Polyethylene Line Pipe (PE)

Provides standards for polyethylene (PE) line pipe suitable for use in conveying oil, gas, and non-potable water in underground, aboveground, and reliner applications for the oil and gas producing industries. The technical content of this document provides requirements and guidelines for performance, design, materials inspection, dimensions and tolerances, marking, handling, storing, and shipping. Pages: 38

4th Edition | January 2008 | Effective Date: July 1, 2008
Reaffirmed: October 2018 | Product Number: G15LE4 | Price: $110.00

Spec 15LE ◆*
Specification for Polyethylene Line Pipe (PE)—Chinese

Chinese translation of Spec 15LE.

4th Edition | January 2008 | Product Number: G15LE4C | Price: $77.00

Spec 15LR ◆
Specification for Low Pressure Fiberglass Line Pipe
(includes Errata 1 dated June 2018)

Covers filament wound (FW) and centrifugally cast (CC) fiberglass line pipe and fittings for pipe in diameters up to and including 24 in. in diameter and up to and including 1000 psig cyclic operating pressures. In addition, at the manufacturer's option, the pipe may also be rated for static operating pressures up to 1000 psig. It is recommended that the pipe and fittings be purchased by cyclic pressure rating. The standard pressure ratings range from 150 psig to 300 psig in 50 psig increments, and from 300 psig to 1000 psig in 100 psig increments, based on either cyclic pressure or static pressure. Pages: 25

7th Edition | August 2001 | Effective Date: February 1, 2002
Reaffirmed: October 2018 | Product Number: G15LRT7 | Price: $105.00

Spec 15HR ◆
High-Pressure Fiberglass Line Pipe
(includes Errata 1 dated August 2016)

Formulated to provide for the availability of safe, dimensionally, and functionally inter-changeable high-pressure fiberglass line pipe with a pressure rating from 500 lbf/in.² to 5000 lbf/in.² (3.45 MPa to 34.5 MPa), inclusive, in 250 lbf/in.² (1.72 MPa) increments for pipes ≤ than NPS 12 in. and 100 lbf/in.² (0.69 MPa) increments for pipes > than NPS 12 in. This specification is limited to mechanical connections and the technical content provides requirements for performance, design, materials, inspection, marking, handling, storing, and shipping. Critical components are items of equipment having requirements specified in this document. This specification is applicable to rigid pipe components made from thermosetting resins and reinforced with glass fibers. Typical thermosetting resins are epoxy, polyester, vinyl ester, and phenolic. Thermoplastic resins are excluded from the scope of this specification. Any internal liners applied shall be made also from thermosetting resins. Fiberglass line pipe for use in low-pressure systems are covered in Spec 15LR. This specification covers fiberglass pipe utilized for the production of oil and gas. Specific equipment covered by this specification is high-pressure line pipe and couplings, fittings, flanges, reducers, and adapters. Pages: 42

4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G15HR4 | Price: $119.00

Spec 15S ◆
Spoolable Reinforced Plastic Line Pipe
(includes Errata 1 dated July 2016 and Addendum 1 dated October 2019)

Provides requirements for the manufacture and qualification of spoolable reinforced plastic line pipe in oilfield and energy applications including transport of multiphase fluids, hydrocarbon gases, hydrocarbon liquids, oilfield production chemicals, and nonpotable water. Also included are performance requirements for materials, pipe, and fittings. These products consist of a liner with helically wrapped steel or nonmetallic reinforcing elements and an outer cover. The helical reinforcing elements shall be a single material. Additional nonhelical reinforcing elements are acceptable. The spoolable reinforced line pipe under this specification is capable of being spooled for storage, transport, and installation. For offshore use, additional requirements may apply and are not within the scope of this document. This specification is confined to pipe, end-fittings, and couplings and does not relate to other system components and appurtenances. Where other system components (e.g. elbows, tees, valves) are of conventional construction, they will be governed by other applicable codes and practices. Pages: 62

2nd Edition | March 2016 | Effective Date: September 1, 2016
Product Number: G15S02 | Price: $143.00

Spec 15S ◆*
Spoolable Reinforced Plastic Line Pipe—Russian

Russian translation of Spec 15S.

2nd Edition | March 2016 | Product Number: G15S02R | Price: $114.00

RP 15TL4
Recommended Practice for Care and Use of Fiberglass Tubulars

Provides information on the transporting, handling, installing, and reconditioning of fiberglass tubulars in oilfield usage. Appendices are also included to cover adhesive bonding, repair procedures, and inspection practices. Pages: 20

2nd Edition | March 1999 | Reaffirmed: November 2018
Product Number: G15TL4 | Price: $105.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program.
RP 15WT ■
Operations for Layflat Hose in Oilfield Water Applications
Provides guidelines and establishes recommended practices for the operation of layflat hose used for the transportation of water associated with onshore upstream oil and gas operations, to prevent damage of layflat hose and damage of layflat hose assemblies.
This document covers the transportation of formation water, injection water, brackish water, fresh water, and saline. The scope of this document excludes the initial and final connections of the layflat hose to the source and receiving points.
Pages: 36
1st Edition | December 2019
Product Number: G15WT1 | Price: $105.00

DRILLING WELL CONTROL EQUIPMENT AND SYSTEMS

Spec 16A ■
Specification for Drill-Through Equipment
(includes Errata 1 dated August 2017, Addendum 1 dated October 2017, Errata 2 dated November 2017, and Errata 3 dated April 2018)
Defines the requirements for performance, design, materials, testing and inspection, welding, marking, handling, storing, and shipping of drill-through equipment used for drilling for oil and gas. Specifically, this document applies to the manufacture and testing of ram blowout preventers; ram blocks, packers, and top seals; annular blowout preventers; annular packing units; and associated connectors.
It also defines service conditions in terms of pressure, temperature, and wellbore fluids for which the equipment is designed.
Repair and remanufacture of 16A equipment is now covered in Std 16AR. This specification does not apply to field use or field.
Pages: 122

Std 16AR
Standard for Repair and Remanufacture of Drill-Through Equipment
(includes Errata 1 dated August 2017)
Specifies requirements for repair and remanufacture of drill-through equipment built under API 16A. This standard also applies to repair and remanufacture of drill-through equipment manufactured to API 6A requirements and produced prior to the existence of API 16A.
This standard also covers the testing, inspection, welding, marking, certification, handling, storing, and shipping of equipment repaired or remanufactured per this standard.
Pages: 104
1st Edition | April 2017 | Product Number: G16AR01 | Price: $170.00

Spec 16C ■
Choke and Kill Equipment
(includes Errata 1 dated July 2015, Errata 2 dated November 2015, Errata 3 dated February 2016, and Addendum 1 and Errata 4 dated July 2016)
Establishes the minimum requirements for the design and manufacture of following types of new equipment:
• articulated choke and kill lines;
• choke and kill manifold buffer chamber;
• choke and kill manifold assembly;
• drilling choke actuators;
• drilling choke controls;
• drilling chokes;
• flexible choke and kill lines;
• union connections used in choke and kill assemblies;
• rigid choke and kill lines;
• swivel unions used in choke and kill equipment.
These requirements were formulated to provide for safe and functionally interchangeable surface and subsea choke and kill system equipment utilized for drilling and gas wells.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Exploration and Production

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

Spec 16D ■
Control Systems for Drilling Well Control Equipment and Control Systems for Diverter Equipment
Establishes design standards for systems to control blowout preventers (BOPs) and associated valves that control well pressure during drilling operations. The design standards applicable to subsystems and components do not include material selection and manufacturing process details but may serve as an aid to the purchaser. Although diverters are not considered well control devices, their controls are often incorporated as part of the BOP control system and therefore are included in this specification. The requirements provided in this specification apply to the following control system categories: control systems for surface mounted BOP stacks; control systems for subsea BOP stacks (common elements); discrete hydraulic control systems for subsea BOP stacks; control systems for subsea BOP stacks; control systems for diverter equipment; auxiliary equipment control systems and interfaces; emergency disconnect sequenced systems; backup systems; special deepwater/harsh environment features.
Pages: 144
3rd Edition | November 2018 | Effective Date: May 1, 2019
Product Number: G16D03 | Price: $205.00

Spec 16F ■
Specification for Marine Drilling Riser Equipment
(includes Errata 1 dated February 2019)
Establishes standards of performance and quality for the design, manufacture, and fabrication of marine drilling riser equipment used in conjunction with a subsea blowout preventer (BOP) stack.
This specification applies to all riser system components that are in the primary load path during operation, running, and retrieval, including but not limited to riser couplings, riser main tube, riser adapters, riser external lines when used for load sharing, riser tensioner rings, telescopic joints, flex/ball joints, and special riser joints.
Pages: 120
2nd Edition | November 2017 | Product Number: G16F02 | Price: $150.00

Spec 16F *
Specification for Marine Drilling Riser Equipment—Russian
Russian translation of Spec 16F.
2nd Edition | November 2017 | Product Number: G16F02R | Price: $120.00

RP 16Q
Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems
Pertains to the design, selection, operation, and maintenance of marine riser systems for floating drilling operations. Its purpose is to serve as a reference for designers, for those who select system components, and for those who use and maintain this equipment. For the purposes of this standard, a marine drilling riser system includes the tensioner system and all equipment between the top connection of the upper flex/ball joint and the bottom connection of the lower flex/ball joint. It specifically excludes the diverter, LMRP BOP stack, and hydraulic connectors.
Pages: 90
2nd Edition | April 2017 | Product Number: G16Q02 | Price: $132.00

RP 16Q *
Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems—Russian
Russian translation of RP 16Q.
2nd Edition | April 2017 | Product Number: G16Q02R | Price: $105.00
Exploration and Production

Spec 16RCD ◆ Specification for Rotating Control Devices
Formulated to provide for the availability of safe and functionally interchangeable rotating control devices (RCDs) utilized in air drilling, drilling operations for oil and gas, and geothermal drilling operations. Technical content provides requirements for design, performance, materials, tests and inspection, welding, marking, handling, storing, and shipping. This specification does not apply to field use or field testing of RCDs. Critical components are those parts having requirements specified in this document. Pages: 52
2nd Edition | September 2015 | Effective Date: March 10, 2016
Product Number: G16RCD02 | Price: $168.00

RP 16ST
Coiled Tubing Well Control Equipment Systems
Addresses coiled tubing well control equipment assembly and operation as it relates to well control practices. Industry practices for performing well control operations using fluids for hydrostatic pressure balance are not addressed in this recommended practice. This document covers well control equipment assembly and operation used in coiled tubing intervention and coiled tubing drilling applications performed through:
- christmas trees constructed to standards stipulated in Spec 6A and/or Spec 11IW;
- a surface flow head or surface test tree constructed to standards stipulated in Spec 6A;
- drill pipe or workstrings with connections manufactured in accordance with Spec 7 and/or Spec 5CT. Pages: 75
Product Number: G16ST01 | Price: $157.00

TR 16TR1
BOP Shear Ram Performance Test Protocol
(includes Errata 1 dated October 2018)
Outlines the standardized test protocol, including data and reporting requirements, for performing sealing and non-sealing blowout preventer (BOP) shear ram performance tests. This protocol determines the parameters that can support field system performance and confidence in successful shearing and sealing. This document is not intended to be used for qualifying BOP shear rams or as a factory acceptance test procedure. Qualification and factory acceptance testing of BOP shear rams is per API 16A. Pages: 30
1st Edition | July 2018 | Product Number: G16TR11 | Price: $105.00

Std 53
Well Control Equipment Systems for Drilling Wells
Provides requirements on the installation and testing of blowout prevention equipment systems on land and marine drilling rigs (barge, platform, bottom-supported, and floating). Blowout preventer equipment systems are comprised of a combination of various components. The following components are required for operation under varying rig and well conditions: blowout preventers (BOPs); choke and kill lines; choke manifolds; control systems; auxiliary equipment. The primary functions of these systems are to confine well fluids to the wellbore, provide means to add fluid to the wellbore, and allow controlled volumes to be withdrawn from the wellbore. Pages: 86
5th Edition | December 2018 | Product Number: G05305 | Price: $164.00

Online Orders: global.ihs.com

RP 59
Recommended Practice for Well Control Operations
Provides information that can serve as a voluntary industry guide for safe well control operations. This publication is designed to serve as a direct field aid in well control and as a technical source for teaching well control principles. This publication establishes recommended operations to retain pressure control of the well under pre-kick conditions and recommended practices to be utilized during a kick. It serves as a companion to RP 53 and RP 64. Pages: 92
2nd Edition | May 2006 | Reaffirmed: December 2018
Product Number: G59002 | Price: $133.00

RP 59 *
Recommended Practice for Well Control Operations—Kazakh
Kazakh translation of RP 59.

RP 59 *
Recommended Practice for Well Control Operations—Russian
Russian translation of RP 59.

Std 64
Diverter Equipment Systems
(includes Errata 1 dated March 2018 and Addendum 1 dated December 2018)
Provides information on the design, manufacture, quality control, installation, maintenance, and testing of the diverter system, and associated components. The diverter system provides a flow control system to direct controlled or uncontrolled wellbore fluids away from the immediate drilling area for the safety of personnel and equipment. Pages: 69
3rd Edition | August 2017 | Product Number: G64003 | Price: $149.00

SUBSEA PRODUCTION SYSTEMS

RP 17A
Design and Operation of Subsea Production Systems—General Requirements and Recommendations
Provides guidelines for the design, installation, operation, repair, and decommissioning of subsea production systems. The elements of subsea production systems included are wellheads (both subsea and mudline casing suspension systems) and trees; pipelines and end connections; controls, control lines, and control fluids; templates and manifolds; and production riser (both rigid and flexible). Other sections cover operations, quality assurance, materials, and corrosion. This is intended as an umbrella document to govern other parts of the subsea document suite of standards dealing with more detailed requirements for the subsystems that typically form part of a subsea production system. However, in some areas (e.g. system design, structures, manifolds, lifting devices, and color and marking) more detailed requirements are included herein, as these subjects are not covered in a subsystem standard. The complete subsea production system comprises several subsystems necessary to produce hydrocarbons from one or more subsea wells and transfer them to a given processing facility located offshore (fixed, floating, or subsea) or onshore, or to inject water/gas through subsea wells. Specialized equipment, such as split trees and trees and manifolds in atmospheric chambers, are not specifically discussed because of their limited use. However, the information presented is applicable to those types of equipment. Pages: 55
5th Edition | May 2017 | Product Number: GX17A05 | Price: $108.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
RP 17B
Recommended Practice for Flexible Pipe
Provides guidelines for the design, analysis, manufacture, testing, installation, and operation of flexible pipes and flexible pipe systems for onshore, subsea, and marine applications. This recommended practice (RP) supplements Specs 17J and 17K, which specify minimum requirements for the design, material selection, manufacture, testing, marking, and packaging of unbonded and bonded flexible pipe, respectively. This RP applies to flexible pipe assemblies, consisting of segments of flexible pipe body with end fittings attached to both ends. Both bonded and unbonded pipe types are covered. In addition, this RP applies to flexible pipe system. The applications covered by this RP are: (i)鲤·端- and sour-service production, including export and injection applications. This RP applies to both static and dynamic flexible pipes in offshore loading systems. This RP does not cover flexible pipes for use in choke and kill lines or umbilical and control lines. Pages: 268
5th Edition | May 2014 | Product Number: G017B05 | Price: $249.00

Spec 17D/ISO 13628-4
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment
Provides specifications for subsea wellheads, mudline wellheads, drill-through mudline wellheads, and both vertical and horizontal subsea trees. It specifies the associated tooling necessary to handle, test, and install the equipment. It also specifies the areas of design, material, welding, quality control (including factory acceptance testing), marking, storing, and shipping for both individual sub-assemblies (used to build complete subsea tree assemblies) and complete subsea tree assemblies. The user is responsible for ensuring subsea equipment meets any additional requirements of governmental regulations for the country in which it is installed. This is outside the scope of this document. Where applicable, this document can also be used for equipment on satellite, cluster arrangements and multiple well template applications. This document includes equipment definitions, an explanation of equipment use and function, an explanation of service conditions and product specification levels, and a description of critical components. This document is not applicable to the rework and repair of used equipment. Pages: 254
2nd Edition | May 2011 | Effective Dates: February 1, 2013 [for Valve and Actuator Design Validation (Test Requirements) Only] and November 1, 2011 [for All Other Requirements]
Reaffirmed: November 2018 | 2-Year Extension: July 2016
Product Number: GX17D02 | Price: $202.00

Spec 17D/ISO 13628-4
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Chinese
Chinese translation of Spec 17D.
2nd Edition | May 2011 | Product Number: GX17D02C | Price: $142.00

Spec 17D/ISO 13628-4
Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian
Russian translation of Spec 17D.
2nd Edition | May 2011 | Product Number: GX17D02R | Price: $162.00

Spec 17E
Specification for Subsea Umbilicals
Includes Addendum 1 dated December 2017
Specifies requirements and gives recommendations for the design, material selection, manufacture, design verification, testing, installation, and operation of subsea control systems, chemical injection, gas lift, utility and service umbilicals, and associated ancillary equipment for the petroleum and natural gas industries. This also applies to umbilicals containing electrical conductors, optical fibers, thermoplastic hoses, and metallic tubes, either alone or in combination, and applies to umbilicals that are for static or dynamic service, and with routings of surface-surface, surface-subsea, and subsea-subsea. Pages: 178

Spec 17E
Specification for Subsea Umbilicals—Russian
Russian translation of Spec 17E.

Std 17F
Standard for Subsea Production Control Systems
Includes Errata 1 dated July 2018 and Errata 2 dated May 2019
Applies to design, fabrication, testing, installation, and operation of subsea production control systems. Covers surface control system equipment, subsea-installed control system equipment, and control fluids. This equipment is utilized to control subsea production of oil and gas and for subsea water and gas injection services. Where applicable, this standard may be used for equipment on multiple-well applications.
This document establishes design standards for systems, subsystems, components, and operating fluids in order to provide for the safe and functional control of subsea production equipment. It contains various types of information related to subsea production control systems that includes: informative data that provide an overview of the architecture and general functionality of control systems for the purpose of introduction and information; basic prescriptive data that shall be adhered to by all types of control systems; selective prescriptive data that are control-system-type sensitive and shall be adhered to only when they are relevant; and optional data or requirements that need be adopted only when considered necessary either by the purchaser or the vendor.
Rework and repair of used equipment are beyond the scope of this standard. Pages: 239
4th Edition | November 2017 | Product Number: G017F04 | Price: $262.00

Std 17G
Design and Manufacture of Subsea Well Intervention Equipment
Defines a minimum set of requirements for performance, design, materials, testing and inspection, hot forming, welding, marking, handling, storing, and shipping of new build subsea well intervention equipment [through-BOP intervention riser system (TBIRS) and openwater intervention riser system (OWIRS)]. The requirements in this standard apply to equipment whose rated working pressure (RWP) is less than or equal to 103.4 MPa (15,000 psi) or whose rated temperature is less than or equal to 177 °C (350 °F). For equipment ratings that exceed these limits, see API 17TR8.
Structural design methods and criteria given in API 17G are limited to components manufactured from materials that ensure ductile failure modes (e.g., carbon steels, low-alloy steels, and corrosion-resistant alloys). Components manufactured from materials that may not ensure ductile failure modes (e.g., composite materials, titanium, and titanium alloys) are outside the scope of this standard.
The standard covers equipment that is connected to a fluid conduit tieback riser, either inside the marine riser (TBRIS) or open water (OWRIS). Intervention equipment, such as riserless light well intervention systems, downline connected equipment, and remotely operated vehicle (ROV) intervention equipment, are outside the scope of this standard. Pages: 280

RP 17G5 • Subsea Intervention Workover Control Systems
Provides the requirements for the design, manufacture, and testing of intervention workover control system (IWOCS) equipment typically used in a thru-blowout preventer intervention riser system and an open-water intervention riser system.
Some requirements in this document are specific to the execution of end user-defined safety functions. This document defines "safety class control functions" used to operate safety class devices. This document provides guidance on the determination of safety class control functions based on the end user-provided safety functions. Pages: 42
1st Edition | November 2019 | Product Number: G17G501 | Price: $86.00

RP 17H • Remotely Operated Tools and Interfaces on Subsea Production Systems
Provides functional requirements and guidelines for ROV/ROT/AUV interfaces in subsea production fields for the petroleum and natural gas industries. It is applicable to both the selection and use of ROV/ROT/AUV interfaces related to subsea production equipment and provides guidance on design as well as the operational requirements for maximizing the potential of standardized equipment and design principles. This recommended practice (RP) identifies the issues to be considered when designing for ROV/ROT/AUV operations to interact with (or near) subsea production systems. The framework and specifications set out enables the user (whether they may be on the ROV/ROT/AUV side or production facility side) to design the appropriate interface for a specific application. These interfaces include subsea docking, recharging, data transfer, data harvesting, and mechanical intervention. Pages: 112
3rd Edition | July 2019 | Product Number: G17H03 | Price: $160.00

Spec 17J • Specification for Unbonded Flexible Pipe
(includes Errata 1 dated September 2016, Errata 2 dated May 2017, and Addendum 1 dated October 2017)
Defines the technical requirements for safe, dimensionally and functionally interchangeable flexible pipes that are designed and manufactured to uniform standards and criteria. Minimum requirements are specified for the design, material selection, manufacture, testing, marking, and packaging of flexible pipes, with reference to existing codes and standards where applicable. See RP 17B for guidelines on the use of flexible pipes and ancillary components. This specification applies to unbonded flexible pipe assemblies, consisting of segments of flexible pipe body with end fittings attached to both ends. This specification does not cover flexible pipes of bonded structure. This specification does not apply to flexible pipe ancillary components. Guidelines for bend stiffeners and bend restrictors are given in Annex B. This specification does not apply to flexible pipes that include non-metallic tensile armour wires. Pipes of such construction are considered as prototype products subject to qualification testing. The applications addressed by this document are sweet and sour service production, including export and injection applications. Production products include oil, gas, water, and injection chemicals. This specification applies to both static and dynamic flexible pipes used as flowlines, risers, and jumpers. This specification does not apply to flexible pipes for use in choke-and-kill line applications. Pages: 90
4th Edition | May 2014 | Effective Date: November 1, 2014 | Product Number: G017I04 | Price: $146.00

Spec 17K • Specification for Bonded Flexible Pipe
Defines the technical requirements for safe, dimensionally and functionally interchangeable bonded flexible pipes that are designed and manufactured to uniform standards and criteria. Minimum requirements are specified for the design, material selection, manufacture, testing, marking, and packaging of bonded flexible pipes, with reference to existing codes and standards where applicable. This document applies to bonded flexible pipe assemblies, consisting of segments of flexible pipe body with end fittings attached to both ends. It does not cover flexible pipes of unbonded structure or to flexible pipe ancillary components. This document can be applied to flexible pipes that include non-metallic reinforcing layers, though no effort was made to address the specific and unique technological aspects of this product. Pages: 96
3rd Edition | August 2017 | Product Number: G17K03 | Price: $147.00

Spec 17L1 • Specification for Flexible Pipe Ancillary Equipment
(includes Errata 1 dated January 2015 and Errata 2 dated November 2015)
Defines the technical requirements for safe, dimensionally and functionally interchangeable flexible pipe ancillary equipment that is designed and manufactured to uniform standards and criteria. Minimum requirements are specified for the design, material selection, manufacture, testing, documentation, marking, and packaging of flexible pipe ancillary equipment, with reference to existing codes and standards where applicable. The applicability relating to a specific item of ancillary equipment is stated at the beginning of the particular clause for the ancillary equipment in question. This document applies to the following flexible pipe ancillary equipment: bend stiffeners; bend restrictors; bellmouths; buoyancy modules and ballast modules; subsea buoys; tethers for subsea buoys and tether clamps; riser and tether bases; clamping devices; piggy-back clamps; repair clamps; I/J-tube seals; pull-in heads/installation aids; connectors; load-transfer devices; mechanical protection; and fire protection. This document may be used for bonded flexible pipe ancillary equipment, though any requirements specific to these applications are not addressed. This document does not cover flexible pipe ancillary equipment beyond the connector, with the exception of riser bases and load-transfer devices. Therefore, this document does not cover turret structures or I-tubes and J-tubes, for example. In addition, this document does not cover flexible pipe storage devices such as reels, for example. This specification is intended to cover ancillary equipment made from several material types, including metallic, polymer and composite materials. It may also refer to material types for particular ancillary components that are not commonly used for such components currently, but may be adopted more frequently in the future. Pages: 340
1st Edition | March 2013 | Product Number: G17L101 | Price: $184.00

RP 17L2 • Recommended Practice for Flexible Pipe Ancillary Equipment
Provides guidelines for the design, materials selection, analysis, testing, manufacture, handling, transportation, installation, and integrity management of flexible pipe ancillary equipment. It presents the current best practice for design and procurement of ancillary equipment and gives guidance on the implementation of the specification for standard flexible pipe products. In addition, this document presents guidelines on the qualification of prototype products. The applicability relating to a specific item of ancillary equipment within this recommended practice is stated at the beginning of the clause dedicated to that item of ancillary equipment. This document applies to the following flexible pipe ancillary equipment: bend stiffeners; bend restrictors; bellmouths; buoyancy modules and ballast modules; subsea buoys; tethers for subsea buoys and tether clamps; riser and tether bases; clamping devices; piggy-back clamps; repair clamps; I/J-tube seals; pull-in heads/installation aids; connectors; load-transfer devices; mechanical protection; and fire protection. This document may be used for bonded flexible pipe ancillary equipment, though any requirements specific to these applications are not addressed. Where relevant, the applicability of recommendations to umbilicals is indicated in the Applicability subclause for the ancillary equipment in question. This document does not cover flexible pipe ancillary equipment beyond the connector, with the exception of riser
bases and load-transfer devices. Therefore, this document does not cover turrent structures or I-tubes and J-tubes, for example. In addition, it does not cover flexible pipe storage devices, for example reels. This recommended practice is intended to cover ancillary equipment made from several material types, including metallic, polymer, and composite materials. It may also refer to material types for particular ancillary components that are not commonly used for such components currently, but may be adopted in the future.

1st Edition | March 2013 | Product Number: G17L201 | Price: $184.00

Pages: 275

RP 17N
Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management
(includes Addendum 1 dated May 2018)

Provides a structured approach that organizations can adopt to manage uncertainty throughout the life of a project. This may range from the management of general project risk through to the identification and removal of potential failure modes in particular equipment.

This recommended practice aims to provide operators, contractors, and suppliers with guidance in the application of reliability techniques to subsea projects within their scope of work and supply only. It is applicable to standard and nonstandard equipment, and all phases of projects, from feasibility studies to operation.

It does not prescribe the use of any specific equipment or limit the use of any existing equipment or recommend any action, beyond good engineering practice, where current reliability is judged to be acceptable. It is also not intended to replace individual company processes, procedures, document nomenclature, or numbering; it is a guide. However, this recommended practice may be used to enhance existing processes, if deemed appropriate.

Most organizations will find much that is familiar and recognized as good practice. Some annex sections may only be of interest to a reliability specialist. The basic approach, however, is simple and consistent, and when applied correctly, has the potential to greatly reduce the financial risk of designing, manufacturing, installing, and operating subsea equipment.

Pages: 178

2nd Edition | June 2017 | Product Number: G17N02 | Price: $193.00

RP 17N *
Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management—Russian

Russian translation of RP 17N.

2nd Edition | June 2017 | Product Number: G17N02R | Price: $154.00

RP 17O
Recommended Practice for Subsea High Integrity Pressure Protection Systems (HIPPS)

Addresses the requirements for the use of high integrity pressure protection systems (HIPPS) for subsea applications. RP 14C, IEC 61508, and IEC 61511 specify the requirements for onshore, topsides, and subsea safety instrumented systems (SIS) and are applicable to HIPPS, which are designed to autonomously isolate downstream facilities from overpressure situations. This document integrates these requirements to address the specific needs of subsea production. These requirements cover the HIPPS pressure sensors, logic solver, shutdown valves, and ancillary devices including testing, communications, and monitoring subsystems.

Pages: 45

2nd Edition | July 2014 | Product Number: G17O02 | Price: $131.00

RP 17P
Recommended Practice for Subsea Structures and Manifolds

Addresses specific requirements and recommendations for subsea structures and manifolds, within the frameworks set forth by recognized and accepted industry specifications and standards. As such, it does not supersede or eliminate any requirement imposed by any other industry specification.

This recommended practice (RP) covers subsea manifolds and templates used for pressure control in both subsea production of oil and gas, and subsea injection services. Equipment within the scope of this RP includes production and injection manifolds; modular and integrated single satellite and multwell templates; subsea processing and subsea boosting stations; flowline riser bases and export riser bases (FRB, ERB); pipeline end manifolds (PEM); pipeline end terminations (PLET); T- and Y-connections; subsea isolation valve structures (SSIV); subsea controls and distribution structures; and associated protection structures.

Pages: 76

2nd Edition | January 2019 | Product Number: G17P02 | Price: $150.00

RP 17Q
Recommended Practice on Subsea Equipment Qualification

Provides suppliers, contractors, and operators with process-level guidance to qualify equipment intended for use in subsea applications. This document is intended to provide high-level guidance only, so that the petroleum and natural gas industry has a common set of principles to follow for equipment qualification. It is written to simplify the qualification process and to align associated expectations within individual organizations and within the industry. It is not intended to replace existing company processes or procedures. The application of this recommended practice is dependent on the stakeholder companies (qualifier and end user) accepting its use. Although developed for application to subsea equipment, the process described by the recommended practice can be applied to non-subsea equipment as well.

Pages: 54

2nd Edition | May 2018 | Product Number: G17Q02 | Price: $145.00

RP 17R
Recommended Practice for Flowline Connectors and Jumpers

Addresses specific requirements and recommendations for subsea flowline connectors and jumpers within the frameworks set forth by recognized and accepted industry specifications and standards. As such, it does not supersede or eliminate any requirement imposed by any other industry specification.

This document covers subsea flowline connectors and jumpers used for pressure containment in both subsea production of oil and gas, and subsea injection services. Equipment within the scope of this document are listed below.

Equipment used to make the following subsea connections are included:
- pipeline end terminations to manifolds,
- pipeline end terminations to trees,
- pipeline end terminations to riser bases,
- manifolds to trees,
- pipeline inline sleds to other subsea structures.

The following connection components and systems are included:
- jumper assemblies,
- monobore connectors systems,
- multibore connectors systems,
- pressure and flooding caps,
- connector actuation tools.

Pages: 52

1st Edition | March 2015 | Product Number: G17R01 | Price: $131.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Than the production tubing (commonly referred to as the "A" annulus) could be monitored. Current industry standards (Spec 17D and ISO 13628-4) for the design of subsea wellheads prohibit penetrations below the (BOP) stack. Barrier using a wellhead with penetrations is approximately 2.5 times that of monitored for sustained casing pressure and that every occurrence of can be measured and evaluated against relevant performance criteria. This document relates primarily to the properties necessary for an internal pressure sheath, as a result of aging and associated loss of mechanical properties, by collective goal of this document is to prevent failure of the internal pressure rating of well control equipment. Pages: 12

The Aging of PA-11 In Flexible Pipes

Provides comprehensive guidance on materials and pipe issues regarding the use and operation of PA-11 in flexible pipe applications and concentrates on the use of PA-11 in the internal sheath of flexible pipes. The collective goal of this document is to foster a better understanding of the effects of simultaneous internal and external pressures on the internal pressure rating of well control equipment. Pages: 12

Avoidance of Blockages in Subsea Production Control and Chemical Injection Systems

Addresses the avoidance of blockages in subsea production control and chemical injection systems (CISs). It includes requirements and gives recommendations for the design and operation of subsea production systems (SPSs) with the aim of preventing blockages in control and production chemical fluid (PCF) conduits and associated connectors/fittings. In the context of design, this covers not only installed subsea hardware (trees, manifolds, etc.) and the connecting linkages (jumper arrangements, umbilical systems, etc.) but also the fluids to be conveyed, initially from the fluid manufacturers’ facilities through to bunkering at the host facility and, ultimately, injection or usage at remote subsea locations.

This document also addresses the issues of topside equipment that provide the control and chemical injection (CI) services necessary for the operation and performance of a SPS. Pages: 44

Attributes of Production Chemicals in Subsea Production Systems

Identifies and specifies the essential attributes of production chemicals intended to be introduced to subsea oil and gas production systems. The document is intended for use by chemical suppliers to facilitate the provision of chemicals compatible with existing and intended subsea production systems (SPSs) although it is envisaged that use of the document for specification purposes by the operators of such processes will assist in ensuring the completeness of requests to supply.

This document specifies parameters that address manufacture, storage, and transportation of the production chemical, as well as its deployment using the SPS chemical injection system. The document provides for two approaches, requiring that parameters be either:

- measured and reconciled with SPS design and operation, or
- meet, or exceed, acceptance criteria specified, either in this document or by manufacturers of production chemicals or equipment used to deliver production chemicals.

This document is intended to be applicable to all subsea developments, irrespective of whether the development is in shallow or deep water. Pages: 42

The scope of this study is limited to completed subsea wells in the Gulf of Mexico (GOM). The risks were evaluated using fault tree analysis for three systems:

- wellhead system without penetrations,
- wellhead system with one penetration, and
- wellhead system with two penetrations. Pages: 123

The injection of deep water on the pressure rating of equipment is a special concern. The objective of this document is to foster a better understanding of the effects of simultaneous internal and external pressures on the internal pressure rating of well control equipment. Pages: 12

Avoidance of Blockages in Subsea Production Control and Chemical Injection Systems

This document specifies parameters that address manufacture, storage, and transportation of the production chemical, as well as its deployment using the SPS chemical injection system. The document provides for two approaches, requiring that parameters be either:

- measured and reconciled with SPS design and operation, or
- meet, or exceed, acceptance criteria specified, either in this document or by manufacturers of production chemicals or equipment used to deliver production chemicals.

This document is intended to be applicable to all subsea developments, irrespective of whether the development is in shallow or deep water. Pages: 42

1st Edition | November 2004 | Product Number: G17TR4 | Price: $171.00

Attributes of Production Chemicals in Subsea Production Systems

This document specifies parameters that address manufacture, storage, and transportation of the production chemical, as well as its deployment using the SPS chemical injection system. The document provides for two approaches, requiring that parameters be either:

- measured and reconciled with SPS design and operation, or
- meet, or exceed, acceptance criteria specified, either in this document or by manufacturers of production chemicals or equipment used to deliver production chemicals.

This document is intended to be applicable to all subsea developments, irrespective of whether the development is in shallow or deep water. Pages: 42

1st Edition | March 2012 | Product Number: G17TR501 | Price: $107.00

Attributes of Production Chemicals in Subsea Production Systems

This document specifies parameters that address manufacture, storage, and transportation of the production chemical, as well as its deployment using the SPS chemical injection system. The document provides for two approaches, requiring that parameters be either:

- measured and reconciled with SPS design and operation, or
- meet, or exceed, acceptance criteria specified, either in this document or by manufacturers of production chemicals or equipment used to deliver production chemicals.

This document is intended to be applicable to all subsea developments, irrespective of whether the development is in shallow or deep water. Pages: 42

1st Edition | March 2012 | Product Number: G17TR601 | Price: $107.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is related to an API licensing, certification, or accreditation program.
Exploration and Production

TR 17TR7
Verification and Validation of Subsea Connectors
Provides requirements and recommendations for the verification and validation of subsea connectors. It is intended to serve as a common reference for designers, manufacturers, and users to improve the performance assessment of subsea connectors and to improve the reliability and integrity of subsea systems.
This technical report is applicable to subsea connectors along the vertical centerline of subsea hardware (i.e. tree, tubing head, tree cap, tree running tool, well control package connectors, and EDP connectors), the subsea wellhead, and the completion/workover riser. The methodology provided herein may also be used in other connector designs. Connectors outboard of the vertical centerline are addressed in API 17R.

1st Edition | April 2017 | Product Number: G17TR71 | Price: $93.00

TR 17TR8
High-Pressure High-Temperature Design Guidelines (includes Errata 1 dated March 2019 and Addendum 1 dated April 2019)
Serves as a general design guideline for HPHT application. It provides design guidelines for oil and gas subsea equipment used in high-pressure high-temperature (HPHT) environments.

2nd Edition | March 2018 | Product Number: G17TR82 | Price: $150.00

TR 17TR9
Umbilical Termination Assembly (UTA) Selection and Sizing Recommendations
Identifies and describes:
• technical, commercial, and installation risks associated with high-functionality umbilicals and umbilical terminations (resulting in large and heavy umbilical termination assemblies (UTAs)), especially with respect to installation;
• implications of decisions made early in the umbilical and subsea umbilical termination (SUT) planning, selection, and design phases, to ease the manufacturing, handling, and final umbilical/UTA installation;
• guidance on specification and sizing of umbilical terminations, including overall size, weight, and handling requirements.

This document acts as a reference guide during the early field development planning stage to ensure that due consideration is given to the implications of the size of UTAs and possible consequences during installation. It is intended to be used as a reference guide by end users and operators, UTA and umbilical manufacturers, installers, and front-end engineering design (FEED) companies. The intention is that the document will enable the currently inherent installation difficulties to be addressed up front by the UTA designers, prior to commencing SUT design and functionality definition. It is also intended to be used as a reference document to enable reviews to be undertaken to ensure that installation risk has been properly considered as part of SUT design and operations reviews on a case-by-case basis.

1st Edition | August 2017 | Product Number: G17TR91 | Price: $113.00

TR 17TR10
Subsea Umbilical Termination (SUT) Design Recommendations
Provides best practice technical guidance for subsea umbilical design (SUT) design, in order to aid in making informed choices during the design phase.
This document was generated in response to the increasing difficulties in installation of high-functionality SUTs, due to their increasing size.
This document is intended to be used as a reference guide by operators, umbilical termination assembly (UTA) and umbilical specifiers, installers, and front-end engineering design (FEED) companies. It is also intended to be used as a reference document to enable reviews to be undertaken to ensure that installation risk has been properly considered as part of SUT design and operation reviews.
Additionally, the document has been designed to be educational such that persons new to the industry, or, less experienced persons within the industry, can understand the implications of UTA design on installation feasibility.

1st Edition | March 2016 | Product Number: G17TR131 | Price: $131.00

TR 17TR11
Pressure Effects on Subsea Hardware During Flowline Pressure Testing in Deep Water
Provides guidance to the industry on allowable pressure loading of subsea hardware components that can occur during hydropressure testing of subsea flowlines and risers and during pre-commissioning leak testing of these systems. There are potential problems with confusion arising from high hydrostatic pressure in deep water, partially due to the variety of applicable test specifications and partly from the inconsistent use of a variety of acronyms for pressure terminology.

1st Edition | September 2015 | Product Number: G17TR111 | Price: $87.00

TR 17TR12
Consideration of External Pressure in the Design and Pressure Rating of Subsea Equipment
Addresses issues related to the effects of external pressure acting on subsea equipment installed in deepwater for containing or controlling wellbore fluids. External pressure at deepwater can significantly reduce the differential pressure acting on the wall of subsea equipment; therefore, this can improve its internal pressure containment capability. External pressure is typically ambient seawater pressure, but in some cases, external pressure may be due to the hydrostatic head of drilling mud, completion fluids, or other fluids contained within risers or other conduits that connect the subsea equipment to surface facilities.

This document provides guidance for subsea equipment designers/manufacturers to properly account for external pressure (or in some cases, differential pressure) when designing and validating subsea equipment. Additionally, this technical report provides guidance to equipment purchaser/end-user to appropriately select rated equipment for their subsea systems with consideration to the effects of external pressure in addition to internal pressure, including differential pressure across a closure mechanism, and other applied mechanical or structural loads under all potential operating scenarios and functionality criteria.
It is necessary that users of this technical report be aware of regulations from jurisdictional authority that may impose additional or different requirements to the consideration of external pressure or differential pressure in equipment designs.

1st Edition | March 2015 | Product Number: G17TR121 | Price: $103.00

TR 17TR13
General Overview of Subsea Production Systems
Subsea production systems can range in complexity from a single satellite well with a flowline linked to a fixed platform to several wells on a template producing and transferring via subsea processing facilities to a fixed or floating facility or directly to an onshore installation. The objectives of this document are to describe typical examples of the various subsystems and components that can be combined, in a variety of ways, to form complete subsea production systems; to describe the interfaces with typical downhole and topsides equipment that are relevant to subsea production systems; and to provide some basic design guidance on various aspects of subsea production systems.

1st Edition | March 2016 | Product Number: G17TR131 | Price: $131.00
RP 17U
Recommended Practice for Wet and Dry Thermal Insulation of Subsea Flowlines and Equipment

Provides guidance for the performance, qualification, application, quality control, handling, and storage requirements of wet and dry thermal insulation for subsea applications in the petroleum and gas industries. This guideline also covers the inspection of the insulation, and the repair of insulation defects. For flowlines, the installation method is not defined and may be either S-lay, J-lay, or reel-lay. This guideline is intended to cover all three installation methods. This guideline also takes into consideration the design and structural handling of subsea trees, manifolds, pipeline end terminations (PLETs), flowline jumpers, etc., as it pertains to the placement of structure, sacrificial anodes, handling appurtenances, etc., to ensure the integrity of the insulation’s construction.

This recommended practice is applicable to the following systems and components:
- flowlines and risers;
- christmas tree, valve block, and piping;
- manifold valves and pipework;
- PLET piping;
- jumpers (i.e. piping and bends);
- connectors and fittings;
- valves and chokes. Pages: 24

1st Edition | February 2015 | Product Number: G17U01 | Price: $81.00

RP 17V
Recommended Practice for Analysis, Design, Installation, and Testing of Safety Systems for Subsea Applications (includes Errata 1 dated July 2015)

Presents recommendations for designing, installing, and testing a process safety system for subsea applications. The basic concepts of subsea safety systems are discussed and protection methods and requirements of the system are outlined. For the purposes of this document, “subsea system” includes all process components from the wellhead (and surface controlled subsurface safety valve [SCSSV]) to upstream of the boarding shutdown valve. For gas injection, water injection, and gas lift systems, the shutdown valve is within the scope of this document.

This document is a companion document to API 14C, which provides guidance for topsides safety systems on offshore production facilities. Some sections of this document refer to API 14C for safety system methodology and processes. This recommended practice illustrates how system analysis methods can be used to determine safety requirements to protect any process component. Actual analyses of the principal components are developed in such a manner that the requirements determined will be applicable whenever the component is used in the process. The safety requirements of the individual process components may then be integrated into a complete subsea safety system. The analysis procedures include a method to document and verify system integrity. This uniform method of identifying and symbolizing safety devices is presented in API 14C and adopted in this recommended practice. Pages: 65

1st Edition | July 2014 | Product Number: G17W01 | Price: $136.00

COMPLETION EQUIPMENT

Spec 11D1/ISO 14310:2008

Packers and Bridge Plugs

(includes Errata 1 dated August 2019)

Provides requirements and guidelines for packers and bridge plugs as defined herein for use in the petroleum and natural gas industry. This specification provides requirements for the functional specification and technical specification, including design, design verification and validation, materials, documentation and data control, repair, shipment, and storage. In addition, products covered by this specification apply only to applications within a conduit. Installation and maintenance of these products are outside the scope of this specification.

This specification includes requirements for the following:
- HPHT environment equipment;
- HPHT environment operational tools;
- external flow testing.

This edition of Spec 11D1 is the modified national adoption of ISO 14310:2008. Pages: 62

3rd Edition | April 2015 | Effective Date: October 9, 2015
Product Number: G11D103 | Price: $124.00

Spec 11D1/ISO 14310:2008

Packers and Bridge Plugs—Russian

Russian translation of Spec 11D1.

3rd Edition | April 2015 | Product Number: G11D103R | Price: $100.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com
RP 11V5
Recommended Practices for Operation, Maintenance, Surveillance, and Troubleshooting of Gas-Lift Installations
Assists gas-lift system operators, analysts, technicians, engineers, and others in understanding how to effectively plan, operate, maintain, troubleshoot, and provide surveillance for gas-lift systems and gas-lift wells. These recommended practices discuss continuous gas-lift with injection in the casing/tubing annulus and production up the tubing. Annular flow gas-lift (injection down the tubing and production up the annulus), dual gas-lift (two tubing strings in the same casing), and intermittent gas-lift are mentioned; however, most of the discussion focuses on conventional continuous gas-lift. Pages: 123
Product Number: G11V53 | Price: $168.00

RP 11V6
Recommended Practice for Design of Continuous Flow Gas Lift Installations Using Injection Pressure Operated Valves
Sets guidelines for continuous flow gas lift installation designs using injection pressure operated valves. The assumption is made that the designer is familiar with and has available data on the various factors that affect a design. Pages: 88
Product Number: G11V62 | Price: $161.00

RP 11V8
Recommended Practice for Gas Lift System Design and Performance Prediction
Emphasizes gas lift as a system and discusses methods used to predict its performance. Information must be gathered and models validated prior to system design, which must precede wellbore gas lift mandrel and valve design. The subsurface and surface components of the system must be designed together to enhance the strengths of each and to minimize the constraints. Pages: 79
Product Number: G11V81 | Price: $130.00

Spec 14A •
Specification for Subsurface Safety Valve Equipment
Includes Errata 1 dated July 2015 and Addendum 1 dated June 2017
Provides the requirements for subsurface safety valves (SSSVs), and the secondary tools as defined herein necessary to establish the features and/or clearances that may affect performance or interchangeability of the SSSV components. It includes repair operations and the interface connections to control conduits and/or other equipment, but does not cover the connections to the primary well conduit. Pages: 140
Product Number: G14A12 | Price: $244.00

Spec 14L/ISO 16070:2005 •
Specification for Lock Mandrels and Landing Nipples
Provides the requirements for lock mandrels and landing nipples within the production/injection conduit for the installation of flow control or other equipment used in the petroleum and natural gas industries. It includes the interface connections to the flow control or other equipment, but does not cover the connections to the well conduit. This edition of Spec 14L is the identical national adoption of ISO 16070:2005. Pages: 25
Product Number: G14L02 | Price: $130.00

Spec 14L/ISO 16070:2005 •
Specification for Lock Mandrels and Landing Nipples—Chinese
Chinese translation of Spec 14L.
2nd Edition | July 2007 | Product Number: GX14L02C | Price: $92.00

Spec 19AC/ISO 14998:2013 •
Specification for Completion Accessories
Provides requirements and guidelines for completion accessories, as defined herein, for use in the petroleum and natural gas industry. This international standard provides requirements for the functional specification and technical specifications, including design, design verification and validation, materials, documentation and data control, quality requirements, redress, repair, shipment, and storage. This international standard covers the pressure-containing, nonpressure-containing, load-bearing, disconnect/reconnect, tubing-movement, and opening-a-port functionalities of completion accessories. Products covered under another API or international specification are not included. Also not included are other products such as liner/tubing hangers, downhole well test tools, inflow control devices, surface-controlled downhole chokes, downhole artificial lift equipment, control lines and fittings, and all functionalities relating to electronics or fiber optics. This international standard does not cover the connections to the well conduit. Installation, application, and operation of these products are outside the scope of this international standard.
This edition of Spec 19AC is the modified national adoption of ISO 14998:2013. Pages: 63
1st Edition | September 2016
Product Number: G19AC01 | Price: $121.00

RP 19B •
Recommended Practice for Evaluation of Well Perforators (formerly RP 43)
Includes Addendum 1 dated April 2014 and Addendum 2 dated December 2014
Describes standard procedures for evaluating the performance of perforating equipment so that representations of this performance may be made to the industry under a standard practice. Also contains tests to gauge performance under the following conditions:
- ambient temperature and pressure,
- simulated wellbore (stressed Berea sandstone),
- elevated temperature.
This edition also introduces a procedure to quantify the amount of debris that comes out of the perforating gun during detonation. Pages: 42
Product Number: G019B2 | Price: $133.00

RP 19B •
Recommended Practice for Evaluation of Well Perforators—Chinese (formerly RP 43)
Chinese translation of RP 19B.
2nd Edition | September 2006
Product Number: G019B2C | Price: $94.00

RP 19B •
Recommended Practice for Evaluation of Well Perforators—Kazakh (formerly RP 43)
Kazakh translation of RP 19B.
2nd Edition | September 2006
Product Number: G019B2K | Price: $107.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 19B * Recommended Practices for Evaluation of Well Perforators—Russian
Russian translation of RP 19B.
2nd Edition | September 2006
Product Number: G019B2R | Price: $107.00

Std 19C Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations
Provides standard testing procedures for evaluating proppants used in hydraulic fracturing and gravel-packing operations. The objective of this standard is to provide a consistent methodology for testing performed on hydraulic fracturing and/or gravel-packing proppants. These procedures have been developed to improve the quality of proppants delivered to the well site. They are for use in evaluating certain physical properties used in hydraulic fracturing and gravel-packing operations. Pages: 57
2nd Edition | August 2018 | Product Number: GX19C02 | Price: $122.00

Std 19C * Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations—Russian
Russian translation of Std 19C.
2nd Edition | August 2018 | Product Number: GX19C02R | Price: $96.00

Spec 19CI ♦ Downhole Chemical Injection Devices and Related Equipment
Provides requirements for chemical injection devices intended for use in the worldwide petroleum and natural gas industry. This includes requirements for specifying, selecting, design verification, validation testing, manufacturing, quality control, testing, and preparation for shipping of chemical injection devices. These requirements include in-line debris screen systems, single-use shearable/frangible devices, and information on performance testing and calibration procedures. The installation and retrieval of chemical injection devices and systems is outside the scope of this document (see API 19G2 and API 19G3). Pages: 118
1st Edition | June 2019 | Product Number: G19C01 | Price: $162.00

RP 19D/ISO 13503-5:2006 Measuring the Long-Term Conductivity of Proppants (includes Errata 1 dated July 2008)
Provides standard testing procedures for evaluating proppants used in hydraulic fracturing and gravel-packing operations. The proppants mentioned in this publication refer to sand, ceramic media, resin coated proppants, gravel packing media, and other materials used for hydraulic fracturing and gravel-packing operations. The objective of RP 19D is to provide consistent methodology for testing performed on hydraulic-fracturing and/or gravel-packing proppants. It is not intended for use in obtaining absolute values of proppant pack conductivities under downhole reservoir conditions. The tests and test apparatus herein have been developed to establish standard procedures and conditions for use in evaluating the long-term conductivity of various hydraulic fracture proppant materials under laboratory conditions. This procedure enables users to compare the conductivity characteristics under the specifically described test conditions. The test results can aid users in comparing proppant materials for use in hydraulic fracturing operations.
This edition of RP 19D is the identical national adoption of ISO 13503-5:2006 and replaces RP 61. Pages: 24
Product Number: GX19D01 | Price: $116.00

Provides requirements for subsurface flow-control devices used in side-pocket mandrels (hereafter called flow-control devices) intended for use in the worldwide petroleum and natural gas industry. This includes requirements for specifying, selecting, designing, manufacturing, quality control, testing, and preparation for shipping of flow-control devices. Additionally, it includes information regarding performance testing and calibration procedures. The installation and retrieval of flow-control devices is outside the scope of Spec 19G2. Additionally, Spec 19G2 is not applicable to flow-control devices used in center-set mandrels or with tubing-retrievable applications. Spec 19G2 does not include requirements for side-pocket mandrels, running, pulling, and kick-over tools, and latches that might or might not be covered in other API/ISO specifications. Reconditioning of used flow-control devices is outside of the scope of Spec 19G2.
This edition of Spec 19G2 is the modified national adoption of ISO 17078-2:2007. Pages: 132
Product Number: GX19G21 | Price: $168.00

Provides requirements and guidelines for running tools, pulling tools, kick-over tools, and latches used for the installation and retrieval of flow control and other devices to be installed in side-pocket mandrels for use in the petroleum and natural gas industries. This includes requirements for specifying, selecting, designing, manufacturing, quality control, testing, and preparation for shipping of these tools and latches. Additionally, it includes information regarding performance testing and calibration procedures. The processes of installation, retrieval, maintenance, and reconditioning of used running, pulling, and kick-over tools and latches are outside the scope of Spec 19G3. Center-set and tubing retrievable mandrel applications are not covered.
This edition of Spec 19G3 is the identical national adoption of ISO 17078-3:2009. Pages: 43
1st Edition | June 2011 | Product Number: GG19G301
Reaffirmed: June 2019
Product Number: G19G301 | Price: $157.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

| This publication is a new entry in this catalog. | This publication is related to an API licensing, certification, or accreditation program. | 39 |
This document also contains three annexes. Annex A contains mathematical derivations and models of some of the most pertinent intermittent gas-lift calculations. Annex B contains a comprehensive example of an intermittent gas-lift design. Annex C describes how to use the Field (U.S. Customary) Units Calculator and SI Units Calculator. Pages: 120

1st Edition | September 2018
Product Number: G19G101 | Price: $170.00

RP 19G11
Dynamic Simulation of Gas-Lift Wells and Systems

Provides guidance and background for the application and use of dynamic simulation of gas-lift wells and their related systems. Discussion is included for use of steady-state, pseudo-steady-state, and dynamic numerical models. Also presented are guidelines to facilitate the application of these techniques to optimize well/system integrity, operations, life cycle design, and production. Additionally, a range of artificial lift and natural flowing systems and topics (e.g. gas well liquid loading) are addressed. The dynamic simulation recommendations (e.g. stable flow, hydrates, waxes, corrosion, liquid loading, and complex wells) can be implemented in other production systems (e.g. natural flowing wells). Not included are technical requirements for the hardware of the dynamic simulation system, the specifics of the system calculations, the responses to the output of the dynamic simulation data output, and specifics of what actions are required after the provided data is considered. Pages: 132

1st Edition | October 2018 | Product Number: G19G101 | Price: $164.00

Spec 19LH
Liner Hanger Equipment

Provides requirements for conventional and expandable liner systems, including liner hangers, liner packers, liner hanger packers, tie-back/ polished-bore receptacles (TBR/PBRs), seal assemblies, setting adaptors/ sleeves, and running/setting tools as defined herein for use in the oil and natural gas industry. This specification provides minimum requirements for the functional specification and technical specification, including design, design verification and validation, materials, quality control, documentation and data control, repair, shipment, and storage.

Products covered by this specification apply only to applications within a conduit. Installation and field maintenance are outside the scope of this specification. Pages: 99

1st Edition | June 2019 | Product Number: G19LH01 | Price: $120.00

Spec 19OH
Openhole Isolation Equipment

Covers requirements and guidelines for openhole isolation equipment and bridge plugs as defined herein. Openhole isolation equipment includes swellable packers, inflatable packers, expandable packers, and openhole packers that are designed for use in the petroleum and natural gas industries. This specification provides requirements for design verification, design validation, manufacturing, quality, shipping, handling, storage, and related supporting topics.

Requirements for the end connections to the well conduit are not included in this specification. Also not covered are downhole anchoring devices (see API 11D1); cup-style packers; and requirements for the application, installation, and use of openhole isolation equipment. Equipment and technology covered by other API specifications and standards are exempted from this specification, such as:

- production packers,
- liner hanger systems,
- service tools,
- test tool packers.

Repairs, remanufacturing, and redress are excluded from this specification. Pages: 45

1st Edition | January 2018 | Product Number: G19OH1 | Price: $118.00
Subsurface Completion Isolation (Barrier) Valves and Related Equipment

Provides the requirements and guidelines for sand screens for use in the petroleum and natural gas industry. Included are the requirements for design, validation, manufacturing, quality, storage, and transport. The requirements of this International Standard are applicable to wire-wrap screens, pre-pack screens, and metal-mesh screens.

The following items are outside the scope of this International Standard:
- expandable and/or compliant sand screens, slotted liners, or tubing and accessory items, such as centralizers or bull plugs;
- shunt screen technology, inflow control devices, downhole sensors, and selective isolation devices, even where they can be an integral part of the sand screen;
- analysis for sand retention efficiency;
- end connections of the basepipe.

This edition of Spec 19SS is the modified national adoption of ISO 17824:2009.

1st Edition | January 2018 | Product Number: G19SS01 | Price: $174.00

Spec 19V

Subsurface Completion Isolation (Barrier) Valves and Related Equipment

Provides the requirements for subsurface completion isolation (barrier) valves and related equipment as they are defined herein for use in the petroleum and natural gas industries. Included are the requirements for design, validation, manufacturing, quality, storage, and transport. SCIVs provide a means of isolating the formation or creating a blockage in the tubular to facilitate the evaluation, repair, redress, handling, and storage. This specification does not cover open well bore test tools, downhole gauges, samplers, surface equipment, subsea equipment, perforating equipment and accessories, pump joints external to well test tool assemblies, work string and its connections, conveyance or intervention systems, installation, control and monitoring conduits, and surface control systems. A downhole test well is an operation deploying a temporary completion in a well to safely acquire dynamic rates, formation pressure/temperature, and formation fluid data. Downhole test tools are also used in operations of well perforating, well shut-ins, circulation control of fluids, and stimulation activities. This document covers the downhole tools used to perform these operations; however, the operational requirements of performing these operations are not included.

1st Edition | August 2017 | Product Number: G20A02 | Price: $94.00

Spec 19AOH *

Openhole Isolation Equipment—Russian

Russian translation of Spec 19OAH.

1st Edition | January 2018 | Product Number: G19OAH1R | Price: $94.00

Spec 19SS/ISO 17824:2009

Sand Screens

Provides the requirements and guidelines for sand screens for use in the petroleum and natural gas industry. Included are the requirements for design, validation, manufacturing, quality, storage, and transport. The requirements of this International Standard are applicable to wire-wrap screens, pre-pack screens, and metal-mesh screens.

1st Edition | July 2018 | Product Number: G19SS01 | Price: $174.00

Spec 19TT

Specification for Downhole Well Test Tools and Related Equipment

Provides the requirements for downhole well test tools and related equipment as they are defined herein for use in the petroleum and natural gas industries. Included are the requirements for design, validation, manufacturing, functional evaluation, quality, handling, storage, and service centers. Tools utilized in downhole well test operations include tester valves, circulating valves, test packers, safety joints, well testing safety valves, testing surface safety valves (TSSVs), slips joints, jars, work string tester valves, sampler carriers, gauge carriers, drain valves, related equipment, and tool end connections. This specification does not cover open well hole test tools, downhole gauges, samplers, surface equipment, subsea equipment, perforating equipment and accessories, pump joints external to well test tool assemblies, work string and its connections, conveyance or intervention systems, installation, control and monitoring conduits, and surface control systems.

This edition of Spec 19TT is the modified national adoption of ISO 17824:2009.

1st Edition | October 2016 | Product Number: G19TT01 | Price: $143.00

Spec 19V02

Closed DieForgings for Use in the Petroleum and Natural Gas Industry

Specifies requirements and gives recommendations for the design, qualification, and production of closed-die forgings for use in API service components in the petroleum and natural gas industries where service conditions warrant the use of individually shaped open die forgings, including rolled rings. Examples include pressure containing or load-bearing components. Forged bar, rolled bar, and forgings from which multiple parts are removed are beyond the scope of this specification.

This API standard establishes requirements for four forging specification levels (FSL). These four FSL designations define different levels of forged product technical, quality and qualification requirements.

1st Edition | April 2013 | Product Number: G20B01 | Price: $93.00

Spec 20B

Open Die Shaped Forgings for Use in the Petroleum and Natural Gas Industry

Provides the requirements for the qualification and production of open die shaped forgings for use in API service components in the petroleum and natural gas industries when referenced by an applicable equipment standard or otherwise specified as a requirement for compliance.

This API standard is applicable to equipment used in the oil and natural gas industries where service conditions warrant the use of individually shaped open die forgings, including rolled rings. Examples include pressure containing or load-bearing components. Forged bar, rolled bar, and forgings from which multiple parts are removed are beyond the scope of this specification.

This API standard establishes requirements for four forging specification levels (FSL). These four FSL designations define different levels of forged product technical, quality and qualification requirements.

1st Edition | October 2015 | Effective Date: November 1, 2016 | Product Number: G20C02 | Price: $88.00
Exploration and Production

Std 20D • Qualification of Nondestructive Examination Services for Equipment Used in the Petroleum and Natural Gas Industry

Specifies requirements for the application of nondestructive examination (NDE) methods as well as the development and qualification procedures used in the manufacturing, servicing, and/or service of equipment for the petroleum and natural gas industries. This is applicable to suppliers providing NDE services for equipment used in the oil and natural gas industries. The requirements of this standard apply to magnetic particle, liquid penetrant, radiography, and ultrasonic methods of NDE. Pages: 30

2nd Edition | August 2019 | Product Number: G20D02 | Price: $101.00

Spec 20E • Alloy and Carbon Steel Bolting for Use in the Petroleum and Natural Gas Industries

(includes Addendum 1 dated September 2018 and Addendum 2 dated March 2019)

Specifies requirements for the qualification, production, and documentation of alloy and carbon steel bolting used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard establishes requirements for three bolting specification levels (BSLs). These BSL designsations define different levels of quality and qualification requirements. BSL-1, BSL-2, and BSL-3. The BSLs are numbered in increasing levels of requirements in order to reflect increasing technical, quality, and qualification criteria. This standard covers the following finished product forms, processes, and sizes:

• machined studs;
• machined bolts, screws, and nuts;
• cold formed bolts, screws, and nuts with cut or cold formed threads (BSL-1 only);
• hot formed bolts and screws < 1.5 in. (38.1 mm) nominal diameter;
• hot formed bolts and screws ≥ 1.5 in. (38.1 mm) nominal diameter;
• roll threaded studs, bolts, and screws < 1.5 in. (38.1 mm) diameter;
• roll threaded studs, bolts, and screws ≥ 1.5 in. (38.1 mm) diameter;
• hot formed nuts < 1.5 in. (38.1 mm) nominal diameter;
• hot formed nuts ≥ 1.5 in. (38.1 mm) nominal diameter. Pages: 23

2nd Edition | February 2017 | Product Number: G20E02 | Price: $93.00

Spec 20F • Corrosion-Resistant Bolting for Use in the Petroleum and Natural Gas Industries

Specifies requirements for the qualification, production, and documentation of corrosion-resistant bolting used in the petroleum and natural gas industries. This standard applies when referenced by an applicable API equipment standard or otherwise specified as a requirement for compliance. This standard establishes requirements for two bolting specification levels (BSLs). These two BSL designsations define different levels of technical, quality, and qualification requirements: BSL-2 and BSL-3. The BSLs are numbered in increasing levels of requirements in order to reflect increasing technical, quality, and qualification criteria. BSL-2 and BSL-3 are intended to be comparable to BSL-2 and BSL-3 as found in API 20E. BSL-1 is omitted from this standard. Pages: 32

2nd Edition | April 2018 | Product Number: G20F02 | Price: $94.00

Std 20H • Heat Treatment Services—Batch Type for Equipment Used in the Petroleum and Natural Gas Industry

Specifies requirements for the qualification of suppliers of heat treatment services where API product standards require such services or otherwise specified as a requirement for conformance. The requirements of this standard apply to batch heat treatment operations that establish or affect the final mechanical properties and include stress relief operations. This standard applies to carbon steel, low-alloy steel, stainless steel, and nickel-base alloys. Case hardening, induction hardening, and flame hardening are not covered by this standard. This standard establishes the requirements for three heat treatment specification levels (HSLs). These HSL designsations define different levels of heat treatment technical, quality, and qualification requirements. Pages: 24

1st Edition | October 2015 | Product Number: G20H01 | Price: $71.00

Std 20J • Qualification of Distributors of Metallic Materials for Use in the Petroleum and Natural Gas Industries

Specifies requirements for the qualification of distributors of metallic materials used in the petroleum and natural gas industries. This standard is applicable to distributors of metallic bar, plate, and tubular products where API product standards require such services or are otherwise specified as a requirement for compliance. For organizations that manufacture and distribute metallic material, this standard only addresses the distribution portion of their processes. Pages: 36

1st Edition | May 2017 | Product Number: G20J01 | Price: $94.00

Std 20L • Qualification of Polymeric Seal Manufacturers for Use in the Petroleum and Natural Gas Industries

Specifies requirements for the qualification of manufacturers of polymeric seals used in the petroleum and natural gas industries. This standard is applicable to the manufacturers of polymeric seals where API product standards require such services or are otherwise specified as a requirement for compliance. This standard does not consider entities that solely perform assembly of outside manufactured parts as a polymeric seal manufacturer. Pages: 28

1st Edition | April 2018 | Product Number: G20L01 | Price: $71.00

Std 20M • Qualification of Suppliers of Machining Services for Use in the Petroleum and Natural Gas Industries

Specifies requirements for the qualification of suppliers of machining services where API product standards require such services or are otherwise specified as a requirement for compliance. Compliance with this standard is not required to demonstrate compliance with any other API standard or specification. This API standard establishes the requirements for three machining qualification levels (MQL 1, MQL 2, and MQL 3). These three MQL designsations define different levels of quality and qualification requirements. These MQLs are numbered in increasing levels of requirements in order to reflect increasing quality and qualification criteria. Final assembly, component testing (e.g. nondestructive examination, pressure testing) or a broker of machining services are outside the scope of this standard. This standard applies when specified by the customer or voluntarily followed by the machining services supplier. Pages: 27

1st Edition | October 2017 | Product Number: G20M01 | Price: $78.00
Heat Treatment Services—Continuous Line for Equipment Used in the Petroleum and Natural Gas Industry

This standard is applicable to suppliers providing heat treatment services where API product standards specify this standard as a requirement for conformance. The requirements of this standard apply to continuous and semi-continuous heat treatment operations that can establish or affect the final mechanical properties. For batch type heat treatment, refer to API 20H. This standard is applicable to products in tubular, bar, plate, forgings, castings, and upset forged forms. Heat treat that imparts surface hardening or case hardening is outside the scope of this document. Pages: 27

1st Edition | August 2019 | Product Number: G20N01 | Price: $81.00

Materials Selection for Bolting

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00

Standard Form for Hardcopy Presentation of Downhole Well Log Data

Provides an improved standard format for hardcopy presentation of downhole well log data. Standardizing the log form and data presentation allows the user to more easily combine a broad range of log data in order to interpret well status and performance. Pages: 18

Product Number: G31A01 | Price: $105.00

Recommended Practice for Analysis of Oilfield Waters

Provides analysis methods for the determination of dissolved and dispersed components in oilfield waters (produced water, injected water, aqueous workover fluids, and stimulation fluids). Also includes the applications of oilfield water analyses; the proper collection, preservation, and labeling of field samples; a description of the various analytical methods available, including information regarding interferences, precision, accuracy, and detection limits; as well as the appropriate reporting formats for analytical results. Pages: 80

Product Number: G45003 | Price: $154.00

Natural Gas Processing Plant Practices for Protection of the Environment

Assists gas plant operators in understanding their environmental responsibilities. It is intended to be used primarily by environmental, engineering, and operations personnel and by management involved in building, maintaining, modifying, and operating gas processing plants. Operations within the scope of this standard include natural gas processing and associated gas compression facilities. This publication begins with initial plant planning, permitting, and construction and ends with plant closure and site restoration procedures. General guidelines are provided to be used at gas plant locations to develop site-specific environmental programs. Pages: 23

Product Number: G50002 | Price: $118.00

Onshore Oil and Gas Production Practices for Protection of the Environment

Provides environmentally sound practices to promote protection of the environment in onshore oil and gas production operations. Production facilities, including produced water handling facilities, are covered. Covers design with construction of access roads and well locations and covers through to abandonment and site restoration activities. Pages: 17

3rd Edition | March 2001 | Reaffirmed: January 2013
Product Number: G51003 | Price: $56.00

Environmental Protection for Onshore Oil and Gas Production Operations and Leases

Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Pages: 60

Product Number: G51R01 | Price: $82.00

Land Drilling Practices for Protection of the Environment

Provides guidelines to promote the protection of the environment in land drilling operations. Pages: 40

2nd Edition | July 1995 | Reaffirmed: September 2010
Product Number: G52002 | Price: $124.00

Recommended Practice for Oil and Gas Well Servicing and Workover Operations Involving Hydrogen Sulfide

Addresses personnel training, personnel protective equipment, contingency planning, and emergency procedures. Also included are classification of locations, materials and equipment, operations, rig practices, special operations, offshore operations, characteristics of hydrogen sulfide and sulfur dioxide, and evaluation and selection of hydrogen sulfide monitoring equipment. Pages: 54

Product Number: G68001 | Price: $82.00

Annular Casing Pressure Management for Offshore Wells

Serves as a guide for managing annular casing pressure in offshore wells. This guide is meant to be used for offshore wells that exhibit annular casing pressure, including thermal casing pressure, sustained casing pressure (SCP), and operator-imposed pressure. Covers monitoring, diagnostic testing, the establishment of a maximum allowable wellhead operating pressure (MAWOP), and documentation of annular casing pressure for the various types of wells that occur offshore. Included also is a discussion of risk assessment methodologies that can be used for the evaluation of individual well situations where the annular casing pressure is not within the MAWOP guidelines. Provides guidelines in which a broad range of casing annuli that exhibit annular pressure can be managed in a routine fashion while maintaining an acceptable level of risk. Pages: 84

1st Edition | August 2006 | Reaffirmed: January 2012
Product Number: G09001 | Price: $197.00

Recommended Practice for Analysis of Oilfield Waters

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00

Materials Selection for Bolting

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00

Recommended Practice for Analysis of Oilfield Waters

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00

Materials Selection for Bolting

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00

Recommended Practice for Analysis of Oilfield Waters

Provides guidance for the selection of materials and manufacturing processes for low-alloy steel bolting manufactured in accordance with API 20E and nickel-based and stainless alloys manufactured in accordance with 20F. Table 2 and Table 3 are provided as guidance for materials selection of fasteners. Pages: 37

1st Edition | August 2019 | Product Number: G21TR101 | Price: $94.00
Drilling with a Subsea Blowout Preventer onshore wells, including production, injection, observation/monitoring, and Managed Pressure Drilling Operations—Pressurized Mud Cap overbalanced (no supplemental surface pressure needed to control inflow). This document considers situations where the total drilling operation is performed balanced or overbalanced, including both hydrostatically overbalanced (no supplemental surface pressure needed to control inflow) and hydrostatically underbalanced (supplemental surface pressure needed to control inflow) systems. Pages: 64

1st Edition | September 2018 | Product Number: G92S01 | Price: $132.00

RP 92U
Underbalanced Drilling Operations (includes Addendum 1 dated November 2015)
Provides information that can serve as a guide for planning, installation, operation, and testing of underbalanced drilling equipment systems on land and offshore drilling rigs [barge, platform, bottom-supported, and floating with subsea blowout preventers (BOPs) installed] thereby ensuring consideration of personnel safety, public safety, integrity of the underbalanced drilling (UBD) equipment, and preservation of the environment for onshore and offshore UBD operations (including tripping of drill string). Pages: 72
Product Number: G92U01 | Price: $114.00

RP 96
Deepwater Well Design and Construction
Provides engineers a reference for deepwater (DW) well design as well as drilling and completion operations. This recommended practice (RP) will also be useful to support internal reviews, internal approvals, contractor engagements, and regulatory approvals.
The scope of this RP is to discuss DW drilling and completion activities performed on wells that are constructed using subsea blowout preventers (BOPs) with a subsea wellhead. This document addresses the following.
• Identifies the appropriate barrier and load case considerations to maintain well control during DW well operations (drilling, suspension, completion, production, and abandonment).
• Supplements barrier documentation in Std 65-2 with a more detailed description of barriers and discussion of the philosophy, number, type, testing, and management required to maintain well control. This document also supplements the barrier documentation in RP 90 in regard to annular pressure buildup. Abandonment barrier requirements are described for use when designing the well.
• Discusses load assumptions, resistance assumptions, and methodologies commonly used to achieve well designs with high reliability. The load case discussion includes less obvious events that can arise when unexpected circumstances are combined.
• Describes the risk assessment and mitigation practices commonly implemented during DW casing and equipment installation operations.
The purpose of this document is to enhance safety and minimize the likelihood of loss of well control or damage to the environment. These practices are generally intended to apply to subsea wells drilled with subsea BOPs in any water depth. Some of the descriptions of rig hardware and operations, such as remotely operated vehicles, are less relevant in shallower water depths [e.g. less than 500 ft (152 m)]. In these shallower water depths the operator may substitute alternative hardware or operations that maintain safety and system reliability.
The following aspects of DW well design and construction are outside the scope of this document.
• Detailed casing design load case definitions (does not include specific casing designs or design factors). Individual companies combine differing weights of loads and resistances or differing calculation methods to achieve designs with similar high levels of reliability.
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

<table>
<thead>
<tr>
<th>Document</th>
<th>Publication Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull 97</td>
<td>March 2013</td>
<td>G09601</td>
<td>$189.00</td>
</tr>
<tr>
<td>WP 98</td>
<td>December 2013</td>
<td>G09701</td>
<td>$71.00</td>
</tr>
<tr>
<td>RP 99</td>
<td>August 2013</td>
<td>G09801</td>
<td>$141.00</td>
</tr>
<tr>
<td>RP 100-1</td>
<td>April 2014</td>
<td>G09901</td>
<td>$87.00</td>
</tr>
</tbody>
</table>

- Wells drilled and/or completed with a surface BOP and high pressure riser from a floating production system; however, considerations for wells predrilled with floating rigs to be completed to a floating production system are included.
- Well control procedures (refer to RP 59 for well control information).
- Managed pressure drilling operations (including dual gradient drilling).
- Production operations and fluids handling downstream of the tree (subsea facilities/subsea architecture and surface facilities/offloading hydraulics).
- Intervention operations.
- Quality assurance programs. Pages: 158

1st Edition

RP 100-2
Managing Environmental Aspects Associated with Exploration and Production Operations Including Hydraulic Fracturing

Provides recommended practices applicable to the planning and operation of wells, and hydraulically fractured wells. Topics covered include recommendations for managing environmental aspects during planning; site selection; logistics; mobilization, rig-up, and demobilization; and stimulation operations. Also, this document includes guidance for managing environmental aspects during well construction; however, guidance for well construction and fracture stimulation design and execution for onshore wells that can be hydraulically fractured are described in RP 100-1. This document provides recommendations for the following topics:
- baseline groundwater sampling;
- source water management;
- material selection;
- transportation of materials and equipment;
- storage and management of fluids and chemicals;
- management of solid and liquid wastes;
- air emissions. Pages: 53

1st Edition

RP 100-3
Community Engagement Guidelines

These guidelines outline what local communities and other key stakeholders can expect from operators. Oil and gas operators acknowledge the challenges associated with industry activities, which can include challenges important to a community. Principles of integrity, transparency and consideration for community concerns underpin responsible operations. Conscientious operators are committed to helping communities achieve positive and long-lasting benefits.

Both local stakeholders and operators can use this guidance. It is designed to acknowledge challenges and impacts that occur during the industry’s presence in a given region. It provides flexible and adaptable strategies, recognizing that application will vary from operator to operator and community to community. Operators already apply similar guidelines or processes within their operations. These suggested guidelines are typical and reasonable and generally apply under normal operating circumstances. The use of these guidelines is at each individual operator’s discretion.

Operators recognize that stakeholders within the community can have different interests, issues and levels of concern. Some of these interests can be in direct conflict with one another. Working together with stakeholders to seek mutually agreeable solutions is an important aspect of community engagement. Operators can have different approaches to addressing the concerns and issues. These guidelines are intended primarily to support onshore oil and gas projects in the United States for shale developments; however, they can be adapted to any oil and gas projects in the United States.

This document provides non-technical guidance only, and practices included herein cannot be applicable in all regions and/or circumstances. This document does not constitute legal advice regarding compliance with legal or contractual requirements or risk mitigation. It is not intended to be all-inclusive. The operator is responsible for determining compliance with applicable legal and regulatory requirements.

1st Edition

Creating Orientation Programs for Personnel Going Offshore

Serves as a guide to develop orientation materials for personnel and visitors prior to their first trip offshore. The scope and applicability of this document concludes after check-in at the offshore facility and receipt of the facility-specific orientation. Pages: 18

5th Edition | November 2016 | Product Number: GT1005 | Price: $71.00

Recommended Practice for Qualification Programs for Offshore Production Personnel Who Work with Safety Devices

Provides guidelines for the qualification of personnel engaged in installing, inspecting, testing, and routinely maintaining surface and subsurface devices that are used to insure safety and to prevent pollution during the production of oil and gas on offshore platforms. The guidelines provide expected candidate performance levels, informational content, and recommendations for testing. The guidelines are divided into instructional and testing phases. Pages: 3

2nd Edition | December 2001 | Reaffirmed: January 2013
Product Number: GT2002 | Price: $65.00

Training of Offshore Personnel in Nonoperating Emergencies

Represents an industry guide for the training of workers who work offshore. It presents recommendations for training these personnel in handling nonoperating emergencies, such as fires, transportation emergencies, platform abandonment procedures, use of survival crafts, and water survival guidelines. Pages: 3

2nd Edition | October 1995 | Reaffirmed: June 2010
Product Number: GT4002 | Price: $65.00

Recommended Practice for Training and Qualification of Personnel in Well Control Equipment and Techniques for Wireline Operations on Offshore Locations

Provides criteria for the qualification of wireline personnel in well control equipment operations and techniques. Although it does include recommendations for training wireline personnel on general rig well control equipment and theory, it should be noted that the main focus for training should be those operations using a lubricator as the primary well control mechanism. Wireline personnel classifications to which this RP is applicable are the Helper/Assistant and Operator/Supervisor. Pages: 2

1st Edition | October 2002 | Reaffirmed: January 2013
Product Number: GT0601 | Price: $65.00

Recommended Practice for Qualification of Personnel Engaged in Installing, Inspecting, Testing, and Routinely Maintaining Surface and Subsurface Devices

Provides guidelines for the qualification of personnel engaged in installing, inspecting, testing, and routinely maintaining surface and subsurface devices that are used to insure safety and to prevent pollution during the production of oil and gas on offshore platforms. The guidelines provide expected candidate performance levels, informational content, and recommendations for testing. The guidelines are divided into instructional and testing phases. Pages: 3

2nd Edition | December 2001 | Reaffirmed: January 2013
Product Number: GT2002 | Price: $65.00

Trainee Safety Training for Offshore Personnel

Provides guidance on the components of an effective training system related to offshore health, safety, and environment (HSE). A common safety training matrix is provided that outlines the fundamental recommended HSE training for offshore personnel. This matrix can be used in conjunction with other applicable recommended training and company-specific requirements. Pages: 24

COMMUNITY ENGAGEMENT

Community Matters: Community Outreach Guidance Manual for Exploration and Production Facilities

This manual provides a model community outreach program to help oil and natural gas industry E&P facilities improve their ties to their local communities. Community Matters offers a step-by-step guide for implementing a community outreach program and provides information on how to tailor outreach efforts to meet the needs of the facility and local community. Pages: 111

1st Edition | November 2000 | Product Number: G13660 | Price: $89.00

Bull 100-3
Community Engagement Guidelines

These guidelines outline what local communities and other key stakeholders can expect from operators. Oil and gas operators acknowledge the challenges associated with industry activities, which can include challenges important to a community. Principles of integrity, transparency and consideration for community concerns underpin responsible operations. Conscientious operators are committed to helping communities achieve positive and long-lasting benefits.

Both local stakeholders and operators can use this guidance. It is designed to acknowledge challenges and impacts that occur during the industry’s presence in a given region. It provides flexible and adaptable strategies, recognizing that application will vary from operator to operator and community to community. Many operators already apply similar guidelines or processes within their operations. These suggested guidelines are typical and reasonable and generally apply under normal operating circumstances. The use of these guidelines is at each individual operator’s discretion.

Operators recognize that stakeholders within the community can have different interests, issues and levels of concern. Some of these interests can be in direct conflict with one another. Working together with stakeholders to seek mutually agreeable solutions is an important aspect of community engagement. Operators can have different approaches to addressing the concerns and issues.

These guidelines are intended primarily to support onshore oil and gas projects in the United States for shale developments; however, they can be adapted to any oil and gas projects in the United States.

This document provides non-technical guidance only, and practices included herein cannot be applicable in all regions and/or circumstances. This document does not constitute legal advice regarding compliance with legal or contractual requirements or risk mitigation. It is not intended to be all-inclusive. The operator is responsible for determining compliance with applicable legal and regulatory requirements.

1st Edition | July 2014 | Product Number: G100301 | Price: $66.00

HEALTH, ENVIRONMENT, AND SAFETY: EXPLORATION AND PRODUCTION SAFETY STANDARDS

RP 49
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide

Provides recommendations that apply to oil and gas well drilling and servicing operations involving hydrogen sulfide. These operations include well drilling, completion, servicing, workover, downhole maintenance, and plug and abandonment procedures conducted with hydrogen sulfide present in the fluids being handled. Coverage of this publication is applicable to operations confined to the original wellbore or original total depth and applies to the selection of materials for installation or use in the well and in the well drilling or servicing operation(s). The presence of hydrogen sulfide in these operations also presents the possibility of exposure to sulfur dioxide from the combustion of hydrogen sulfide. Pages: 29

3rd Edition | May 2001 | Reaffirmed: January 2013
Product Number: G49003 | Price: $96.00

RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh

Kazakh translation of RP 49.

3rd Edition | May 2001 | Product Number: G4903K | Price: $77.00

RP 51R
Environmental Protection for Onshore Oil and Gas Production Operations and Leases

Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Gas compression for transmission purposes or production operations, such as gas lift, pressure maintenance, or enhanced oil recovery (EOR), is included. Annex A provides guidance for a company to consider as a “good neighbor.” Pages: 35

Product Number: G51R01 | Price: $82.00
You may download a PDF of this document from https://www.api.org/oil-and-natural-gas/wells-to-consumer/exploration-and-production/hydraulic-fracturing/rp-51r-environmental-protection

RP 54
Occupational Safety and Health for Oil and Gas Well Drilling and Servicing Operations

Recommends practices and procedures for promoting and maintaining safe and healthy working conditions for personnel in drilling and well servicing operations. These recommendations apply to rotary drilling rigs, well servicing rigs, and special services as they relate to operations on location. It is intended that the applicable requirements and recommendations of some sections of the standard be applied, as appropriate, to other sections. The recommendations are not intended to cover seismic drilling or water well drilling operations. These recommendations do not apply to site preparation and site remediation operations. Pages: 62

4th Edition | February 2019 | Product Number: G54004 | Price: $140.00

RP 55
Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide

Covers recommendations for protection of employees and the public, as well as conducting oil and gas producing and gas processing plant operations where hydrogen sulfide is present in the fluids being produced. Pages: 40

Product Number: G55002 | Price: $124.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
RP 67
Recommended Practice for Oilfield Explosives Safety
Applicable to chemical explosives used as an energy source to do work in oil- and gas-producing operations, and more specifically to explosives intended for use inside a wellbore. The purpose of this recommended practice (RP) is primarily to prevent the inadvertent initiation of these explosives at the wellsite but also includes some recommendations for safe and secure storage and transportation and handling, as well as requirements for design and manufacture of selected equipment.

While some chemicals intended for various nonexplosive applications can prove explosive when misused (such as lithium batteries), it is not the intent of this RP to address these materials. Pages: 85

3rd Edition | October 2019 | Product Number: G06703 | Price: $121.00

RP 74
Recommended Practice for Occupational Safety for Onshore Oil and Gas Production Operation
Recommends practices and procedures for promoting and maintaining safe working conditions for personnel engaged in onshore oil and gas production operations, including special services. Pages: 23

1st Edition | October 2001 | Reaffirmed: January 2013
Product Number: G74001 | Price: $67.00

RP 75
Safety and Environmental Management System for Offshore Operations and Assets
Provides companies engaged in offshore operations with a framework for the establishment, implementation, and maintenance of a Safety and Environmental Management System (SEMS) to manage and reduce risks associated with safety and the environment to prevent incidents and events.

This recommended practice applies, in part or whole, to companies engaged in offshore operations, from lease evaluation through decommissioning. This document is not intended to be prescriptive or limiting on the expectations of each SEMS element; rather, it allows flexibility appropriate to the size, scope, and risk of a Company's assets and operations. It is advised that users of this document review and comply with applicable legal and regulatory requirements, and conform with applicable industry codes and standards.

Consideration may be given to using this document to help systematically manage other aspects of operations, such as security and health. Pages: 34

Bull 75L
Guidance Document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operations and Associated Activities
Provides general information and guidance for the development of a safety and environmental management system (SEMS) for onshore oil and natural gas operations, including drilling, production, and well servicing activities. Although there is an extensive amount of information that has been developed on the topic of safety and environmental management systems, this document focuses on this industry sector to help foster continuous improvement in our industry's safety and environmental performance. It is recognized that many onshore oil and natural gas companies have effective SEMS in place; however, the intent of this document is to provide an additional tool that can assist these and especially other operators in taking the next step toward implementing a complete system at a pace that complements their business plan. For those who already have a mature SEMS in place, this document can be used for continuous improvement of the system. Pages: 12

1st Edition | November 2007 | Product Number: G75L01 | Price: $37.00

RP 76
Contractor Safety Management for Oil and Gas Drilling and Production Operations
Intended to assist operators, contractors, and subcontractors (third parties) in the implementation of a contractor safety program and improve the overall safety performance while preserving the independent contractor relationship. It is intended for the Upstream Segment of the petroleum industry; however, since the operator requirements and the contracted work are diverse, this publication may not be applicable to all operations at each company or to all contract work performed in those operations. Many oil and gas exploration and production companies contract for equipment and personnel services for a wide range of activities, including drilling production, well servicing, equipment repair, maintenance, and construction. Certain activities of contractors have the potential to take place either contractor and/or operator personnel and/or equipment at risk. It is important that operations are carried out in a safe manner. Operators and contractors need to provide safe work places and to protect the safety of their work places and to protect the safety of their workforces and the general public. When they work together to improve safety, both benefit. Pages: 60

2nd Edition | November 2007 | Reaffirmed: January 2013
Product Number: G07602 | Price: $62.00

RP 77
Risk-Based Approach for Managing Hydrocarbon Vapor Exposure During Tank Gauging, Sampling, and Maintenance of Onshore Production Facilities
Covers recommended risk assessment and risk management practices to reduce the potential for acute worker hydrocarbon exposures and related atmospheric risks (i.e. potential oxygen deficiency). Specifically, this recommended practice is limited to onshore production tanks (including flowback tanks) during gauging and sampling, open-top tank sampling, and select tank maintenance activities involving removal or opening of tank appurtenances. While the tools and practices recommended in this document can be useful in other operations, this recommended practice does not specifically apply to downstream, refining, or offshore tank applications. Pages: 30

1st Edition | June 2018 | Product Number: G07701 | Price: $93.00

Bull D16
Suggested Procedure for Development of a Spill Prevention Control and Countermeasure Plan
Assists the petroleum industry in understanding the SPCC regulation in light of the latest rule (40 CFR Part 112) and to offer guidance for developing SPCC Plans wherever they are needed. Included in the draft for developing SPCC Plans (i.e. onshore excluding production; onshore oil production, oil drilling or workover; or offshore oil drilling, production, or workover) in accordance with the regulation and guidance, instruction, and clarification for completing each section of the template. The purpose of this rulemaking was to establish procedures, methods, and equipment to prevent and contain discharges of oil from non-transportation-related onshore and offshore facilities, thus preventing pollution of navigable waters of the United States. The development of this bulletin was commissioned by API and performed by O’Brien’s Response Management Inc. The purchase of D16 includes: Bulletin D16, the Plan Template, and a CD-ROM with the Microsoft® Word version of the Plan Template.

5th Edition | April 2011 | Product Number: GD1605
Price: $279.00 | Template Only: $103.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Exploration and Production

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

HEALTH, ENVIRONMENT, AND SAFETY: GENERAL

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieving Common Sense Environmental Regulation: Oil and Gas Exploration & Production</td>
<td>Discusses proposals to achieve a balanced approach to environmental regulation of the oil and gas exploration and production industry that protects the environment as well or better than the current system and does the job more efficiently.</td>
<td>36</td>
<td>Free</td>
</tr>
<tr>
<td>Exploration and Production: Protecting the Environment</td>
<td>Discusses work the E&P industry does to protect the environment while exploring for and producing oil and natural gas. Describes a number of innovative and socially responsible actions taken by exploration and production companies to minimize impacts to air, water, land, and wildlife. This document is only available in a PDF format.</td>
<td>24</td>
<td>Free</td>
</tr>
<tr>
<td>Bull E1</td>
<td>Generic Hazardous Chemical Category List and Inventory for the Oil and Gas Exploration and Production Industry (Superfund Amendments and Reauthorization Act of 1986, Emergency Planning and Community Right-to-Know Act) (includes Errata 1 dated September 1991)</td>
<td>86</td>
<td>$154.00</td>
</tr>
<tr>
<td>Bull E4</td>
<td>Environmental Guidance Document: Release Reporting for the Oil and Gas Exploration and Production Industry as Required by the Clean Water Act, the Comprehensive Environmental Response, Compensation and Liability Act, and the Emergency Planning and Community</td>
<td>106</td>
<td>$183.00</td>
</tr>
<tr>
<td>Bull 1145</td>
<td>Preparation of Response Plans for Oil Spills from Offshore Facilities</td>
<td>85</td>
<td>$124.00</td>
</tr>
<tr>
<td>Publ 4702</td>
<td>Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal</td>
<td>54</td>
<td>$133.00</td>
</tr>
<tr>
<td>Publ 7100</td>
<td>Management of Naturally Occurring Radioactive Materials (NORM) in Oil and Gas Production</td>
<td>50</td>
<td>$133.00</td>
</tr>
<tr>
<td>Publ 7101</td>
<td>A Naturally Occurring Radioactive Material (NORM) Disposal Cost Study</td>
<td>265</td>
<td>$124.00</td>
</tr>
<tr>
<td>Publ 7102</td>
<td>Methods for Measuring Naturally Occurring Radioactive Materials (NORM) in Petroleum Production Equipment</td>
<td>85</td>
<td>$124.00</td>
</tr>
</tbody>
</table>

Although plans prepared or modified using this RP can be used to replace existing response plans required by regulation, the RP is not intended to be a regulatory compliance guideline or to supersede current regulations.

HEALTH, ENVIRONMENT, AND SAFETY: NATURALLY OCCURRING RADIOACTIVE MATERIALS

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull E2</td>
<td></td>
<td>$131.00</td>
</tr>
<tr>
<td>Bull 1145</td>
<td></td>
<td>$124.00</td>
</tr>
</tbody>
</table>

Although plans prepared or modified using this RP can be used to replace existing response plans required by regulation, the RP is not intended to be a regulatory compliance guideline or to supersede current regulations.

Exploration and Production: Protecting the Environment

This bulletin provides a simplified means of compliance with these regulations. Pages: 96

Product Number: G11000 | Price: $124.00

Environmental Guidance Document: Release Reporting for the Oil and Gas Exploration and Production Industry as Required by the Clean Water Act, the Comprehensive Environmental Response, Compensation and Liability Act, and the Emergency Planning and Community

Developed to provide the oil and gas production industry guidance on reporting releases of hazardous substances and petroleum to water as required by the Clean Water Act (CWA) and reporting releases of hazardous substances into the environment as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA). Also covers the reporting of what most in the industry consider “emergency” releases, which are unplanned and typically are not covered under a permit issued by a government agency. Pages: 106

2nd Edition | May 2003

Product Number: GE4002 | Price: $183.00

Preparation of Response Plans for Oil Spills from Offshore Facilities

Provides information and guidance for the development of Oil Spill Response Plans for the offshore U.S. oil and gas exploration, production, and transportation (pipeline) industry. The general plan concepts, layout, and content recommended in this document are also applicable to other types of coastal/marine assets, both in the U.S. and international locations.

This RP is intended to provide plan developers and writers with information and guidance for effective and functional Oil Spill Response Plans that fulfill the expectations of plan holders, responders, regulators, response officials, stakeholders, and the general public. This RP may be informative for any company, organization, or public agency that oversees or responds to oil spills.

2nd Edition | October 1997

Product Number: G71021 | Price: $124.00

This publication is a new entry in this catalog.
◆ This publication is related to an API licensing, certification, or accreditation program.
Exploration and Production

<table>
<thead>
<tr>
<th>Publ 7103</th>
<th>Management and Disposal Alternatives for Naturally Occurring Radioactive Material (NORM) Wastes in Oil Production and Gas Plant Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presents radiological analyses of disposal alternatives that will protect against elevated radiation exposures and facilitate cost-effective precautions that are proportionate to any hazards posed by the NORM. Four waste forms and 12 waste disposal alternatives were analyzed. Pages: 65</td>
<td></td>
</tr>
<tr>
<td>October 1997</td>
<td>Product Number: G71031</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 7104</th>
<th>Proceedings of the 1995 API and GRI Naturally Occurring Radioactive Material (NORM) Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A compilation of 17 papers presented at the 1995 API/GRI NORM Conference. Subjects include measurement and survey; regulatory issues and activities; management and disposal; and scale prediction and control. Pages: 225</td>
<td></td>
</tr>
<tr>
<td>October 1997</td>
<td>Product Number: G71041</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 7105</th>
<th>Probabilistic Estimates of Dose and Indoor Radon Concentrations Attributable to Remediated Oilfield Naturally Occurring Radioactive Material (NORM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates the concentration limit of 30 pC/g Ra-226 in pipe scale and sludge left near the surface of remediated oilfield sites and returned to unrestricted public use. Includes an extensive bibliography of NORM research. Pages: 97</td>
<td></td>
</tr>
<tr>
<td>October 1997</td>
<td>Product Number: G71051</td>
</tr>
</tbody>
</table>

HEALTH, ENVIRONMENT, AND SAFETY: WASTE

| Guidelines for Commercial Exploration and Production Waste Management Facilities |
| Provides guidelines for the design and operations of commercial E&P waste management facilities to allow operators to identify areas where their facility could have impacts on the surrounding community and environment, and gives options for preventing/reducing those impacts. The guidelines are not meant to supersede any applicable local, state, or federal requirements. Pages: 80 |

| Protecting Livestock: Answers to Frequently Asked Questions about Livestock Exposure to Crude Oil in Oilfield Operations |
| Describes ways livestock might be significantly exposed to petroleum hydrocarbons via a conceptual site model and outlines how to make a screening level determination of whether or not livestock are at risk from the exposure. |
| 2006 | Product Number: IOPL06 | For a free copy, please visit http://www.api.org/~media/Files/EHS/Environmental_Performance/LIVESTOCK_EXPOSURE_BROCHURE_FINAL.pdf |

| API E5 | Environmental Guidance Document: Waste Management in Exploration and Production Operations |
| Includes recommendations for the environmentally sound management of solid waste resulting from the exploration and production of oil and gas. Guidance is provided for the management of drilling fluids, produced waters, and other wastes associated with the operation of gas plants, field facilities, drilling, and workover. Pages: 84 |
| 2nd Edition | February 1997 | Product Number: GE5002 | Price: $136.00 |
If you have questions or comments regarding API standards, please visit https://www.api.org/standards

MANUAL OF PETROLEUM MEASUREMENT STANDARDS

API currently maintains a comprehensive *Manual of Petroleum Measurement Standards (MPMS)*. This manual is an ongoing project, as new chapters and revisions of old chapters will be released periodically.

Manual of Petroleum Measurement Standards (Complete Set)

The price of the complete set is subject to change as new chapters and sub-chapters are released; an order for one complete set would not include the chapters released after the release date of this catalog (but before order receipt) and the binders to house the set.

NOTE Chapter 11 standards, Chapter 19 standards, and Spanish translations must be ordered separately.

Price: $9,517.00 | *Price subject to change (If purchased individually, a complete set would cost approximately $10,815.00)

Chapter 1 [Historical] Vocabulary

Provides terms and definitions used throughout the API *Manual of Petroleum Measurement Standards (MPMS)*. Pages: 70

2nd Edition | July 1994 | Product Number: H01002 | Price: $118.00

Current terms and definitions may be accessed through the Ch. 1 database: http://chapter1.api.org

Chapter 1 * [Historical] Vocabulary—Spanish

Spanish translation of Ch. 1.

2nd Edition | July 1994 | Product Number: H010SP | Price: $118.00

Chapter 2 Tank Calibration

Procedures necessary for calibrating closed storage vessels larger than a drum, and methods for computing the volumes contained therein. The following API standards cover the subject of tank calibration and are included in the manual.

Chapter 2.2A Measurement and Calibration of Upright Cylindrical Tanks by the Manual Tank Strapping Method

Describes the procedures for calibrating upright cylindrical tanks used primarily for the storage of petroleum liquids. Chapter 2.2A first addresses procedures for making necessary measurements to determine total and incremental tank volumes, then presents the recommended procedures for computing incremental volumes at each liquid level. This includes improving existing calculation procedures as deemed necessary. In terms of determining the average inside radius at each liquid level, this standard is focused on the manual tank strapping method. While other parts of Chapter 2.2 cover methods to determine the average radius at each liquid level by alternate means, this standard is the reference standard for those parts (e.g. 2.2A, 2.2B, 2.2C, 2.2D and 2.2G). All aspects (e.g. physical bottom surveys) not covered in the other parts of Chapter 2 are covered by this standard. Pages: 91

Chapter 2.2B Calibration of Upright Cylindrical Tanks Using the Optical Reference Line Method

(Includes Addendum 1 dated October 2019)

Describes measurement and calculation procedures for determining the diameters of upright, welded (lap/butt) cylindrical tanks, or vertical cylindrical tanks, with a smooth outside surface and either floating or fixed roofs. The optical reference line method is an alternative to the manual tank strapping method for determining tank diameter. Ch. 2.2B should be used in conjunction with Ch. 2.2A. Pages: 8

1st Edition | March 1989 | Reaffirmed: March 2019

Product Number: H30023 | Price: $90.00

Chapter 2.2C/ISO 7507-3:1993 Calibration of Upright Cylindrical Tanks Using the Optical-Triangulation Method

(ANSI/API MPMS Ch. 2.2C-2002)

Describes the calibration of vertical cylindrical tanks by means of optical triangulation using theodolites. The method is an alternative to other methods such as strapping (Ch. 2.2A) and the optical-reference-line method (Ch. 2.2B).

This edition of Ch. 2.2C is the modified national adoption of ISO 7507-3:1993. Pages: 19

1st Edition | January 2002 | Reaffirmed: September 2018

Product Number: H022C1 | Price: $90.00

Chapter 2.2D/ISO 7507-4:1995 Calibration of Upright Cylindrical Tanks Using the Internal Electro-Optical Distance Ranging Method

(ANSI/API MPMS Ch. 2.2D-2003)

Specifies a method for the calibration of upright cylindrical tanks having diameters greater than 5 m by means of internal measurements using an electro-optical distance-ranging instrument, and for the subsequent compilation of tank capacity tables.

This edition of Ch. 2.2D is the modified national adoption of ISO 7507-4:1995. Pages: 13

Product Number: H022D1 | Price: $90.00

(Includes Errata 1 dated November 2009)

(ANSI/API MPMS Ch. 2.2E)

Specifies manual methods for the calibration of nominally horizontal cylindrical tanks, installed at a fixed location. It is applicable to horizontal tanks up to 4 m (13 ft) in diameter and 30 m (100 ft) in length. The methods are applicable to insulated and non-insulated tanks, either when they are above-ground or underground. The methods are applicable to pressurized tanks, and to both knuckle-dish-end and flat-end cylindrical tanks as well as elliptical and spherical head tanks. This chapter is applicable to tanks inclined by up to 10 % from the horizontal provided a correction is applied for the measured tilt. For tanks over and above these dimensions and angle of tilt, appropriate corrections for tilt and appropriate volume computations should be based on the “Cots” equation.

This edition of Ch. 2.2E is the national adoption of ISO 12917-1:2002. Pages: 18

Product Number: HX202E01 | Price: $96.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. ◆ This publication is related to an API licensing, certification, or accreditation program.
Chapter 2.2F/ISO 12917-2:2002
Petroleum and Liquid Petroleum Products—Calibration of Horizontal Cylindrical Tanks—Part 2: Internal Electro-Optical Distance-Ranging Method
(ANSI/API MPMS Ch. 2.2F)

This publication describes a method for the calibration of horizontal cylindrical tanks having diameters greater than 2 m (6 ft) by means of internal measurements using an electro-optical distance-ranging instrument, and for the subsequent compilation of tank-capacity tables. This method is known as the internal electro-optical distance-ranging (EODR) method.

This edition of Ch. 2.2F is the national adoption of ISO 12917-2:2002.

1st Edition | April 2004 | Reaffirmed: September 2014
Product Number: HH202F01 | Price: $83.00

Chapter 2.2G
Calibration of Upright Cylindrical Tanks Using the Total Station Reference Line Method

This chapter describes measurement and calculation procedures for determining the diameters of upright cylindrical tanks by taking vertical offset measurements externally using electro-optical distance ranging equipment rather than conventional ORLM plummet/trolley equipment. This standard is an alternate standard to Ch. 2.2B. This standard is used in conjunction with Ch. 2.2A. Calibration of insulated tanks is covered by Ch. 2.2D. Abnormally deformed tanks that are dented or have other visible signs of damage are not covered by this standard.

Std 2552
Measurement and Calibration of Spheres and Spheroids

This standard describes the procedures for calibrating spheres and spheroids, which are used as liquid containers. It outlines the procedures for the measurement and calibration of spherical tanks.

1st Edition | October 1966 | Reaffirmed: August 2018
Product Number: H25520 | Price: $105.00

Std 2554
Measurement and Calibration of Tank Cars

This standard describes the procedures for calibrating tank cars. It outlines procedures for non-pressure-type tank cars and pressure-type tank cars.

2-Year Extension: December 2017
Product Number: H25540 | Price: $124.00

Std 2555
Liquid Calibration of Tanks

This standard describes the procedure for calibrating tanks, or portions of tanks, larger than a barrel or drum by introducing or withdrawing measured quantities of liquid.

1st Edition | September 1966 | Reaffirmed: May 2014
Product Number: H25550 | Price: $105.00

RP 2556
Correcting Gauge Tables for Incrustation

This publication describes a method for correcting gauge tables for incrustation in tank contents. The incrustation is defined as any material that adheres to the internal vertical sidewall surfaces of a tank when the tank is otherwise empty. The tables given in this recommended practice show the percent of error of measurement caused by varying thicknesses of uniform incrustation in tanks of various sizes.

2nd Edition | August 1993 | Reaffirmed: November 2013
Product Number: H25560 | Price: $82.00

Chapter 2.7
Calibration of Barge Tanks

This recommendation describes three methods for determining the total incremental volumes of liquids in barge tanks for coastal and inland waterway service that have integral hull tanks. The three methods are as follows:

- Liquids calibration.
- Calibration by linear measurement.
- Calibration from vessel drawings.

This document and Ch. 2.8A supersede the previous Std 2553. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HM2 Section 5A.

1st Edition | March 1991 | Reaffirmed: March 2018
Product Number: H30049 | Price: $97.00

Chapter 2.8A
Calibration of Tanks on Ships and Oceangoing Barges

This chapter provides three methods for determining the total and incremental volumes of liquids in tanks, oceangoing barges, and integrated tug barge units that have integral hull tanks. The three methods include liquid calibration, calibration by linear measurement, and calibration from vessel drawings.

This chapter and Ch. 2.7 supersede the previous Std 2553. A joint API/Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HM2 Section 5B.

Product Number: H028B1 | Price: $109.00

Chapter 3
Tank Gauging

This chapter provides standardized procedures for gauging liquid hydrocarbons in various types of tanks, containers, and carriers.

Chapter 3.1A
Standard Practice for the Manual Gauging of Petroleum and Petroleum Products

This publication describes the following:

- The procedures for manually gauging the liquid level of petroleum and petroleum products in non-pressure fixed-roof, floating-roof tanks and marine tank vessels.
- Procedures for manually gauging the level of free water that may be found in the petroleum or petroleum products,
- Methods used to verify the length of gauge tapes under field conditions and the influence of bob weights and temperature on the gauge tape length,
- The influences that may affect the position of gauging reference point (either the datum plate or the reference gauge point).

Throughout this standard the term petroleum is used to denote petroleum, petroleum products, or the liquids normally associated with the petroleum industry.

The method used to determine the volume of tank contents determined from gauge readings is not covered in this standard. The determination of temperature, API gravity, and suspended sediment and water of the tank contents are not within the scope of this standard.

2nd Edition | August 2013 | Reaffirmed: December 2018
Product Number: H301A03 | Price: $109.00
Chapter 3.1A *
Spanish translation of Ch. 3.1A.
3rd Edition | August 2013 | Product Number: H301A03S | Price: $109.00

Chapter 3.1B
Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Tanks by Automatic Tank Gauging
Covers level measurement of liquid hydrocarbons in stationary, aboveground, atmospheric storage tanks using automatic tank gauges (ATGs). The standard discusses automatic tank gauging in general, accuracy, installation, commissioning, calibration, and verification of ATGs that measure either innate or ullage. It covers both intrusive and nonintrusive ATGs used for either custody transfer or inventory control. The standard also covers the requirements for data collection, transmission, and receiving. Pages: 28
3rd Edition | April 2018 | Product Number: H301B3 | Price: $112.00

Chapter 3.2
Standard Practice for Gauging Petroleum and Petroleum Products in Tank Cars
Provides method for measuring liquids and liquefied gases in tank cars by liquid level measurement. Measurement of both vapor space and liquid level are covered. Gauging and temperature measurement equipment used in both open and closed measurement systems are described in this standard. These procedures reduce variability in the results of measurement and sampling operations when comparing loading terminal data to unloading terminal data. Pages: 20
1st Edition | August 1995 | Reaffirmed: May 2013
Product Number: H30321 | Price: $105.00

Chapter 3.2 *
Standard Practice for Gauging Petroleum and Petroleum Products in Tank Cars—Spanish
Spanish translation of Ch. 3.2.
1st Edition | August 1995 | Product Number: H3021S | Price: $90.00

Chapter 3.3
Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging
Provides guidance on the installation, calibration, and verification of automatic tank gauges used in custody transfer for measuring the level of liquid hydrocarbons having a Reid vapor pressure of 15 psia (103 kPa) or greater, stored in stationary, pressurized storage tanks. This standard also provides guidance on the requirements for data collection, transmission, and receiving. Pages: 10
1st Edition | June 1996 | Reaffirmed: March 2017
Product Number: H30301 | Price: $90.00

Chapter 3.3 *
Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.3.
1st Edition | June 1996 | Product Number: H30316 | Price: $90.00

Chapter 3.4
Standard Practice for Level Measurement of Liquid Hydrocarbons on Marine Vessels by Automatic Tank Gauging
Provides guidance on the selection, installation, calibration, and verification of automatic tank gauges for measuring the level of liquid hydrocarbons having a Reid vapor pressure less than 15 psia (103 kPa), transported aboard marine vessels (tankers and barges). This standard also provides guidance on the requirements for data collection, transmission, and receiving. This standard supersedes all applicable sections of Std 2545. Pages: 10
Product Number: H03041 | Price: $90.00

Chapter 3.4 *
Standard Practice for Level Measurement of Liquid Hydrocarbons on Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.4.
1st Edition | April 1995 | Product Number: H0301SP | Price: $90.00

Chapter 3.5
Standard Practice for Level Measurement of Light Hydrocarbon Liquids Onboard Marine Vessels by Automatic Tank Gauging
Covers the standard practice for level measurement of light hydrocarbon liquids onboard marine vessels by automatic tank gauges. This publication covers pressurized and refrigerated light hydrocarbon liquids. The light hydrocarbon liquids covered include: liquefied petroleum gas (LPG), natural gas liquid (NGL), and other petrochemical liquids where the storage and transportation requirements and the methods of measurement are similar to that for LPG and NGL gauging. This standard also covers the requirements for data collection, transmission, and receiving. Pages: 8
Product Number: H03051 | Price: $90.00

Chapter 3.5 *
Standard Practice for Level Measurement of Light Hydrocarbon Liquids Onboard Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.5.
1st Edition | March 1997 | Product Number: H0301S | Price: $90.00

Chapter 3.6
Measurement of Liquid Hydrocarbons by Hybrid Tank Measurement Systems
(includes Errata 1 dated September 2005)
Covers selection, installation, commissioning, calibration, and verification of hybrid tank measurement systems for the measurement of level, static mass, observed and standard volume, and observed and reference density in tanks storing petroleum and petroleum products for custody transfer and/or inventory control purposes. Pages: 26
1st Edition | February 2001 | Reaffirmed: January 2017
Product Number: H03061 | Price: $104.00

Chapter 4
Proving Systems
Serves as a guide for the design, installation, calibration, and operation of meter proving systems.

Chapter 4.1
Introduction
General introduction to the subject of proving. The requirements in Ch. 4 are based on customary practices that evolved for crude oils and products covered by Ch. 11.1. The prover and meter uncertainties should be appropriate for the measured fluids and should be agreeable to the parties involved. Pages: 4
3rd Edition | February 2005 | Reaffirmed: June 2014
Product Number: H04013 | Price: $89.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedethe English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
**Chapter 4.1 *
Introduction—Spanish**

Spanish translation of Ch. 4.1.

3rd Edition | February 2005 | Product Number: H40101S | Price: $89.00

**Chapter 4.2
Displacement Provers**

(includes Addendum 1 dated February 2015)

Outlines the essential elements of provers that accumulate meter pulses as a displacing element within the prover travels between detector switches. It provides design and installation details for the types of displacement provers that are currently in use. The provers discussed are designed for proving measurement devices under dynamic operating conditions with single-phase liquid hydrocarbons. Pages: 45

Product Number: H04023 | Price: $134.00

**Chapter 4.2 *
Displacement Provers—Russian**

Russian translation of Chapter 4.2.

3rd Edition | September 2003
Product Number: H04023R | Price: $107.00

**Chapter 4.4
Tank Provers**

Specifies the characteristics of tank provers that are in general use and the procedures for their calibration. This standard does not apply to weir-type, vapor-condensing, dual-tank water-displacement, or gas-displacement provers. Pages: 11

Product Number: H04042 | Price: $90.00

**Chapter 4.5
Master Meter Provers**

Covers the use of displacement, turbine, Coriolis, and ultrasonic meters as master meters. The requirements in this standard are intended for single-phase liquid hydrocarbons. Meter proving requirements for other fluids should be appropriate for the overall custody transfer accuracy and should be agreeable to the parties involved. This document does not cover master meters to be used for the calibration of provers. For information concerning master meter calibration of provers, see Ch. 4.9.3. Pages: 24

**Chapter 4.6
Pulse Interpolation**

(includes Errata 1 dated April 2007)

Describes how the double-chronometry method of pulse interpolation, including system operating requirements and equipment testing, is applied to meter proving. Pages: 8

Product Number: H04082 | Price: $71.00

**Chapter 4.7
Field Standard Test Measures**

Details the essential elements of field standard test measures by providing descriptions, construction requirements, as well as inspection, handling, and calibration methods. Bottom-neck scale test measures and prover tanks are not addressed in this document. The scope of this standard is limited to the certification of “delivered volumes” of test measures. Pages: 19

3rd Edition | April 2009 | Reaffirmed: June 2014
Product Number: H40703 | Price: $94.00

**Chapter 4.8
Operation of Proving Systems**

Provides information for operating meter provers on single-phase liquid hydrocarbons. It is intended for use as a reference manual for operating proving systems. The requirements of this chapter are based on customary practices for single-phase liquids. This standard is primarily written for hydrocarbons, but much of the information in this chapter may be applicable to other liquids. Specific requirements for other liquids should be agreeable to the parties involved. Pages: 40

2nd Edition | September 2013 | 2-Year Extension: October 2018
Product Number: H40802 | Price: $136.00

**Chapter 4.9.1
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 1—Introduction to the Determination of the Volume of Displacement and Tank Provers**

Provers are precision devices, defined as volumetric standards, which are used to verify the accuracy of liquid volumetric meters used for custody transfer measurement. Both displacement and tank provers are used to prove a meter in order to obtain its meter factor, which is then used to correct for meter error caused by differences between the metered volume and the true volume. The base volume of a displacement or tank prover, determined by calibration, is an essential requirement in the determination of these meter factors. The accuracy of a meter factor is limited by several considerations:

- equipment performance,
- observation errors,
- prover volume calibration errors,
- calculation errors. Pages: 28

Product Number: H409011 | Price: $82.00

**Chapter 4.9.2
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 2—Determination of the Volume of Displacement and Tank Provers by the Waterdraw Method of Calibration**

All prover volumes used to calibrate meters shall be determined by calibration and not by theoretical calculation. Volumetric provers have an exact reference volume, which has been determined by a recognized method of calibration. Techniques for the determination of this reference volume include the waterdraw, master meter, and gravimetric methods of calibration. This standard describes only the waterdraw method of calibration, which is used to accurately determine the calibrated volume of both displacement and tank provers. Pages: 92

Product Number: H409021 | Price: $197.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

54

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
Chapter 4.9.3
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 3—Determination of the Volume of Displacement Provers by the Master Meter Method of Calibration
Covers the procedures required to determine the field data necessary to calculate a base prover volume (BPV) of a field displacement prover by the master meter method for calibration. This standard applies to liquids that, for all practical purposes, are considered to be clean, single-phase, homogeneous, and Newtonian at metering conditions.
Detailed calculation procedures are not included in this standard: see Ch. 12.2.5. Pages: 19
1st Edition | April 2010 | Reaffirmed: March 2015
Product Number: H409031 | Price: $80.00

Chapter 4.9.4
Methods of Calibration for Displacement and Volumetric Tank Provers, Part 4—Determination of the Volume of Displacement and Tank Provers by the Gravimetric Method of Calibration
(includes Errata 1 dated August 2016)
Covers the specific procedures, equipment, and calculations required to determine the base prover volume of both tank and displacement provers by the gravimetric method of calibration. This standard presents both USCG and SI units and may be implemented in either system of units. The presentation of both units is for the convenience of the user and is not necessarily the exact conversions. The system of units to be used is typically determined by contract, regulatory requirement, the manufacturer, or the user’s calibration program. Throughout this document international recommendations are addressed by references to National Institute of Standards and Technology (NIST). However, other appropriate national metrology institutes can be referenced. There is no intent to cover safety aspects of conducting the work described in this standard, and it is the duty of the user to be familiar with all applicable safe work practices. It is also the duty of the user to comply with all existing federal, state, or local regulations [e.g. the Occupational Safety and Health Administration (OSHA)] that govern the types of activities described in this standard, and to be familiar with all such safety and health regulations. Pages: 38
1st Edition | October 2010 | Reaffirmed: December 2015
Product Number: H4090401 | Price: $90.00

Chapter 5
Metering
Covers the dynamic measurement of liquid hydrocarbons, by means of meters and accessory equipment.

Chapter 5.1
General Considerations for Measurement by Meters
(includes Errata 1 dated June 2008 and Errata 2 dated June 2011)
Intended to be a guide for the proper specification, installation, and operation of meter runs designed to dynamically measure liquid hydrocarbons so that acceptable accuracy, service life, safety, reliability, and quality control can be achieved. Ch. 5 also includes information that will assist in troubleshooting and improving the performance of meters. Pages: 8
Product Number: H05014 | Price: $102.00

Chapter 5.1 *
General Considerations for Measurement by Meters—Spanish
Spanish translation of Ch. 5.1.

Chapter 5.2
Measurement of Liquid Hydrocarbons by Displacement Meters
Ch. 5.2, together with the general considerations for measurement by meters found in Ch. 5.1, describes methods for obtaining accurate quantity measurement with displacement meters in liquid hydrocarbon service. It covers the unique performance characteristics of displacement meters in liquid hydrocarbon service. It does not apply to the measurement of two-phase fluids. Pages: 3
Product Number: H05023 | Price: $95.00

Chapter 5.2 *
Measurement of Liquid Hydrocarbons by Displacement Meters—Spanish
Spanish translation of Ch. 5.2.
3rd Edition | October 2005 | Product Number: H50203SP | Price: $95.00

Chapter 5.3
Measurement of Liquid Hydrocarbons by Turbine Meters
(includes Addendum 1 dated July 2009)
Defines the application criteria for turbine meters and discusses appropriate considerations regarding the liquids to be measured. Discusses the installation of a turbine metering system and the performance, operation, and maintenance of turbine meters in liquid hydrocarbon service. Includes “Selecting a Meter and Accessory Equipment” and information on the recommended location for prover connections. Pages: 11
Product Number: H05035 | Price: $115.00

Chapter 5.3 *
Measurement of Liquid Hydrocarbons by Turbine Meters—Spanish
Spanish translation of Ch. 5.3, including Addendum 1 dated July 2009.
5th Edition | September 2005
Product Number: H50305SP | Price: $115.00

Chapter 5.4
Accessory Equipment for Liquid Meters
(includes Errata 1 dated May 2015)
Describes the characteristics of accessory equipment used with displacement and turbine meters in liquid hydrocarbon service. Includes guidance on the use of electronic flow computers. Pages: 8
Product Number: H05044 | Price: $102.00

Chapter 5.4 *
Accessory Equipment for Liquid Meters—Spanish
Spanish translation of Ch. 5.4.
4th Edition | September 2005
Product Number: H05044SP | Price: $102.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 5.5
Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems
Serves as a guide for the selection, operation, and maintenance of various types of pulsed-data, cabled transmission systems for fluid metering systems to provide the desired level of fidelity and security of transmitted flow pulse data. This publication does not endorse or advocate the preferential use of any specific type of equipment or systems, nor is it intended to restrict future development of such equipment. Pages: 8
Product Number: H50502 | Price: $76.00

Chapter 5.5 *
Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish
Spanish translation of Ch. 5.5.
2nd Edition | July 2005 | Product Number: H50502SP | Price: $76.00

Chapter 5.6
Measurement of Liquid Hydrocarbons by Coriolis Meters (ANSI/API MPMS Ch. 5.6-2002)
Describes methods for achieving custody transfer levels of accuracy when a Coriolis meter is used to measure liquid hydrocarbons. Topics covered include: applicable API standards used in the operation of Coriolis meters; proving and verification using both mass- and volume-based methods; and installation, operation, and maintenance. Both mass and volume-based calculation procedures for proving and quantity determination are included in Appendix E. Pages: 48
Product Number: H505061 | Price: $151.00

Chapter 5.6 *
Measurement of Liquid Hydrocarbons by Coriolis Meters—Spanish
Spanish translation of Ch. 5.6.
1st Edition | October 2002 | Product Number: H505061S | Price: $151.00

Chapter 5.8
Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters (includes Errata 1 dated February 2014) (ANSI/API MPMS Ch. 5.8-2011)
Defines the application criteria for ultrasonic flowmeters (UFMs) and addresses the appropriate considerations regarding the liquids to be measured. This document addresses the installation, operation, and maintenance of UFMs in liquid hydrocarbon service. The field of application of this standard is the dynamic measurement of liquid hydrocarbons. While this document is specifically written for custody transfer measurement, other acceptable applications may include allocation measurement, check meter measurement, and leak detection measurement. This document only pertains to spool type, multi-path ultrasonic flow meters with permanently affixed acoustic transducer assemblies. Pages: 23
2nd Edition | November 2011 | Reaffirmed: May 2017
Product Number: H5050802 | Price: $94.00

Chapter 5.8 *
Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish
Spanish translation of Ch. 5.8.
2nd Edition | November 2011
Product Number: H5050802SP | Price: $94.00

Chapter 6
Metering Assemblies
Discussion of the design, installation, and operation of metering systems for coping with special situations in hydrocarbon measurement.

Chapter 6.1
Lease Automatic Custody Transfer (LACT) Systems
Prepared as a guide for the design, installation, calibration, and operation of a lease automatic custody transfer (LACT) system. It applies to unattended and automatic measurement by meter of hydrocarbon liquids produced in the field and transferred to a pipeline in either a scheduled or nonscheduled operation. Pages: 6
2nd Edition | May 1991 | Reaffirmed: December 2017
Product Number: H30121 | Price: $66.00

Chapter 6.2
Loading Rack Metering Systems
Serves as a guide in the selection, installation, and operation of loading rack metering systems for petroleum products, including liquefied petroleum gas. This standard does not endorse or advocate the preferential use of any specific type of metering system or meter. Pages: 30
Product Number: H60203 | Price: $86.00

Chapter 6.2 *
Loading Rack Metering Systems—Spanish
Spanish translation of Ch. 6.2.
3rd Edition | February 2004 | Product Number: H60203S | Price: $86.00

Chapter 6.5
Metering Systems for Loading and Unloading Marine Bulk Carriers
Deals with the operation and special arrangements of meters, provers, manifolding, instrumentation, and accessory equipment used for measurement during loading and unloading of marine bulk carriers. Pages: 6
2nd Edition | May 1991 | Reaffirmed: March 2018
Product Number: H30125 | Price: $71.00

Chapter 6.6
Pipeline Metering Systems
Provides guidelines for selection of the type and size of meters to be used to measure pipeline oil movements, as well as the relative advantages and disadvantages of the methods of proving meters by tank prover, conventional pipe prover, small volume prover, and master meter. It also includes discussion on obtaining the best operating results from a pipeline-meter station. Pages: 9
2nd Edition | May 1991 | Reaffirmed: December 2017
Product Number: H30126 | Price: $71.00

Chapter 6.7
Metering Viscous Hydrocarbons
Serves as a guide for the design, installation, operation, and proving of meters and auxiliary equipment used in metering viscous hydrocarbons. It defines viscous hydrocarbons and describes the difficulties that arise when viscous hydrocarbons are raised to high temperature. The effects of such temperatures on meters, auxiliary equipment, and fittings are discussed, and advice and warnings to overcome or mitigate difficulties are included. Pages: 6
2nd Edition | May 1991 | Reaffirmed: March 2018
2-Year Extension: December 2017
Product Number: H30127 | Price: $71.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall not replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 7.1
Liquid-in-Glass Thermometers

Describes how to correctly use various types of liquid-in-glass thermometers to accurately determine the temperatures of hydrocarbon liquids. Other methods, equipment, and procedures for temperature determination are described in the other sub-sections of Ch. 7.

This chapter describes the methods, equipment, and procedures for manually determining the temperature of liquid petroleum and petroleum products with liquid-in-glass thermometers. This chapter discusses temperature measurement requirements in general for custody transfer, inventory control, and marine measurements. The actual method and equipment selected for temperature determination are left to the agreement of the parties involved.

The manual method covers:
- nonpressurized tanks and nonpressurized marine vessels;
- gas-blanketed tanks and gas-blanketed marine vessels.

It does not cover hydrocarbons under pressures in excess of 21 kPa (3 psi gauge) or cryogenic temperature measurement, unless the tank is equipped with a thermowell.

Chapter 7.2
Portable Electronic Thermometers

Describes the methods, equipment, and procedures for manually determining the temperature of liquid petroleum and petroleum products by use of a portable electronic thermometer (PET).

This chapter discusses temperature measurement requirements in general for custody transfer, inventory control, and marine measurements. The actual method and equipment selected for temperature determination are left to the agreement of the parties involved.

The manual method covers:
- nonpressurized tanks and nonpressurized marine vessels;
- gas-blanketed tanks and gas-blanketed marine vessels.

It does not cover hydrocarbons under pressures in excess of 21 kPa (3 psi gauge) or cryogenic temperature measurement, unless the tank is equipped with a thermowell.

Chapter 7.3
Fixed Automatic Tank Temperature Systems

Describes the methods, equipment, and procedures for determining the temperature of petroleum and petroleum products under static conditions by the use of an automatic method. Automatic temperature measurement is discussed for custody transfer and inventory control for both onshore and marine measurement applications.

Temperatures of hydrocarbon liquids under static conditions can be determined by measuring the temperature of the liquid at specific locations. Examples of where static temperature determination is required include storage tanks, ships, and barges.

The application of this standard is restricted to automatic methods for the determination of temperature using fixed automatic tank thermometer (ATT) systems for hydrocarbons having a Reid vapor pressure at or below 101.325 kPa (14.696 psia).

Although not included in the scope, requirements in this standard can be used for other fluids and other applications including petroleum liquids having Reid vapor pressures in excess of 101.325 kPa (14.696 psia) tanks with inert gas systems and cryogenic liquids. However, such applications can require different performance and installation specifications.

Chapter 7.4
Dynamic Temperature Measurement

Describes methods, equipment, installation, and operating procedures for the proper determination of the temperature of hydrocarbon liquids under dynamic conditions in custody transfer applications. This standard describes the accuracy requirement and the calibration of the temperature measurement equipment.

This standard does not cover dynamic temperature measurement of refrigerated, light hydrocarbon fluids or cryogenic liquids.

Chapter 7.5/ISO 8310:2012
Automatic Tank Temperature Measurement Onboard Marine Vessels Carrying Refrigerated Hydrocarbon and Chemical Gas Fluids

(ANSI/API MPMS Ch. 7.5)

Specifies the essential requirements and verification procedures for automatic tank thermometers (ATMs) consisting of platinum resistance thermometers (PRT) and an indicating device used for custody transfer measurement of liquefied natural gas, liquefied petroleum, and chemical gases on board ships. Temperature detectors other than PRT are considered acceptable for use in the custody transfer service of liquefied gases if they meet the performance requirements of this document and are approved by national regulations.

Chapter 8
Sampling

Covers standardized procedures for sampling petroleum and petroleum products.

Chapter 8.1
Standard Practice for Manual Sampling of Petroleum and Petroleum Products

Covers procedures and equipment for manually obtaining samples of liquid petroleum and petroleum products, crude oils, and intermediate products from the sample point into the primary container. Procedures are also included for the sampling of free water and other heavy components associated with petroleum and petroleum products. This practice also addresses the sampling of semi-liquid or solid-state petroleum products. This practice provides additional specific information about sample container selection, preparation, and sample handling. This practice does not cover sampling of electrical insulating oils and hydraulic fluids. The procedures described in this practice may also be applicable in sampling most non-corrosive liquid industrial chemicals provided that all safety precautions specific to these chemicals are followed (also, refer to ASTM Practice E300). The procedures described in this practice are also applicable to sampling liquefied petroleum gases and chemicals.
Chapter 8.2
Standard Practice for Automatic Sampling of Petroleum and Petroleum Products
(ASTM D4177)

Describes general procedures and equipment for automatically obtaining samples of liquid petroleum and petroleum products, crude oils, and intermediate products from the sample point into the primary container. This practice also provides additional specific information about sample container selection, preparation, and sample handling. If sampling is for the precise determination of volatility, use Ch. 8.4 (ASTM Practice D5842) in conjunction with this practice. For sample mixing and handling, refer to Ch. 8.3 (ASTM Practice D5854). This practice does not cover sampling of electrical insulating oils and hydraulic fluids. Pages: 45

4th Edition | November 2016 | Product Number: H80204 | Price: $77.00

Chapter 8.3
Standard Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products

Covers handling, mixing, and conditioning procedures that are required to ensure that a representative sample of the liquid petroleum or petroleum product is delivered from the primary sample container or container or both into the analytical apparatus or into intermediate containers. Pages: 30

2nd Edition | September 2019 | Product Number: H08032 | Price: $69.00

Chapter 8.4
Standard Practice for Sampling and Handling of Fuels for Volatility Measurement
(ASTM D5842)

Covers procedures and equipment for obtaining, mixing, and handling representative samples of volatile fuels for the purpose of testing for compliance with the standards set forth for volatility related measurements applicable to light fuels. The applicable dry vapor pressure equivalent range of this practice is 13 to 110 kPa (2 to 16 psia). This practice is applicable to the sampling, mixing, and handling of reformulated fuels including those containing oxygenates. This practice is not applicable to crude oil. For the sampling of crude oil, refer to Ch. 8.1, Ch. 8.2, and Ch. 8.5. Pages: 16

4th Edition | December 2017 | Product Number: H80404 | Price: $50.00

Chapter 8.5
(ASTM D8009)

Includes the equipment and procedures for obtaining a representative sample of “live” or high vapor pressure crude oils, condensates, and/or liquid petroleum products from low pressure sample points, where there is insufficient sample point pressure to use a floating piston cylinder (FPC) as described in ASTM D3700. Pages: 20

Chapter 8.5 *

Spanish translation of Ch. 8.5.

1st Edition | December 2015 | Product Number: H80501S | Price: $55.00

Chapter 9
Density Determination

Describes the standard methods and apparatus used to determine the specific gravity of crude oil and petroleum products normally handled as liquids.

Chapter 9.1
Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
(ASTM D1298)

Covers the laboratory determination, using a glass hydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids and having a Reid vapor pressure of 101.325 kPa (14.696 psi) or less. Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables. The initial hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of volume correction factors; values obtained at other than the reference temperature being hydrometer readings and not density measurements.

Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternate reference temperatures by means of Interconversion Procedures (Ch. 11.5) or volume correction factors (Ch. 11.1), or both, or tables, as applicable. Pages: 8

3rd Edition | December 2012 | Reaffirmed: May 2017
Product Number: H09013 | Price: $45.00

Chapter 9.2
Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure Hydrometer
(ASTM D1657)

Covers the determination of the density or relative density of light hydrocarbons including liquefied petroleum gases (LPG) having Reid vapor pressures exceeding 101.325 kPa (14.696 psi). The prescribed apparatus should not be used for materials having vapor pressures higher than 1.4 MPa (200 psi) at the test temperature. This pressure limit is dictated by the type of equipment. Higher pressures can apply to other equipment designs.

The initial pressure hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of calculations and volume correction factors (Ch. 11.1) or Ch. 11.2.4 (GPA TP-27), as applicable.

Values determined as density or relative density can be converted to equivalent values in the other units or alternative reference temperatures by means of Interconversion Procedures (Ch. 11.5), or volume correction factors (Ch. 11.1) or Ch. 11.2.4 (GPA TP-27), as applicable. Pages: 6

3rd Edition | December 2012 | Reaffirmed: May 2017
Product Number: H09023 | Price: $45.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 9.3 Standard Test Method for Density, Relative Density, and API Gravity of Crude Petroleum and Liquid Petroleum Products by Thermohydrometer Method (ASTM D6822)

Covers the determination, using a glass thermohydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids and having a Reid vapor pressures of 101.325 kPa (14.696 psi) or less.

Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables. The initial thermohydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a thermohydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects, and to the reference temperature by means of calculations and volume correction factors (Ch. 11.1).

Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternate reference temperatures by means of Interconversion Procedures (Ch. 11.5) or volume correction factors (Ch. 11.1), or both, or tables, as applicable. Pages: 10

3rd Edition | December 2012 | Reaffirmed: May 2017
Product Number: H09033 | Price: $45.00

Chapter 9.4 Continuous Density Measurement Under Dynamic (Flowing) Conditions (supersedes Ch. 14.6)

Covers the continuous on-line determination and application of flowing liquid densities for custody transfer. This standard covers liquid and dense phase fluids, including: natural gas liquids, refined products, chemicals, crude oil, and other liquid products commonly encountered in the petroleum industry. This document does not apply to the density measurement of natural gas, LNG, multiphase mixtures, semi-solid liquids such as asphalt, and solids such as coke and slurmcs. This standard also provides criteria and procedures for designing, installing, operating, and proving continuous on-line density measurement systems for custody transfer. This standard also discusses the different levels and requirements of accuracy for various applications. Pages: 135

1st Edition | January 2018 | Product Number: H09041 | Price: $168.00

Chapter 10 Sediment and Water

Describes methods for determining the amount of sediment and water, either together or separately in petroleum products. Laboratory and field methods are covered.

Chapter 10.1 Standard Test Method for Sediment in Crude Oils and Fuel Oils by the Extraction Method (ANSI/ASTM D473)

Covers the determination of sediment in crude oils and fuel oils by extraction with toluene. The precision applies to a range of sediment levels from 0.01 to 0.40 % mass, although higher levels may be determined. Pages: 6

3rd Edition | November 2007 | Reaffirmed: May 2017
Product Number: H10013 | Price: $42.00

Chapter 10.2 Standard Test Method of Water in Crude Oil by Distillation

(AMST D4006)

Covers the determination of water in crude oil by distillation. Pages: 11

Chapter 10.3 Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure) (ASTM D4007)

Describes the laboratory determination of water and sediment in crude oils by means of the centrifuge procedure. This centrifuge method for determining water and sediment in crude oils is not entirely satisfactory. The amount of water detected is almost always lower than the actual water content. When a highly accurate value is required, the revised procedures for water by distillation, Ch. 10.2, and sediment by extraction, Ch. 10.1, shall be used. Pages: 13

Product Number: H100304 | Price: $55.00

Chapter 10.4 Determination of Water and/or Sediment in Crude Oil by the Centrifuge Method (Field Procedure) (includes Errata 1 dated March 2015)

Describes the field centrifuge method for determining both water and sediment or sediment only in crude oil. This method may not always produce the most accurate results, but it is considered the most practical method for field determination of water and sediment. This method may also be used for field determination of sediment. Pages: 23

4th Edition | October 2013 | Reaffirmed: September 2018
Product Number: H100404 | Price: $93.00

Chapter 10.5 Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation (ASTM D95)

Covers the determination of water in the range from 0 to 25 % volume in petroleum products, tars, and other bituminous materials by the distillation method. Volatile water-soluble material, if present, may be measured as water. The specific products considered during the development of this test method were asphalt, bitumen, tar, fuel oil, lubricating oil, lubricating oil additives, and greases. For bituminous emulsions refer to ASTM Test Method D244. For crude oils, refer to Ch. 10.2. Pages: 6

5th Edition | September 2013 | Reaffirmed: September 2018
Product Number: H100505 | Price: $45.00

Chapter 10.6 Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure) (ASTM D1796)

Describes the laboratory determination of water and sediment in fuel oils in the range from 0 to 30 % volume by means of the centrifuge procedure. Note that with some types of fuel oils such as residual fuel oils or distillate fuel oils containing residual components, it is difficult to obtain water or sediment contents with this test method. When this situation is encountered, Ch. 10.5 or Ch. 10.1 may be used. Pages: 7

Product Number: H100605 | Price: $45.00

Chapter 10.7 Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titrination (ASTM D4377)

Describes the procedure for the determination of water in crude oils by Karl Fischer titration (potentiometric). This test method covers the determination of water in the range from 0.02 to 2 mass percent in crude oils. Mercaptan and sulfide (S- or H2S) sulfur are known to interfere with the method. Pages: 6

2-Year Extension: October 2017 | Product Number: H10072 | Price: $42.00
Chapter 10.8
Standard Test Method for Sediment in Crude Oil by Membrane Filtration
(ASTM D4807)

Covers the determination of sediment in crude oils by membrane filtration. This test method has been validated for crude oils with sediments up to approximately 0.15 mass %. The accepted unit of measure for this test method is mass %, but an equation to convert to volume % is provided. Pages: 5

Product Number: H100802 | Price: $42.00

Chapter 10.9
Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration
(ASTM D4928)

Covers the determination of water in the range from 0.02 to 5.00 mass or volume % in crude oils. Mercaptan (RSH) and sulfide (S⁻ or H₂S) as sulfur are known to interfere with this test method, but at levels of less than 500 μg/g [ppm(m)], the interference from these compounds is insignificant. This test method can be used to determine water in the 0.005 to 0.02 mass % range, but the effects of the mercaptan and sulfide interference at these levels has not been determined. For the range 0.005 to 0.02 mass %, there is no precision or bias statement. This test method is intended for use with standard commercially available coulometric Karl Fischer reagent. Pages: 6

3rd Edition | May 2013 | Reaffirmed: June 2018
Product Number: H10093 | Price: $45.00

Chapter 10.9 *
Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration—Spanish

Spanish translation of Ch. 10.9.

3rd Edition | May 2013 | Product Number: H100903SP | Price: $45.00

TR 2570
Continuous On-Line Measurement of Water Content in Petroleum (Crude Oil and Condensate)

Provides guidance for the application, installation, operation, verification, and proving of on-line water devices (OWDs) for use in the non-custody transfer measurement of water in crude oil and condensate. A joint API/ Energy Institute (EI) standard, it also carries the EI designation Hydrocarbon Management, HM56. Pages: 17

1st Edition | October 2010 | Reaffirmed: January 2016
Product Number: H25701 | Price: $79.00

TR 2573
Standard Guide for Sediment and Water Determination in Crude Oil
(ASTM D7829)

Covers a summary of the water and sediment determination methods from Ch. 10 for crude oils. The purpose of this guide is to provide a quick reference to these methodologies such that the reader can make the appropriate decision regarding which method to use based on the associated benefits, uses, drawbacks, and limitations. Pages: 7

1st Edition | September 2013 | Reaffirmed: September 2018
Product Number: H257301 | Price: $45.00

Chapter 11
Physical Properties Data (Volume Correction Factors)

Ch. 11 is the physical data that has direct application to volumetric measurement of liquid hydrocarbons. It is presented in equations relating volume to temperature and pressure, and computer subroutines. The subroutines for Ch. 11.1 are available in electronic form. These standards are not included in the complete set of measurement standards. Each element of Ch. 11 must be ordered separately.

Chapter 11.1
Standard Document and API 11.1 VCF Application

The 2004 edition of this standard also supersedes Ch. 11.2.1 and Ch. 11.2.1M).

Provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons that fall within the categories of crude oil, refined products, or lubricating oils. Natural gas liquids and liquefied petroleum gases are excluded from consideration in this standard. This document is distributed electronically in Portable Document Format (PDF) or as a hard copy, printed document.

An API 11.1 VCF Application for calculating VCF is also available. This Windows-based standalone application allows users to calculate volumes and densities at observed (RHOobs), base (RHOb), and alternate (RHOtp) conditions, combined (CTPL) and independent correction factors for temperature (CTL) and pressure (CPL). The application supports both U.S. Customary (API, RD, °F, and psig) and SI (kg/m³, °C, kPag, and Barg) units of measure, Thermal Expansion Factor (alpha) regression calculator and a Table Generator. The API 11.1 VCF Application is distributed on flash drive or can be electronically downloaded.

The PDF or hard copy, printed document are sold without the VCF application through the API websites. The API 11.1 VCF windows based standalone application and the standard in PDF or print are available to purchase by phone or email. Please contact Quorum Software at +1 (713) 430-8600 or send an e-mail to APIstandards@qtbsol.com.

May 2004 | Product Number: H11013 | Reaffirmed: August 2012
2-Year Extension: March 2017

11.1 Standard Document | $260.00 per document
11.1 VCF Application | $568.00 per single user license
11.1 Standard Document + 11.1 VCF Application | $704.00
(15% discount when purchased together)

See the listing for “Chapter 11.1–1980” on page 179 of this Catalog for more information on the previous edition of the standard(s).
Chapter 11.1
Add-In Program for Microsoft® Excel

A Microsoft® Windows compatible 32-bit add-in for Microsoft® Excel that provides callables functions for density, correction for temperature and pressure of a liquid (CTPL), and compressibility coefficient (Fp). These functions allow calculating density at base conditions or at alternate conditions, CTL, correction factor used to transform volume and density data to base or desired conditions, and the scaled compensation factor for transformation from alternate to base conditions or from observed to base conditions for generalized crude oils, refined products, and lubricating oils. They support the following process variables: density (API gravity, relative density, and kg/m³), temperature (°F and °C), and pressure (psig, bar, and kPa).

To order, contact Quorum Software at +1 (713) 430-8600 or send an e-mail to APIstandards@qbsol.com.

XL Add-In—runs on a single standalone computer with no network access
Price: $812.00

XL Add-In—installed on less than 15 standalone computers or ran on a network with less than 15 nodes | Price: $5,408.00

XL Add-In—installed on less than 50 standalone computers or ran on a network with less than 50 nodes | Price: $8,111.00

XL Add-In—installed on an unlimited number of standalone computers or ran on a network with unlimited nodes | Price: $11,897.00

Chapter 11.1
Dynamic Link Library (DLL)

The DLL is compiled from source code written in the C programming language. The DLL provides subroutines that can be called from applications written in C or other programming languages. These subroutines are subdivided into three groups (density, volume correction factors, and scaled compressibility factor) for generalized crude oils, refined products, and lubricating oils.

- The density subroutines have two sets of density functions allowing calculations at base conditions or at alternate conditions.
- The volume correction factor subroutines calculate a correction for the effect of temperature and pressure on a liquid (CTPL), correction for the effect of temperature on liquid (CTL), and correction for the effect of pressure on liquid (CPL), which are used to transform volume and density data to base or desired conditions.
- The scaled compressibility factor subroutines will convert from alternate to base conditions or from observed to base conditions.

The DLL supports the following process units, densities in API gravity, relative density, and kg/m³, temperatures in °F and °C, and pressures in psig, bar, and kPa. This version is compatible with and can coexist with the 1980 version DLL.

To order, contact Quorum Software at +1 (713) 430-8600 or send an e-mail to APIstandards@qbsol.com.

DLL—installed on less than 50 standalone computers or ran on a network with less than 50 nodes | Price: $16,223.00

DLL—installed on an unlimited number of standalone computers or ran on a network with unlimited nodes | Price: $21,630.00

DLL—compiled as part of an application for distribution (software distributor) Price: $32,445.00

Chapter 11.1
Source Code

ANSI C-Code used to compile the dynamic link libraries (DLLs). The source code may be compiled into user programs to calculate temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils.

NOTE An experienced C programmer will be needed to implement the C-Code subroutines. API does not directly provide technical support for the C-Code; however, a support program is available from Flow-Cal, Inc.

To order, contact Quorum Software at +1 (713) 430-8600 or send an e-mail to APIstandards@qbsol.com.

C-Code—compiled to run on a network with less than 50 nodes
Price: $24,334.00

C-Code—compiled to run on a network with unlimited nodes
Price: $32,445.00

C-Code—compiled as part of an application for distribution (software distributor) | Price: $48,668.00

Chapter 11.1
Data File of Chapters 11.2.2 and 11.2.2M

This package includes a data file of tables found in Ch. 11.2.2 and Ch. 11.2.2M. The tables, presented in both U.S. customary (USC) and metric (SI) units, cover compressibility factors for light hydrocarbons.

1st Edition | August 1984 | Product Number: H27320 | Price: $321.00

Chapter 11.2.2
Compressibility Factors for Hydrocarbons: 0.350–0.637 Relative Density (60 °F/60 °F) and –50 °F to 140 °F Metering Temperature

Provides tables to correct hydrocarbon volumes metered under pressure for the metered temperature. Contains compressibility factors related to the meter temperature and relative density (60 °F/60 °F) of the metered material. Pages: 246

2nd Edition | October 1986 | Reaffirmed: September 2017
Product Number: H27307 | Price: $185.00

Chapter 11.2.2M
Compressibility Factors for Hydrocarbons: 350–637 Kilograms per Cubic Meter Density (15 °C) and –46 °C to 60 °C Metering Temperature

Provides tables to correct hydrocarbon volumes metered under pressure to corresponding volumes at equilibrium pressure for the metered temperature. The standard contains compressibility factors related to the meter temperature and density (15 °C) of the metered material. Pages: 264

1st Edition | October 1986 | Reaffirmed: September 2017
Product Number: H27309 | Price: $185.00
Chapter 11.2.2 • Compressibility Factors for Hydrocarbons: 350–637 Kilograms per Cubic Meter Density (15 °C) and -46 °C to 60 °C Metering Temperature—Russian

This standard covers a 60 °F relative density range of 0.3500 to 0.6880, however these are not part of the actual standard. Russian translation of Chapter 11.2.2M.

1st Edition | October 1986 | Product Number: H27309R | Price: $141.00

Chapter 11.2.4 • Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, 60E (GPA 8217)

Consists of the implementation procedures for the correction of temperature effects on density and volume of natural gas liquids and liquefied petroleum gas. Sample tables, flow charts, and specific examples created from a computerized version of these implementation procedures are included. The examples provide guidance and checkpoints for those who wish to implement a computerized procedure to represent the standard, however these are not part of the actual standard.

This standard covers a 60 °F relative density range of 0.3500 to 0.6880, which nominally equates to a density at 15 °C of 351.7 kg/m³ to 687.8 kg/m³ and a density at 20 °C of 331.7 kg/m³ to 683.6 kg/m³. The temperature range of this standard is -50.8 °F to 199.4 °F (-46 °C to 93 °C). At all conditions, the pressure is assumed to be at saturation conditions (also known as bubble point or saturation vapor pressure).

Pages: 155

2nd Edition | June 2019 | Product Number: H1102042 | Price: $205.00

Chapter 11.2.5 • A Simplified Vapor Pressure Correlation for Commercial NGLs (supersedes the Addendum to Ch. 11.2.2-1994)

Methods used for calculation of the correction factor for pressure effects such as Ch. 11.2.1-1984 (now superseded by Ch. 11.1-2004) and Ch. 11.2.2-1986 require knowledge of the equilibrium bubble point pressure (vapor pressure) at the measured conditions. However, the vapor pressure of the process liquid is generally not measured. The vapor pressure can also be calculated from compositional information. The equation of state (EOS) is not always measured for natural gas liquids (NGLs). Therefore, a correlation for the vapor pressure of NGLs is based upon normally measured properties and is documented in this publication.

Pages: 27

1st Edition | September 2007 | Reaffirmed: August 2017
Product Number: H1102051 | Price: $98.00

Chapter 11.3.2.1 • Ethylene Density

Identifies an equation of state (EOS) suitable for use in custody transfer measurement of pure ethylene (>99 %) in the gaseous, liquid, and supercritical phases. Given flowing temperature and pressure, an EOS is capable of calculating density and other thermodynamic properties used to calculate mass and volumetric flow of ethylene to custody transfer accuracy. All accuracy and uncertainty statements in this standard are limited to the EOS results and do not include the uncertainty added by the primary and secondary measuring equipment.

Pages: 4

2nd Edition | May 2013 | Product Number: H1132102 | Price: $66.00

Chapter 11.3.3 • Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol Density and Volume Correction Factors

Covers density and volume correction factors for denatured fuel ethanol. Annex E of the Third Edition presents a method to determine the compressibility factor for ethanol. The actual standard consists of the explicit implementation procedures set forth in this document. Sample tables and other examples created from a computerized version of this implementation procedure are presented as examples only, and do not represent the standard.

This standard is applicable at any operating temperature to bulk (e.g. tank trucks, tank cargos, barges) denatured 95 % to 99 % fuel ethanol containing D4806 allowed denaturants (natural gasoline, gasoline blend stocks, and unleaded gasoline) and denatured 99+ % fuel ethanol containing less than 1 % denaturant. This standard does not apply to undenatured ethanol of any purity. Annex E extends the range of application to –40 to 60 °C (-40 to 140 °F) over the pressure range of 0 to 15 MPa (0 to 2200 psig).

Pages: 29

3rd Edition | May 2019 | Product Number: H1103033 | Price: $160.00

Chapter 11.3.3.2 • Propylene Compressibility

An electronic FORTRAN Source Code text file on CD-ROM that will produce a table of values applicable to liquid propylene in the following ranges: temperature, 30 °F to 185 °F; and saturation pressure to 1800 psig. It computes the following two values: density (pounds per cubic foot) at flowing temperature and pressure, and ratio of density at flowing conditions to density at 60 °F and saturation pressure. A documentation file is also included.

January 1974 | Reaffirmed: October 2017
Product Number: H25656 | Price: $321.00

Chapter 11.3.4 • Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors

Covers density and volume correction factors for blends of denatured ethanol and gasoline blend components ranging from 0 % to 95 % denatured ethanol based upon calculation methods defined in API MPMS Chapter 11.1 and Chapter 11.3.3. Calculation of blends and denatured ethanol containing more than 95 % ethanol should use the calculation procedures within API MPMS Chapter 11.3.3.

The standard consists of correlations and algorithms for estimating the blend volume change at base conditions and for calculating volume correction factors of denatured ethanol and gasoline component blends. This standard also provides the algorithms to estimate certain blend properties in blending situations where some of the required parameters are not measured.

This standard is applicable to blends containing denatured ethanol and gasoline blend components with 15.5 °C (60 °F) densities ranging from 680 to 800 kg/m³ (45.2 to 76.4 °API) containing between 0 % and 95 % by volume denatured ethanol over the temperature range of -40 °C to 50 °C (-40 °F to 122 °F) and pressure range of 0 to 10.34 MPa (0 to 1508 psig).

Pages: 60

1st Edition | May 2019 | Product Number: H11030401 | Price: $180.00

TR 2580 • Documentation Report and Data Files for: API MPMS Chapter 11.3.3 and API MPMS Chapter 11.3.4

Assembles and makes available the various foundational data and materials used in the development of API MPMS Chapter 11.3.3 and API MPMS Chapter 11.3.4. It includes the historical reports and spreadsheets used as is, without update or reconciliation for any later changes. This document does not extend, modify, or otherwise change anything in the standards as published by API.

Users should not attempt to develop their own implementations of the standard calculations from this document.

The user is directed to the published implementations in the standards. This document contains only the background materials, not the standards, nor any computer implementation of the standards. Only the final versions of materials have been included. Some graphs within the spreadsheets...
Chapter 11.5.1
Part 1—Conversions of API Gravity at 60 °F

Provides implementation procedures for conversion of API gravity at 60 °F to equivalent densities in both in vacuo and in air values. This standard gives the following equivalents for any value of API gravity at 60 °F:

- relative density at 60 °F (old Table 3);
- absolute density at 60 °F;
- absolute density at 15 °C (old Table 3);
- pounds per U.S. gallon at 60 °F in vacuo and in air (old Table 8);
- U.S. gallons per pound at 60 °F in vacuo and in air (old Table 8);
- short tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 9);
- U.S. gallons per short ton at 60 °F in vacuo and in air (old Table 10);
- short tons per barrel at 60 °F in vacuo and in air (old Table 9);
- barrels per short ton at 60 °F in vacuo and in air (old Table 10);
- long tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 11);
- U.S. gallons per long ton at 60 °F in vacuo and in air (old Table 12);
- long tons per barrel at 60 °F in vacuo and in air (old Table 11);
- barrels per long ton at 60 °F in vacuo and in air (old Table 12);
- metric tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 13);
- metric tons per barrel at 60 °F in vacuo and in air (old Table 13);
- barrels per metric ton at 60 °F in vacuo and in air;
- cubic metres per short ton at 15 °C in vacuo and in air (old Table 14);
- cubic metres per long ton at 15 °C in vacuo and in air (old Table 14).

While not related to API gravity, the following are included for user convenience:

- U.S. gallons at 60 °F to litres at 15 °C (old Table 4);
- barrels at 60 °F to litres at 15 °C (old Table 4).

Chapter 11.5.2
Part 2—Conversions for Relative Density (60/60 °F)

Provides implementation procedures for conversion of relative density (60/60 °F) to equivalent densities in both in vacuo and in air values. This standard gives the following equivalents for any value of relative density (60/60 °F):

- API gravity at 60 °F (old Table 21);
- absolute density at 60 °F;
- absolute density at 15 °F (old Table 21);
- pounds per U.S. gallon at 60 °F in and in air (old Table 26);
- U.S. gallons per pound at 60 °F in vacuo and in air (old Table 26);
- short tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 27);
- U.S. gallons per short ton at 60 °F in vacuo and in air (old Table 28);
- short tons per barrel at 60 °F in vacuo and in air (old Table 29);
- barrels per short ton at 60 °F in vacuo and in air (old Table 29);
- long tons per 1000 U.S. gallons at 60 °F in vacuo and in air (old Table 29);
- U.S. gallons per long ton at 60 °F in vacuo and in air (old Table 30);
- long tons per barrel at 60 °F in vacuo and in air (old Table 29);
- barrels per long ton at 60 °F in vacuo and in air (old Table 30);
- metric tons per 1000 U.S. gallons at 60 °F in vacuo and in air;
- metric tons per barrel at 60 °F in vacuo and in air;
- barrels per metric ton at 60 °F in vacuo and in air;
- cubic metres per short ton at 15 °C in vacuo and in air (old Table 31);
- cubic metres per long ton at 15 °C in vacuo and in air (old Table 31).

While not related to relative density, the following are included for user convenience:

- U.S. gallons at 60 °F to litres at 15 °C (old Table 22);
- barrels at 60 °F to litres at 15 °C (old Table 22, Table 52).
Chapter 12
Calculation of Petroleum Quantities

Describes the standard procedures for calculating net standard volumes, including the application of correction factors and the importance of significant figures. The purpose of standardizing the calculation procedure is to achieve the same result regardless of which person or computer does the calculating.

Chapter 12.1.1
Calculation of Static Petroleum Quantities, Part 1—Upright Cylindrical Tanks and Marine Vessels

Guides the user through the steps necessary to calculate static liquid quantities, at atmospheric conditions, in upright cylindrical tanks and marine tank vessels. It defines terms employed in the calculation of static petroleum quantities.

This document also specifies equations that allow the values of some correction factors to be computed. Fundamental to this process is the understanding that, in order for different parties to be able to reconcile volumes, they must start with the same basic information (tank capacity table, levels, temperatures, and so forth) regardless of whether the information is gathered automatically or manually. Pages: 52

Chapter 12.1.2
Calculation of Static Petroleum Quantities, Part 2—Calculation Procedures for Tank Cars

Describes the standardized method for calculating target loading quantities and actual loading quantities of liquids in tank cars. Also explained are the factors required for the calculations. This information is applicable to all crude oils, petroleum products, and petrochemicals (including LPGs and other liquefied gases) transported by rail tank car. It does not cover any products loaded or measured as solids. It defines the terms required to understand the calculations and provides instructions for their use; includes 13 calculation examples in Appendix E. Pages: 62
2nd Edition | February 2018 | Product Number: H12122 | Price: $128.00

Chapter 12.2.1
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 1—Introduction

Provides the general introduction of this standard, which is divided into five parts, each published separately. The base (reference or standard) volumetric determination of metered quantities is discussed along with the general terms required for solution of the various equations. General rules for rounding of numbers, including field data, intermediate calculations numbers, and discrimination levels, are specified. Pages: 23
Product Number: H12021 | Price: $118.00

Chapter 12.2.2
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 2—Measurement Tickets

Provides standardized calculation methods for the quantification of liquids and the determination of base prover volumes under defined conditions, regardless of the point of origin or destination or the units of measure required by governmental customs or statute. The publication rigorously specifies the equations for computing correction factors, rules for rounding, calculational sequence, and discrimination levels to be employed in the calculations. Pages: 18
Product Number: H12223 | Price: $110.00

Chapter 12.2.3
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 3—Proving Reports

Consolidates and standardizes calculations for metering petroleum liquids using turbine or displacement meters and clarifies terms and expressions by eliminating local variations among terms. This standard provides calculation methods for the determination of meter factors under defined conditions, regardless of the point of origin or destination or units of measure required by governmental customs or statute. This document specifies the equations for computing correction factors, including the calculation sequence, discrimination levels, and rules for rounding. Pages: 59
Product Number: H12023 | Price: $130.00

Chapter 12.2.4
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 4—Calculation of Base Prover Volumes by Waterdraw Method

Provides a standardized calculation method to determine a base prover volume under defined conditions. Specifically, this standard discusses the calculation procedures for the waterdraw calibration method, which is one of several different procedures used to determine base prover volume (BPV) of a displacement prover. Pages: 58
1st Edition | December 1997 | Reaffirmed: September 2014
Product Number: H12024 | Price: $133.00

Chapter 12.2.5
Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 5—Base Prover Volume Using Master Meter Method

Provides standardized calculation methods for the quantification of liquids and the determination of base prover volumes under defined conditions, regardless of the point of origin or destination or units of measure required by governmental customs or statute. The criteria contained in this document allow different entities using various computer languages on different computer hardware (or manual calculations) to arrive at identical results using the same standardized input data. Pages: 108
Product Number: H12025 | Price: $184.00

Chapter 12.3
Calculation of Volumetric Shrinkage from Blending Light Hydrocarbons with Crude Oils

Provides background, theory, calculation examples, and tables to correct for volumetric shrinkage resulting when blending volatile hydrocarbons with crude oil. The tables are entered with density differentials at standard conditions and percentage light hydrocarbon in total mix. This standard supersedes and replaces Bull 2509C, 2nd Edition, 1967. Pages: 110
Product Number: H12031 | Price: $97.00
Chapter 13
Statistical Aspects of Measuring and Sampling
The more accurate petroleum measurement becomes, the more its practitioners stand in need of statistical methods to express residual uncertainties. This chapter covers the application of statistical methods to petroleum measurement and sampling.

Chapter 13.2
Methods of Evaluating Meter Proving Data
Establishes the basic concepts and procedures to estimate and report meter performance uncertainty in consistent and comparable ways. Pages: 40
2nd Edition | April 2018 | Product Number: H13022 | Price: $105.00

Chapter 13.3
Measurement Uncertainty
Establishes a methodology to develop uncertainty analyses for use in writing API Manual of Petroleum Measurement Standards (MPMS) documents that are consistent with the ISO GUM and NIST Technical Note 1297. This standard also supersedes Ch. 13.1, 1st Edition, 1985, which is withdrawn. Pages: 75
2nd Edition | December 2017
Product Number: H130302 | Price: $122.00

Chapter 13.3 * ■
Measurement Uncertainty—Spanish
Spanish translation of Ch. 13.3.
2nd Edition | December 2017
Product Number: H130302S | Price: $122.00

Chapter 14
Natural Gas Fluids Measurement
Standardizes practices for measuring, sampling, and testing natural gas fluids.

Chapter 14.1
Collecting and Handling of Natural Gas Samples for Custody Transfer
(includes Addendum 1 and Errata 1 dated August 2017)
Concentrates on proper sampling systems and procedures. It recognizes the critical impact of hydrocarbon dew point consideration to the overall accuracy and success of these practices and procedures. Analyses of gas samples are used for many purposes and are applied to various calculations, some of which have an impact on the accuracy of custody transfer calculations (quantity and quality). Pages: 76
7th Edition | May 2016 | Product Number: H140107 | Price: $226.00

Chapter 14.3.1
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric Square-Edged Orifice Meters, Part 1: General Equations and Uncertainty Guidelines
Provides a single reference for engineering equations, uncertainty estimations, construction and installation requirements, and standardized implementation recommendations for the calculation of flow rate through concentric square-edged, flange-tapped orifice meters. Both U.S. customary (USC) and international system of units (SI) units are included. The mass flow rate and base (or standard) volumetric flow rate equations are discussed, along with the terms required for solution of the flow equation. The empirical equations for the coefficient of discharge and expansion factor are also presented. This revision includes a change to the empirical expansion factor calculation for flange-tapped orifice meters. Pages: 58
Product Number: H1403014 | Price: $196.00

Chapter 14.3.2
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 2: Specification and Installation Requirements
(ANSI/API MPMS Ch. 14.3.2-2016) (AGA Report No. 3, Part 2)
(includes Errata 1 dated March 2017 and Errata 2 dated January 2019)
Outlines the specification and installation requirements for the measurement of single-phase, homogeneous Newtonian fluids using concentric, square-edged, flange-tapped orifice meters. It provides specifications for the construction and installation of orifice plates, meter tubes, and associated fittings when designing metering facilities using orifice meters. Pages: 74
5th Edition | March 2016 | Product Number: H1403025 | Price: $204.00

Chapter 14.3.3
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters, Part 3: Natural Gas Applications
(ANSI/API MPMS Ch. 14.3.3-2013) (AGA Report No. 3, Part 3)
Developed as an application guide for the calculation of natural gas flow through a flange-tapped, concentric orifice meter, using the U.S. customary (USC) inch-pound system of units. It also provides practical guidelines for applying Ch. 14.3, Parts 1 and 2, to the measurement of natural gas. Pages: 54
4th Edition | November 2013
Product Number: H1403034 | Price: $239.00

Chapter 14.3.4 ■
Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edged Orifice Meters Part 4—Background, Development, Implementation Procedure, and Example Calculations
(AGA Report No. 3, Part 4)
Describes the background and development of the equation for the coefficient of discharge of flange-tapped square-edged concentric orifice meters and recommends a flow rate calculation procedure. The recommended procedures provide consistent computational results for the quantification of fluid flow under defined conditions, regardless of the point of origin or destination, or the units of measure required by governmental customs or statute.
The procedures allow different users with different computer languages on different computing hardware to arrive at almost identical results using the same standardized input data. Pages: 112
4th Edition | October 2019 | Product Number: H1403044 | Price: $186.00

Chapter 14.4
Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes
(GPA 8173-17)
Prescribes a method for calculating liquid volumes at equilibrium pressures and at temperatures of 60 °F, 15 °C, and 20 °C from the mass of a natural gas fluid (liquid or vapor) measured at operating conditions, in conjunction with a representative compositional analysis and published values for each component’s molar mass and absolute density. Pages: 24
2nd Edition | June 2017 | Product Number: H140402 | Price: $71.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Chapter 14.5
Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer (GPA 2172-09)

Presents procedures for calculating, at base conditions from composition, the following properties of natural gas mixtures: gross heating value, relative density (real and ideal), compressibility factor, and theoretical hydrocarbon liquid content, which in the U.S. is typically expressed as GPM, the abbreviation for gallons of liquid per thousand cubic feet of gas.

Rigorous calculation of the effect of water upon these calculations is complicated. Because this document relates primarily to custody transfer, the water effect included is an acceptable contractual calculation. Annex A of this standard contains a detailed investigation of the effect of water and detailed derivations of the equations presented in the standard. Pages: 41
Product Number: H140503 | Price: $79.00

Chapter 14.7
Mass Measurement of Natural Gas Liquids and Other Hydrocarbons (GPA 8182-18)

Serves as a reference for the selection, design, installation, operation, and maintenance of single-phase dynamic liquid mass measurement systems that operate in the 350 to 688 kg/m³ (0.350 to 0.689 relative density at 60 °F) density range. The mass measurement systems within the scope of this document include inferred mass measurement, where volume at flowing conditions is combined with density at similar conditions to result in measured mass, as well as Coriolis mass measurement. Liquids with density below 350 and above 688 kg/m³ (below 0.350 and above 0.689 relative density at 60 °F) and cryogenic fluids (colder than approximately -50 °F) are excluded from the scope of this document, but the principles described herein may apply to such streams. Sampling equipment and techniques are covered including standards for analytical methods used to determine the composition of the sampled product. Equations of state and correlations used to calculate the density of the product are discussed. The standard used to convert mass to equivalent liquid volumes of components is also discussed. Pages: 16
5th Edition | February 2018 | Product Number: H140705 | Price: $77.00

Chapter 14.9
Measurement of Natural Gas by Coriolis Meter (AGA Report No. 11)

Developed to assist designers and users in operating, calibrating, installing, maintaining, and verifying Coriolis flow meters used for natural gas flow measurement.
2nd Edition | February 2013
Order from the American Gas Association, 500 N. Capitol Street NW, Washington, DC 20001 | 202-824-7000

Chapter 14.10
Measurement of Flow to Flares

Addresses measurement of flow to flares and includes:
- application considerations,
- selection criteria and other considerations for flare meters and related instrumentation,
- installation considerations,
- limitations of flare measurement technologies,
- calibration,
- operation,
- uncertainty and propagation of error,
- calculations.
Chapter 17
Marine Measurement

Provides guidelines for the measurement and reporting of hydrocarbons including but not limited to crude oil or petroleum product for transfers by shore terminal operators, vessel personnel, and other parties involved in cargo transfer measurement and accountability operations.

Chapter 17.1
Guidelines for Marine Inspection

Specifies the policy and minimum recommended practices for the manual and automatic measurement, sampling, and accounting for bulk quantities of crude oil (including spiked, blended, and reconstituted crude oil), petroleum products and chemicals that are transported on marine vessels. The activities described in these guidelines include actions by producers, buyers, sellers, terminal operators, vessel owners, and their crews, customs authorities, independent inspectors, and other parties with an interest in measurements.

Certain vessel or terminal configurations and cargo characteristics, particularly chemicals, may require extensive procedures and calculation methods not covered in this chapter.

These procedures are equally valid and applicable for either metric or customary units of measurement, provided that the same types of units are used consistently.

The purchase of this document includes Excel® spreadsheets of the Sample Forms in Annex A (excluding “Voyage Analysis Report,” which is available in Ch. 17.5). The sample forms are designed to provide a guideline for recording and reporting essential data obtained during the marine cargo inspection procedure.

Chapter 17.1 *
Guidelines for Marine Inspection—Spanish

Spanish translation of Ch. 17.1.

Chapter 17.2
Measurement of Cargoes On Board Tank Vessels

(Covers manual portable measurement units through deck-fitted vapor control valves and fixed automatic tank gauge systems for use when a marine vessel’s cargo tanks may not be open to the atmosphere. It establishes the procedures for obtaining the level measurements of cargo, free water, and onboard quantity/remaining onboard (OBQ/ROB), as well as taking the temperatures and samples required for the marine custody transfer of bulk liquid petroleum cargoes under closed or restricted system measurement conditions. This standard is not intended for use with pressurized or refrigerated cargoes such as LPG and LNG.

Chapter 17.2 *
Measurement of Cargoes On Board Tank Vessels—Spanish

Spanish translation of Ch. 17.2.

Chapter 17.3
Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements

Provides guidelines for identifying the source of free waters associated with marine petroleum cargo movements. The presence of free water is a factor in marine custody transfers of bulk petroleum, especially in the case of crude oil cargoes. This standard recommends the water samples and volumes to be taken, the containers to be used, the care and distribution of the samples, and the analytical procedures of use in identifying sources of free water associated with marine petroleum cargoes.

Chapter 17.3 *
Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements—Spanish

Spanish translation of Ch. 17.3.

Chapter 17.4
Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)

Provides a method for determining the small volumes of on board quantity prior to loading a vessel or material remaining on board a vessel upon completion of discharge. This standard applies only to quantification by manual gauging of small volumes on marine vessels prior to loading or upon completion of discharge. It does not address clingage, hydrocarbon vapors, cargoes in transit, or cargo pumpability. Refer to Ch. 3.

Chapter 17.4 *
Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)—Spanish

Spanish translation of Ch. 17.4.

Chapter 17.5
Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities

Covers guidelines for the reconciliation of marine cargo quantities. These guidelines are intended to provide a basis for analyzing and reconciling the quantity differences (gains/losses) resulting from marine custody transfer movement(s) of petroleum and petroleum product cargoes. As such, the guidelines are complementary to, but do not replace, normal inspection procedures. The purchase of this document includes a spreadsheet for determining voyage analysis and reconciliation of cargo quantities.

Chapter 17.5
Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities—Spanish

Spanish translation of Ch. 17.5.

Chapter 17.6
Guidelines for Determining Fullness of Pipelines Between Vessels and Shore Tanks

Describes procedures for determining or confirming the fill condition of pipeline systems used for the transfer of liquid cargoes before and/or after the liquid is loaded onto or discharged from marine vessels. It includes descriptions of methods and procedures that apply to crude oil and petroleum products. While this document includes descriptions of common line fill verification methods, it does not recommend any particular method. The responsibility for selecting a method appropriate for a given terminal, and documenting its effectiveness, rests with those responsible for operating the terminal where it is applied.

Chapter 17.6 *
Guidelines for Determining Fullness of Pipelines Between Vessels and Shore Tanks—Spanish

Spanish translation of Ch. 17.6.

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 17.8
Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems

Specifies procedures for determining that the cargo tanks and associated cargo-handling system of marine vessels are in a suitably clean condition to receive the intended cargo. This applies to the loading of crude oil, petroleum products, and petrochemical cargoes. The extent of pre-loading inspection will vary depending on the nature of the cargo to be loaded. These guidelines recommend the extent of inspection that should be instituted for certain general types of cargoes and an example of a format that may be used for reporting the findings of tank inspections. Because of the wide variety of conditions that may exist when performing pre-loading tank inspections, this guideline is not intended to restrict the judgment of the person performing the inspection. Pages: 18

2nd Edition | August 2016 | Product Number: H170802 | Price: $117.00

Chapter 17.9
Vessel Experience Factor (VEF)

Provides a recommended practice for the calculation and application of a vessel experience factor (VEF). This standard provides guidelines for data compilation, data maintenance, data validation, and recommendations on the appropriate use of a VEF involving marine vessels.

It also provides instruction for parcel tankers, compartmental VEFs, and vessel-to-vessel transfer. The methods are applicable to liquid bulk cargoes including crude oil, petroleum products, chemicals, and liquid petroleum gases. Pages: 30

3rd Edition | July 2019 | Product Number: H170903 | Price: $185.00

Chapter 17.10.1/ISO 10976:2012
Measurement of Cargoes On Board Marine Gas Carriers, Part 1—Liquefied Natural Gas
(ANSI/API MPMS Ch. 17.10.1)

Establishes all of the steps needed to properly measure and account for the quantities of cargoes on liquefied natural gas (LNG) carriers. This includes, but is not limited to, the measurement of liquid volume, vapour volume, temperature and pressure, and accounting for the total quantity of the cargo on board. This document describes the use of common measurement systems used on board LNG carriers, the aim of which is to improve the general knowledge and processes in the measurement of LNG for all parties concerned. This document provides general requirements for those involved in the LNG trade on ships and onshore. Pages: 65

1st Edition | April 2014 | Product Number: HH171011 | Price: $163.00

Chapter 17.10.2
Measurement of Cargoes On Board Marine Gas Carriers, Part 2—Liquefied Petroleum and Chemical Gases

Provides guidance to vessel and shore personnel regarding accepted methods for determining quantities of liquefied petroleum and chemical gas cargoes (excluding LNG) on board refrigerated and/or pressurized carriers. This standard covers all measurement systems commonly used on refrigerated and/or pressurized gas carriers designed to carry those types of cargoes and includes recommended methods for measuring, sampling, documenting, and reporting quantities on board these vessels. Pages: 80

2nd Edition | March 2016 | Product Number: H171022 | Price: $183.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedethe English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Some sites may require measurements from multiple zones in order to determine the equipment used to transport the product, or a combination of the two. Measurement is dependent on the existing design of the lease equipment, and the transition zone between the two. The equipment used for this purpose includes trailer without requiring direct access to a lease tank gauge hatch.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.

This publication integrates by reference the API Manual of Petroleum Measurement Standards (MPMS) for sampling, temperature determination, gauging, and quality testing into a framework that may be applied during custody transfer of crude oil from lease tanks to a transport truck without requiring direct access to lease tank gauge hatch. Methods and equipment described are grouped by tank zone, trailer zone, and the transition zone between the two. The equipment for measurement is dependent on the existing design of the lease equipment, the equipment used to transport the product, or a combination of the two. Some sites may require measurements from multiple zones in order to arrive at an accurate load quantity and quality.
Chapter 19.3, Part C
Weight Loss Test Method for the Measurement of Rim-Seal Loss Factors for Internal Floating-Roof Tanks

Provides a uniform method for measuring evaporative loss from rim seals used on aboveground storage tanks. This information can be utilized to establish product specific loss factors in terms of loss rate and seal gap area. Pages: 29

1st Edition | July 1998 | Reaffirmed: January 2018
Product Number: H1903C | Price: $133.00

Chapter 19.3, Part D
Fugitive Emission Test Method for the Measurement of Deck-Seam Loss Factors for Internal Floating-Roof Tanks

Establishes a uniform method for measuring evaporative deck-seam loss factors and deck-joint loss factors of mechanically joined deck seams that are used on internal floating-roof tanks. These deck-seam loss factors and deck-joint loss factors are to be determined in terms of their loss rate at specified pressure differences across the deck seam or deck joint for certification purposes. Pages: 31

1st Edition | June 2001 | Reaffirmed: March 2018
Product Number: H1903D | Price: $133.00

Chapter 19.3, Part E
Weight Loss Test Method for the Measurement of Deck-Fitting Loss Factors for Internal Floating-Roof Tanks

Describes the test methods to be used to establish evaporative loss factors for deck fittings on internal floating-roof tanks. This chapter specifies the test apparatus, instruments, test procedures, and calculation procedures to be used. The standard also addresses the requirements for testing report values. Pages: 30

1st Edition | May 1997 | Reaffirmed: October 2017
Product Number: H1903E | Price: $133.00

Chapter 19.4
Evaporative Loss Reference Information and Speciation Methodology

Provides guidance for the administration of the former API Tank Seals and Fittings Certification Program. The document includes detailed methods for monitoring and analysis of tests conducted on individual devices and describes the steps in the certification process. Pages: 53

Product Number: H1903H | Price: $133.00

Chapter 19.4
Fugitive Emission Test Method for the Measurement of Deck-Seam Loss Factors for Internal Floating-Roof Tanks

Provides methodology to estimate emissions of individual hydrocarbon species using the total emissions of multicomponent hydrocarbon mixtures (such as crude oils and gasoline) estimated from Ch. 19.1 for fixed-roof tanks, Ch. 19.2 for floating-roof tanks, Ch. 19.5 for marine vessels, and other methods used for total hydrocarbon emission estimates. This process is referred to as speciation.

Speciation of emissions from hydrocarbon mixtures accounts for the higher evaporation rate of the more volatile components, resulting in a different composition of the mixture in the vapor phase than in the liquid phase. The methodology presented in this standard assumes that there is sufficient liquid present such that the chemical composition at the liquid surface may be considered to not change as a result of the evaporative loss.

This standard also contains reference information used for estimating emissions in accordance with Ch. 19.1, Ch. 19.2, and Ch. 19.5.

The methodology in this standard applies to:
- liquids with vapor pressure that has reached equilibrium with ambient conditions at a true vapor pressure less than the ambient atmospheric pressure (i.e. not boiling);
 liquids for which the vapor pressure is known or for which sufficient data are available to determine the vapor pressure; and

- liquid mixtures where Raoult’s Law can be used to describe the vapor phase equilibria.

This methodology does not apply to:

- emissions that result from leaks from piping components (e.g. valves, flanges, pumps, connectors etc.);

- liquid mixtures where Raoult’s Law cannot be used to describe the vapor phase equilibria (e.g. mixtures in which hydrocarbons are dissolved in water, or mixtures of hydrocarbons with alcohols).

This 3rd Edition of Ch. 19.4 was published following a revision that was carried out concurrently with revisions to Ch. 19.1, published as the 4th Edition, and Ch. 19.2, published as the 3rd Edition. Primary changes are as follows:

- Consolidation of common material in Ch. 19.4. Material that had previously been included in both Ch. 19.1 and Ch. 19.2 has been moved to Ch. 19.4. Ch. 19.4, which was previously Recommended Practice for Specification of Evaporative Losses, now has the title Evaporative Loss Reference Information and Speciation Methodology. This chapter had already contained reference information on the properties of chemicals and typical petroleum liquids, and this information has now been removed from Ch. 19.1 and Ch. 19.2. In addition, meteorological data have been moved from Ch. 19.1 and Ch. 19.2 to Ch. 19.4.

- calculation of storage tank temperatures is found in Ch. 19.1 and Ch. 19.2 (in that fixed-roof tanks involve calculation of the vapor space temperature in order to determine vapor density, whereas this step is not involved in estimating emissions from floating-roof tanks); and

- calculation of true vapor pressure is found in Ch. 19.4 (in that this is now calculated in the same manner for both fixed- and floating-roof tanks). Pages: 136
In other words, this report addresses the estimation of the mass of volatile organic compounds that leave the tank as vapor during the tank cleaning process. It does not address emissions that may result from the handling of liquids or sludge after such materials have been removed from the tank. This report is intended to reduce the effort required to generate a good faith estimate of tank cleaning emissions, and to result in more uniformity in the resulting emissions estimates. Pages: 47

Chapter 20.2
Production Allocation Measurement Using Single-Phase Devices
Covers the application of production allocation (determination of flow quantities and rates of oil, gas, water, and other constituents) using single-phase measurement devices in combination with a two- or three-phase production separator.

This standard is applicable to single-phase measurement techniques upstream of the custody transfer points where custody transfer conditions are not possible. The standard presents single-phase flow measurement used in the allocation process and located downstream of the first stage of separation on a production facility.

This standard addresses common allocation single-phase flow measurement devices for liquid hydrocarbons, water, and gas including ancillary flow measurement systems such as fuel, flare, and recirculation.

This standard discusses configuration and operation of flow measurement equipment, fluid properties, production processing, associated flow conditions, and their effects on the quality of the flow measurement results. This standard discusses the possible impacts on these devices during inefficient and/or ineffective separation.

This document provides guidance with respect to the major factors that could contribute to measurement uncertainty for single-phase devices used in production allocation. It is not intended to prescribe a particular meter type or allocation method. Allocation methodologies are addressed in Ch. 20.1. Pages: 33

Chapter 20.3
Measurement of Multiphase Flow
(supersedes RP 86)
Addresses multiphase flow measurement in the production environment, upstream of the custody transfer (single-phase) measurement point, where allocation measurement for onshore, offshore, or subsea is applied. For other multiphase flow measurement applications such as reservoir management, well tests, and flow assurance, the standard can be used as a reference or guide. However, the focus of this standard is on those applications where the accuracy of multiphase flow measurement for allocation systems is required.

This document refers to existing standards and recommended practices to supplement the guidance it provides in this subject area. The document addresses principles used in multiphase flow measurement, multiphase metering types and classifications, assessment of expected performance, and selecting and operating multiphase measurement systems. Operational requirements or constraints are addressed, including expectations for flow meter acceptance, calibration criteria, flow loop and in situ verifications, and other guidance specific to different multiphase flow metering applications. The document does not address specific meter configurations. Pages: 72

Chapter 20.3 *
Measurement of Multiphase Flow—Russian
(supersedes RP 86)
Russian translation of Ch. 20.2.

Chapter 20.2 *
Production Allocation Measurement Using Single-Phase Devices—Spanish
Spanish translation of Ch. 20.2.

This publication is related to an API licensing, certification, or accreditation program.
Chapter 20.5
Recommended Practice for Application of Production Well Testing in Measurement and Allocation

Establishes a framework to conduct and apply production well testing for well rate determination in measurement and allocation. Production well testing addressed in this document refers to measurement of gas, oil, and water quantities from a single well during a specified length of time under controlled operational conditions. The intent of this document is to provide operators with a consistent and transparent approach for conducting, applying, and managing production well testing within an upstream measurement and allocation system. It is not intended to prescribe a particular production well test method, or particular application of production well test data use in allocation.

This document provides recommendations and guidelines for the application of production well testing in production measurement and allocation. The recommendations and guidelines apply to conducting a production well test, calculating production well test volumes and rates, and the application of production well test data for use in measurement and allocation. This includes production well testing preparation, initiation, measurement, validation, and volume and rate calculations for separator, multiphase flow meter, and tank production well test systems. Additionally, this document addresses the proration of production well test results for use in allocation, the application of production well tests for validation and update of well flow models and virtual flow metering, and the adjustment of gas well continuous measurement results with production well test data.

This document also provides recommendations and guidelines for the application of well flow modeling and virtual flow metering in production measurement and allocation.

Allocation methodologies are addressed in Ch. 20.1. Pages: 123

First Edition | December 2017 | Product Number: H200501 | Price: $202.00

Draft Standard
Application of Hydrocarbon Phase Behavior Modeling in Upstream Measurement and Allocation Systems

Provides requirements and guidelines for the application of hydrocarbon phase behavior modeling in upstream measurement and allocation systems. The requirements and guidelines apply to the development, implementation, and performance management of a process simulation model (PSM) incorporating an equation of state (EOS) description of phase behavior. This includes functional specifications, validation, and maintenance of the PSM, EOS specification and implementation, and fluid compositional specification and validation.

This document establishes a framework to develop, implement, and manage the application of hydrocarbon phase behavior modeling. The applied phase behavior modeling addressed in this document refers to PSM incorporating EOS description of the phase behavior, or pressure, volume, temperature (PVT) properties, of the fluids within the modeled process. The intent of this document is to provide operators with a consistent and transparent approach for applying and managing an EOS-based PSM within an upstream measurement and allocation system. It is not intended to prescribe a particular mathematical phase estimation (i.e., EOS), process simulation (i.e., PSM), or allocation method. Allocation methodologies are addressed in Ch. 20.1. Pages: 47

First Edition | August 2016 | Product Number: H200401D | Price: $98.00

RP 85
Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems (includes Addendum 1 dated January 2013)

Presents a recommended allocation methodology that best fits the application and that equitably accommodates variances in the uncertainty level between meters in the system. It is intended to advise the user on various aspects of the use of subsea wet-gas flowmeters in allocation measurement systems. Marination, operation, abnormal operation, and meter testing are important topics included here, but foremost, this document proposes techniques to be used in the allocation of total production to individual contributing streams. Pages: 64

2-Year Extension: October 2018 | Product Number: G08501 | Price: $134.00

RP 85 *
Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems—Russian

Russian translation of RP 85.

First Edition | March 2003 | Product Number: G08501R | Price: $107.00

RP 87
Recommended Practice for Field Analysis of Crude Oil Samples Containing from Two to Fifty Percent Water by Volume

Provides the user with recommended “field” methods of sampling, sample handling, and analysis for high water content streams up to 50 % water on a volumetric basis. In particular, this RP was developed giving consideration to offshore installations (both floating and fixed platforms). These installations are generally subject to motion and vibrations, have minimal laboratory equipment, and perform S&W analysis with multi-skilled operations personnel as opposed to laboratory chemists. The techniques described, however, are applicable to onshore locations.

Provides design and operating guidelines for sampling, sample handling, and analysis for high water content streams, up to 50 % water on a volumetric basis. As a guide, this RP targets a relative accuracy of 5 % of reading up to a maximum of 50 % water content as a qualifier for various methods described herein. For example, the corresponding absolute accuracy for a 10 % water content stream is ±0.5 % and for 20 % water content is ±1.0 %. Pages: 19

First Edition | August 2007 | Reaffirmed: October 2017

Product Number: G08701 | Price: $98.00

Chapter 21
Flow Measurement Using Electronic Metering Systems

Describes standard practices and minimum specifications for electronic measurement systems used in the measurement and recording of flow parameters. This chapter covers natural gas fluid and petroleum and petroleum product custody transfer applications using industry-recognized primary measurement devices.

Chapter 21.1

Describes the minimum specifications for electronic gas measurement systems used in the measurement and recording of flow parameters of gaseous phase hydrocarbon and other related fluids for custody transfer applications utilizing industry recognized primary measurement devices. This standard provides the minimum reporting and change management requirements of the various intelligent components required for accurate and auditable measurement. The requirements can be met by a combination of electronically and/or manually recorded configuration, test reports, change record reporting of the electronic gas measurement system components, and flow parameters. It is recognized that diagnostic capabilities of the newer meter and transmitter technologies are important but due to the device specific complexity, intelligent device diagnostics are out of scope for this standard. Pages: 94

Second Edition | February 2013 | 2-Year Extension: December 2018

Product Number: H210102 | Price: $175.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersed the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Chapter 21.2
Electronic Liquid Volume Measurement Using Positive Displacement and Turbine Meters

Provides guidance for the effective use of electronic liquid measurement systems for custody transfer measurement of liquid hydrocarbons under the following conditions. Use of the measurement systems must fall within the scope and field of application of Ch. 12.2. Guidance applies to systems using turbine or positive displacement meters. Guidance applies to systems using on-line correction for the effect of temperature on liquid (TTL) and correction for the effect of pressure on liquid (CPL) compensation. The procedures and techniques in Ch. 21.2 are recommended for new measurement applications. This standard provides custody transfer measurement procedures for pipeline and other electronic liquid metering systems including design, selection, use, auditing, reporting, calibration, verification, and security. Pages: 60
Product Number: H21021 | Price: $207.00

Chapter 21.2-A1
Addendum 1 to Flow Measurement Using Electronic Metering Systems, Inferred Mass

This addendum specifically covers inferred mass measurement systems utilizing flow computers as the tertiary flow calculation device and either turbine or displacement type meters, working with on-line density meters, as the primary measurement devices. The scope does not include systems using calculated flow densities, i.e., Equations of State. The hardware is essentially identical to that referenced in Ch. 21.2 and the methods and procedures are as described in Ch. 14.4, 14.6, 14.7, and 14.8. Audit, record-keeping, collection and calculation interval, security, and most other requirements for systems covered in Ch. 21.2 will apply to this addendum. As in Ch. 21.2, the hydrocarbon liquid streams covered in the scope must be single phase liquids at measurement conditions.
Product Number: H2102A | Price: $66.00

Chapter 22
Testing Protocols

Testing protocols for devices used in the measurement of hydrocarbon fluids. Testing protocols define appropriate methods for measuring and reporting the performance characteristics of similar equipment in a comparable manner, thus providing a means to highlight the relative performance advantages and disadvantages of similar devices.

Chapter 22.1

Provides methodologies for monitoring liquid pipeline loss/gain and for determining the normal loss/gain level for any given pipeline system. Troubleshooting suggestions are also presented. This document does not establish industry standards for loss/gain level because each system is individual and exhibits its own loss/gain level and/or patterns under normal operating conditions. The document provides operational and statistically based tools for identifying when a system has deviated from normal, the magnitude of the deviation, and guidelines for identifying the causes of deviation from normal.

Chapter 22.2

Provides the testing and reporting protocols for flow measurement devices based on the detection of a pressure differential that is created by the device in a flowing stream. The protocol is designed to supply industry with a comparable description of the capabilities of these devices for the measurement of single-phase fluid flow when they are used under similar operating conditions. The objectives of this Testing Protocol are to:

- provide information about relative performance characteristics of the primary elements of the differential pressure metering devices under standardized testing protocol,
- quantify the uncertainty of these devices and define the operating and installation conditions for which the stated uncertainties apply. Pages: 52

Chapter 22.6
Testing Protocol for Gas Chromatographs

A general gas chromatograph (GC) performance test protocol that specifies the scope and reporting requirements of GC tests for repeatability, reproducibility, and response linearity. The protocol specifies requirements for tests over a range of gas compositions, tests over a range of environmental conditions, and long-term performance tests. Pages: 50
1st Edition | August 2015 | Product Number: H220601 | Price: $107.00

Chapter 23
Reconciliation of Hydrocarbon Quantities

Provides practical methodologies for monitoring hydrocarbon transportation loss and gain for non-marine systems i.e. pipeline, tank cars (rail tank cars, tank trucks, etc.). For Marine Reconciliation, refer to Ch. 17.

Chapter 23.1
Reconciliation of Liquid Pipeline Quantities (supersedes Std 2560)

Provides methodologies for monitoring liquid pipeline loss/gain and for determining the normal loss/gain level for any given pipeline system. Troubleshooting suggestions are also presented. This document does not establish industry standards for loss/gain level because each system is individual and exhibits its own loss/gain level and/or patterns under normal operating conditions. The document provides operational and statistically based tools for identifying when a system has deviated from normal, the magnitude of the deviation, and guidelines for identifying the causes of deviation from normal.

The primary application of this publication is in custody transfer liquid pipeline systems in which there is provision for measuring all liquids that enter the system and exit the system, as well as liquid inventory within the system. The application is not intended for nonliquid or mixed-phase systems. The applications and examples in this document are intended primarily for custody transfer pipeline systems, but the principles may be applied to any system that involves the measurement of liquids into and out of the system and, possibly, inventory of liquids within the system. Such systems may include pipelines, marine terminals, marine voyages, bulk loading or storage terminals, tank farms, and rail and trucking systems. Pages: 35
1st Edition | June 2016 | Product Number: H230101 | Price: $103.00
2002. It should be noted that the indicated performances data stated in documentation was prepared from information obtained through mid-
API Compendium of Greenhouse Gas Emissions Estimation and the guidance on measuring the volume/mass of process fuel gas or feedstock, the API companion technical report, TR 2571, can be referenced for:
- inspection, verification, and calibration practices of flow meters and their associated accessory instrumentation; and
- selection of flow meter type; differential pressure (DP), displacement, ultrasonic, Coriolis, vortex, turbine, thermal, and others;
- associated instrumentation for measuring fluid properties and flowing conditions, such as pressure and temperature transmitters, densitometers, gas chromatographs;
- obtaining and use of gas composition or other analytical data;
- design and installation requirements of the measurement system;
- inspection, verification, and calibration practices of flow meters and their associated accessory instrumentation; and
- simplified uncertainty calculations with examples to illustrate the methodology.

Techniques are described to assess the uncertainty contribution of individual components of fuel gas measurement systems and overall facility fuel gas measurement uncertainty. Pages: 80

TR 2571
Fuel Gas Measurement
Provides a performance-based methodology for the measurement and reporting of fuel gas consumption. The document provides guidance in the following areas to allow the user to achieve a targeted uncertainty of measurement:
- selection of flow meter type; differential pressure (DP), displacement, ultrasonic, Coriolis, vortex, turbine, thermal, and others;
- associated instrumentation for measuring fluid properties and flowing conditions, such as pressure and temperature transmitters, densitometers, gas chromatographs;
- obtaining and use of gas composition or other analytical data;
- design and installation requirements of the measurement system;
- inspection, verification, and calibration practices of flow meters and their associated accessory instrumentation; and
- simplified uncertainty calculations with examples to illustrate the methodology.

This TR provides a summary of flow conditioning testing performed on turbine meters in liquid hydrocarbons. Initial testing was conducted in water and those findings were included as an addendum to Ch. 5.3 in 2009, subsequent testing in hydrocarbon liquids was carried out through July 2016. Phase II testing focused on operational effects, specifically the relationship of strainer design, strainer basket disturbances, flow conditioning, and their effects on the flow meter deviations in hydrocarbon applications (viscosities, densities, and Reynolds number). Pages: 16

TR 2572
Carbon Content, Sampling, and Calculation
Carbon emission quantities can be calculated from either the volume/mass of fuel or feedstock fed to a process (as applicable) and carbon content of the process or fuel supply, or by directly measuring volume/mass emissions. This technical report (TR) provides guidance on the sampling and calculation of carbon content of process or fuel supplies. The API companion technical report, TR 2571, can be referenced for guidance on measuring the volume/mass of process fuel gas or feedstock, and the API Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Natural Gas Industry can be reference for guidance on the calculation of emissions.

TR 2575
Measurement of Thermally Cracked Gas
Presents a method to compute the density, compressibility factor, and supercompressibility factor for thermally cracked gas (TCG) for custody transfer using orifice meters. It provides equations, parameters, computation flow diagrams, and example spreadsheet calculations. This technical report applies to TCG mixtures after treatment. It applies for temperature from 90 °F to 120 °F (305 K to 322 K) at pressures up to 300 psig (2 MPa). It is limited to a specific operating region. The method is for the single gas phase only. Pages: 17

TR 2577
Performance of Full-Bore Vortex Meters for Measurement of Liquid Flows
Provides documentation of performance characteristics of full-bore liquid vortex meters for measuring liquid hydrocarbon flows of different API gravity under the field operating conditions and under a controlled environment in a laboratory test facility with water as the proving fluid, limited laboratory proving facility test results using water as the calibration fluid of several and 2-in. (50 mm) and 4-in. (100 mm) commercially available full-bore vortex meters that are typically installed for non-custody transfer liquid installations, and typical performance of full-bore 4-in. (100-mm) liquid vortex meters for liquid hydrocarbon measurement and to provide guidance in selecting liquid vortex meters for custody transfer measurement. Pages: 30

TR 2578
Flow Conditioner Installation and Effects on Turbine Meters
Provides a performance-based methodology for the measurement and reporting of fuel gas consumption. The document provides guidance in the following areas to allow the user to achieve a targeted uncertainty of measurement:
- selection of flow meter type; differential pressure (DP), displacement, ultrasonic, Coriolis, vortex, turbine, thermal, and others;
- associated instrumentation for measuring fluid properties and flowing conditions, such as pressure and temperature transmitters, densitometers, gas chromatographs;
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards.

NOTE Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

GENERAL

Pubi 1593
Gasoline Marketing in the United States Today
Provides information on motor fuel and gasoline consumption, U.S. motor fuel distribution, the U.S. gasoline pricing system, motor gasoline prices and taxes, the number/configuration of retail gasoline outlets, and employment/productivity in the retail gasoline distribution industry. Pages: 77

Pubi 1673
Compilation of Air Emission for Petroleum Distribution Dispensing Facilities
Compiles the most widely accepted, available emission factors and emission estimation techniques for developing air emission estimates from evaporative loss sources of petroleum products at marketing and distribution facilities. These losses can occur from transfer and storage operations and fugitive equipment leaks and spillage. Pages: 29
2nd Edition | July 2009 | Product Number: A16732 | Price: $88.00

AVIATION

RP 1543
Documentation, Monitoring and Laboratory Testing of Aviation Fuel During Shipment from Refinery to Airport
Aviation fuels pass through a variety of storage and handling facilities, from refinery to airport. As aviation fuels are stored and transported in storage and transportation systems where contact with non-aviation products may occur, a fuel quality monitoring program is required, in addition to equipment, operating, inspection and maintenance standards. The purpose of this practice is to ensure the fuel remains on specification. This recommended practice (RP) was written to provide guidance on the development of an aviation fuel monitoring and testing program (fuel quality monitoring program) for aviation fuel from point of manufacture to delivery to the airport. “Proper handling” entails documenting and testing aviation fuel quality as product is transported throughout the supply chain to maintain the original product specification. Pages: 25
1st Edition | July 2009 | Reaffirmed: April 2019
Product Number: A154301 | Price: $65.00

RP 1595
Design, Construction, Operation, Maintenance, and Inspection of Aviation Pre-Airfield Storage Terminals
Contains basic requirements for the design, construction, operation, and maintenance of pre-airfield storage terminals located directly upstream of the airport, hereafter referred to as “pre-airfield storage terminals.” This recommended practice provides guidance on the minimum equipment standards and operating procedures for the receipt and storage of aviation fuels at pre-airfield storage terminals, located directly upstream of the airport, and its shipment directly via a grade-dedicated pipeline, marine vessel (barge or ship), or road/rail transport to an airport. This RP does not address in-transit or breakout storage upstream of the pre-airfield storage terminal. The design and construction provisions of this standard are intended for application at new facilities. Application of the design and construction provisions of this standard to facilities, equipment, structures, or installations that are already in place, that are in the process of construction or that are installed before the date of this publication, should be evaluated when circumstances merit. Such an evaluation should consider the site-specific circumstances and detailed accounting for both the potential and tolerance for risk, existing conditions at the installation, and overall benefit for applying the required design and construction provisions. The operation, sampling, testing, and maintenance provisions in the various sections of this standard shall apply to both new and existing installations. Pages: 75
2nd Edition | October 2012 | Reaffirmed: April 2019
Product Number: C159502 | Price: $251.00

As of 2010, API does not maintain or distribute the following aviation fuel equipment related documents:

- **EI 1529**
 Aviation Fuelling Hose
- **EI 1540**
 Design, Construction, Operation and Maintenance of Aviation Fueling Facilities, IP Model Code of Safe Practice Part 7
- **EI 1542**
 Identification Markings for Dedicated Aviation Fuel Manufacturing and Distribution Facilities, Airport Storage and Mobile Fuelling Equipment
- **EI 1550**
 Handbook on Equipment Used for the Maintenance and Delivery of Clean Aviation Fuel
- **EI 1581**
 Specification and Quality Procedures for Aviation Jet Fuel Filter/Separators
- **EI 1582**
 Specification for Similarity for API/EI 1581 Aviation Jet Fuel Filter/ Separators
- **EI 1584**
 Four-Inch Aviation Hydrant System Components and Arrangements
- **EI 1585**
 Guidance in the Cleaning of Aviation Fuel Hydrant Systems at Airports
- **EI 1590**
 Specifications and Quality Procedures for Aviation Fuel Microfilters
- **EI 1594**
 Initial Pressure Strength Testing of Airport Fuel Hydrant Systems with Water
- **EI 1596**
 Design and Construction of Aviation Fuel Filter Vessels
- **EI 1597**
 Procedures for Overwing Fuelling to Ensure Delivery of the Correct Fuel Grade to an Aircraft
- **EI 1598**
 Considerations for Electronic Sensors to Monitor Free Water and/or Particulate Matter in Aviation Fuel
- **EI 1599**
 Laboratory Tests and Minimum Performance Levels for Aviation Fuel Dirt Defense Filters

The documents listed above are maintained and distributed by the Energy Institute. For ordering information, please refer to the following website: https://publishing.energivinst.org/
MARKETING OPERATIONS

RP 1525 •
Bulk Oil Testing, Handling, and Storage Guidelines

Designed to be used as a reference and management guide by personnel operating and managing petroleum and tank facilities associated with the storage and distribution of petroleum lubricants. Topics covered include equipment and facility standards, product sampling and testing methods and equipment, receiving and storage of bulk lubricants, and packaging and loading petroleum lubricants for distribution to other facilities. Pages: 28

1st Edition | June 1997 | Product Number: F15251 | Price: $71.00

RP 1604
Closure of Underground Petroleum Storage Tanks

Provides operating procedures that may be used for the abandonment, removal, storage, temporarily-out-service, and sale of used underground tanks that have contained gasoline or other flammable liquids. Pages: 9

3rd Edition | March 1996 | Reaffirmed: December 2010
Product Number: A16043 | Price: $82.00

RP 1615
Installation of Underground Petroleum Storage Systems

Guides to procedures and equipment that should be used for the proper installation of underground storage systems for bulk petroleum products or used oil at retail and commercial facilities. The stored products include gasoline, diesel fuel, kerosene, lubricating oils, used oil, and certain bio-fuel blends. This RP is intended for use by architects, engineers, tank owners, tank operators, and contractors. Contractors, engineers, and owners or operators who are preparing to design or install an UST system should investigate the federal, state, and local requirements and current methods of compliance for vapor recovery in that region. Vapor recovery is covered in detail in Section 17 of this document. This RP is not intended to cover specialized installations, such as fuel storage systems at marinas or airports, heating oil storage systems (either residential or bulk), or systems installed inside buildings. However, it does outline recognized and generally accepted good engineering practices that may be of use for these specialized installations. This RP does not apply to the installation of below ground or above ground bulk storage systems greater than 60,000 gallons. Pages: 89

6th Edition | April 2011 | Product Number: A16156 | Price: $222.00

RP 1621
Bulk Liquid Stock Control at Retail Outlets

Primarily applies to underground storage of motor fuels and used oil at retail and commercial facilities. It assists the operator in controlling bulk stock losses, thereby achieving a high level of safety and pollution control, while maximizing profits. Pages: 25

Product Number: A16210 | Price: $90.00

RP 1626
Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Filling Stations

Includes Errata 1 dated February 2011

Describes recommended practices for the storing, handling, and fire protection of ethanol and gasoline-ethanol blends from E1 to E10 and from E70 to E100 (used for E85) at distribution terminals and filling stations. Where information exists for gasoline-ethanol blends from E11 to E15, it is shared. Recommended practices for E16 through E69 are not covered because currently these blends are not legal gasoline blends or alternative fuels. There is a general lack of information on the properties of these blends and there are currently no filling station components certified by any nationally recognized testing laboratory for these blends. Pages: 59

2nd Edition | August 2010 | Product Number: A16262 | Price: $168.00

Std 1631
Interior Lining and Periodic Inspection of Underground Storage Tanks

Provides minimum recommendations for the interior lining of existing steel and fiberglass reinforced plastic underground tanks used to store petroleum-based motor fuels and middle distillates. Recommendations and procedures to be followed by contractors, mechanics, and engineers are presented. Methods for vapor-freeing tanks, removing sediment, and cleaning interior surfaces of steel and fiberglass tanks are also presented, as are guidelines for identifying tanks that may be lined. The methods described in this standard are applicable to steel and fiberglass-reinforced plastic tanks used for the storage of petroleum-based motor fuels and middle distillates. The procedures are applicable to tanks installed in typical retail service station outlets, but may also be used for tanks installed at other types of facilities. Pages: 25

Product Number: A16315 | Price: $94.00

RP 1637
Using the API Color-Symbol System to Mark Equipment and Vehicles for Product Identification at Gasoline Dispensing Facilities and Distribution Terminals

Includes Errata 1 dated January 2007

Describes a system for marking equipment used to store and handle bulk petroleum, alcohol-blended petroleum and biodiesel products. The marking system described in this recommended practice does not cover aviation fuels. Marking systems for aviation fuels are described in API/IP Std 1542. Pages: 15

Product Number: A16373 | Price: $72.00

RP 1639
Owner/Operator's Guide to Operation and Maintenance of Vapor Recovery Systems at Gasoline Dispensing Facilities

Provides guidance for owners and operators of gasoline dispensing facilities and regulatory officials regarding the operation and maintenance of gasoline vapor recovery systems and components. Proper operation and maintenance of the equipment can improve compliance with vapor recovery regulations and provide substantial emission reductions. This guide does not address the maintenance required qualified service technicians. Pages: 22

Product Number: A16391 | Price: $94.00

RP 1640
Product Quality in Light Product Storage and Handling Operations

Prepared by the API Fuels Marketing Subcommittee with technical participation and feedback from other industry stakeholders. It assists those involved in fuel handling at distribution and intermediate storage facilities. This publication provides guidance on the minimum equipment standards and operating procedures for the receipt, storage, blending, and delivery of light products, their blend components, and additives at distribution and intermediate storage terminals, including related operations of pipeline, marine vessel (barge or ship), and road/rail transport. This RP also covers the minimum equipment standards and operating procedures for the receipt, storage, blending of light products, including but not limited to gasoline, kerosene, diesel, heating oil and their blend components (i.e. ethanol, biodiesel, and butane) at distribution and storage terminals, as well as light product shipments directly via a pipeline, marine vessel (barge or ship) or road and rail transport. In addition, this RP provides guidance for the design, construction, operation, and maintenance of light products storage and distribution terminals with the specific intent of protecting or ensuring product quality. Pages: 64

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
Marketing

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

PUB 1642
Alcohol, Ethers, and Gasoline-Alcohol and -Ether Blends
Examines fire safety considerations at petroleum marketing facilities. Focuses on gasoline blended with oxygenates, and M85, but also includes alcohols and ethers because they may be present at terminals and bulk plants for blending purposes. Pages: 12
1st Edition | February 1996 | Product Number: A16421 | Price: $66.00

PUB 1645
Stage II Cost Study
Addresses the general installation cost information for three different types of retail gasoline outlet (ROG) vapor recovery systems: vapor balance, passive vacuum assist, and active vacuum assist. Additionally, it provides an overview of how each system operates. Pages: 6
1st Edition | August 2002 | Product Number: A16451 | Price: $62.00

RP 1646
Safe Work Practices for Contractors Working at Retail Petroleum/Convenience Facilities
Provides the recommended minimum safety procedures for working at retail petroleum/convenience facilities and is a key component of the API WorkSafe Program. It also details how to develop a task specific Job Safety Analysis that should be completed before any work may begin. This document also provides the user with a general awareness of safety issues associated with maintenance and construction work at retail petroleum/convenience facilities, including service stations. It also highlights many of the Federal OSHA requirements that may apply to maintenance and construction work in the retail petroleum/convenience business. Pages: 84
2nd Edition | May 2017 | Product Number: A164602 | Price: $159.00

STD 2610
Design, Construction, Operation, Maintenance, and Inspection of Terminal and Tank Facilities
Guides the management of terminals and tanks in a manner that protects the environment and the safety of workers and the public. This standard is intended for petroleum terminal and tank facilities associated with marketing, refining, pipeline, and other similar facilities. This standard may be used as a resource and management guide by those responsible for such facilities and by those working on their behalf. This standard is a compilation of industry knowledge, information, and management practices for all relevant aspects of terminal and tank operations aggregated into an overview document comprising best practices. Pages: 100
3rd Edition | September 2018 | Product Number: C26103 | Price: $192.00

USED OIL
A Guidebook for Implementing Curbside and Drop-Off Used Motor Oil Collection Programs
Designed to help municipal managers and regulators evaluate the types of available programs (either curbside or drop-off programs, including examples of both), and how to effectively implement these used oil recycling programs. It is based on national surveys of existing programs throughout the country and includes examples of budgets, procedures, equipment, and model programs that are currently underway. Pages: 47

PUB 1830
National Used Oil Collection Study
Reviews the status of used engine oil collection in the United States. Documents state efforts to collect oil and the outcomes of such efforts. Provides examples of how used oil collection can be successful, as well as warning of the pitfalls that should be avoided, based on the experience of other states. Pages: 248
1st Edition | June 1996 | Product Number: B18301 | Price: $63.00

PUB 1835
Study of Used Motor Oil Recycling in Eleven Selected Countries
The study described in this report obtained information about used motor oil collection and recycling programs in 11 selected countries around the world. Pages: 55
1st Edition | November 1997 | Product Number: B18351 | Price: $65.00

TANK TRUCK OPERATIONS

RP 1004
Bottom Loading and Vapor Recovery for MC-306 & DOT-406 Tank Motor Vehicles
Provides an industry standard for bottom loading and vapor recovery of proprietary and hired carrier DOT MC-306 tank vehicles at terminals operated by more than one supplier. Guides the manufacturer and operator of a tank vehicle as to the uniform features that should be provided to permit loading of a tank vehicle with a standard 4-in. adapter. This edition of RP 1004 requires an independent secondary control system and maximum requirements for outage in the tank to allow the secondary control system to function. Pages: 21
2-Year Extension: January 2018
Product Number: A10048 | Price: $120.00

RP 1007
Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles
Ensuring the safe and efficient loading and delivery of petroleum products to retail service stations and bulk facilities is the primary goal for all companies that transport product. This document is a guideline for use by the truck driver and persons responsible for loading and unloading of MC306/ DOT406 cargo tanks. It identifies specific steps to ensure that product can be loaded into tank trucks and unloaded into both underground and aboveground storage tanks in a safe and efficient manner that protects the environment. It is intended to be used in conjunction with existing driver training programs and procedures. Pages: 24
2-Year Extension: January 2018
Product Number: A10071 | Price: $42.00

RP 1112
Developing a Highway Emergency Response Plan for Incidents Involving Hazardous Materials
Provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks, and for coordinating and cooperating with local, state, and federal officials. Covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activities. The appendices outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles. Pages: 21
2-Year Extension: January 2018
Product Number: A11123 | Price: $82.00

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
that receive flammable and combustible liquids. The fourth edition continues to build on experience and new technology through the use of management systems. Since operations are the primary overfill prevention safeguard, new definitions and requirements are established for alarms. Risk reduction is also addressed by current and generally accepted industry practices.

The essential elements of this document are based on current industry safe operating practices and existing consensus standards. Federal, state, and local regulations or laws may contain additional requirements for tank overfill protection programs. For existing facilities, the results of a risk-based analysis of aboveground atmospheric petroleum storage tanks may indicate the need for more protection against overfilling. In such cases, some provisions from this standard may be suitable.

The purpose of this standard is to assist owner/operators and operating personnel in the prevention of tank overfills by implementation of a comprehensive overfill prevention process (OPP). The goal is to receive product into the intended storage tank without overfill or loss of containment. This standard does not apply to: underground storage tanks; aboveground tanks of 1320 U.S. gallons (5000 liters) or less; aboveground tanks which comply with PEI 600; pressure vessels; tanks containing non-petroleum liquids; tanks storing LPG and LNG; tanks at service stations; tanks filled exclusively from wheeled vehicles (i.e. tank trucks or railroad tank cars); and tanks covered by OSHA 29 CFR 1910.119 and EPA 40 CFR 68, or similar regulations. Pages: 47

4th Edition | May 2012 | Product Number: K235004 | Price: $123.00

HEALTH, ENVIRONMENT, AND SAFETY: WASTE

Publ 1638
Waste Management Practices for Petroleum Marketing Facilities
Provides specific guidance for managing typical waste streams at petroleum marketing facilities. This publication covers petroleum marketing facilities ranging from retail fuel convenience stores to terminals and lube plants. Pages: 20
1st Edition | October 1994 | Product Number: A16381 | Price: $82.00

HEALTH, ENVIRONMENT, AND SAFETY: WATER

Publ 1612
Guidance Document for Discharging of Petroleum Distribution Terminal Effluents to Publicly Owned Treatment Works
Provides terminal managers with guidance on discharging terminal effluents to publicly owned treatment works (POTWs). Covers relations with POTW personnel, POTW concerns in accepting terminals wastewater, pretreatment regulations and local limits on the discharge of wastewaters to POTWs, and associated costs. Pages: 34
1st Edition | November 1996 | Product Number: A16121 | Price: $105.00

Publ 1669
Results of a Retail Gasoline Outlet and Commercial Parking Lot Storm Water Runoff Study
Presents the findings of a study to characterize storm water runoff from retail gasoline outlets and compares the results with runoff from commercial parking lots and published urban “background” values. Funded by the Western States Petroleum Association (WSPA) and the American Petroleum Institute (API), the results of this study indicate that fueling activities at normally operated and maintained retail gasoline outlets do not contribute additional significant concentrations of measured constituents in storm water runoff. Pages: 24
1st Edition | December 1994 | Product Number: A16691 | Price: $90.00
HEALTH, ENVIRONMENT, AND SAFETY:
SOIL AND GROUNDWATER

Publ 1628
A Guide to the Assessment and Remediation of Underground Petroleum Releases
Provides an overview of proven technologies for the assessment and remediation of petroleum releases in soil and groundwater. Covers accidental releases arising from the production, transportation, refining, and marketing of liquid petroleum products or unrefined crude oil. Pages: 119
3rd Edition | July 1996 | Product Number: A16283 | Price: $177.00
Publ 1628 and its five companion publications (1628A, 1628B, 1628C, 1628D, and 1628E) may be purchased as a set.
Order Number: A1628S | Price: $350.00

Publ 1628A
Natural Attenuation Processes
Describes the physical, chemical, and biological processes that decrease the concentrations and ultimately limit the extent of the dissolved plume migrating from a hydrocarbon release. Pages: 16
1st Edition | July 1996 | Product Number: A1628A | Price: $64.00

Publ 1628B
Risk-Based Decision Making
Discusses risk-based decision making approaches used for the assessment of hazardous conditions. Also presents information that can be utilized to focus remedial measures and funds on petroleum hydrocarbon release sites while being protective of human health and the environment, and to facilitate timely closure of hydrocarbon-impacted sites. Pages: 13
1st Edition | July 1996 | Product Number: A1628B | Price: $64.00

Publ 1628C
Optimization of Hydrocarbon Recovery
Covers the optimization, in its broadest sense, to achieve an environmentally sound site closure in the appropriate timeframe for the least cost (to maximize efficiency of the selected system). Pages: 20

Publ 1628D
In-Situ Air Sparging
Addresses in-situ air sparging. Covers remediation technologies, starting with the early techniques of containment or mass reduction through today's very aggressive site closure techniques. Addresses containment as well as residual petroleum hydrocarbon compounds. Pages: 13

Publ 1628E
Operation and Maintenance Considerations for Hydrocarbon Remediation Systems
Discusses concepts regarding operation and maintenance procedures necessary to achieve and maintain optimal performance of petroleum hydrocarbon remediation systems. Pages: 23
1st Edition | July 1996 | Product Number: A1628E | Price: $64.00

Publ 1629
Guide for Assessing and Remediating Petroleum Hydrocarbons in Soils
This publication provides information regarding the site and release characteristics relevant to, and methods for assessing and remediating, soils contaminated with petroleum hydrocarbons released from underground or aboveground storage tank systems and operations. Developed to complement Publ 1628, which focuses primarily on assessing and remediating petroleum releases that may impact groundwater. Pages: 81

SECURITY

Std 1164
Pipeline SCADA Security
Provides guidance to the operators of oil and gas liquids pipeline systems for managing SCADA system integrity and security. The use of this document is not limited to pipelines regulated under Title 49 CFR 195.1, but should be viewed as a listing of best practices to be employed when reviewing and developing standards for a SCADA system. This document embodies API's Security Guidelines for the Petroleum Industry. This guideline is designed to provide operators with a description of industry practices in SCADA security, and to provide the framework needed to develop sound security practices within the operator's individual companies. It is important that operators understand system vulnerability and risks when reviewing the SCADA system for possible system improvements. The goal of an operator is to control the pipeline such that there are no adverse effects on employees, the environment, the public, or the customers as a result of actions by the operator, or by other parties. This document's main body provides a high-level view of holistic security practices. The annexes provide further details and technical guidance. Reviewing this document and following the guidance set forth in the annexes assists in creating inherently secure operations. Implementation of this standard to advance supervisory control and data acquisition (SCADA) cyber security is a continuous process. The overall process could take years to implement, depending on the complexity of the SCADA system. Additionally, the process would optimally be started as part of a SCADA upgrade project and use this standard to “design in” security as an element of the new system. Pages: 76
Product Number: D11642 | Price: $158.00
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards

NOTE: Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

RAIL TRANSPORTATION

RP 3000
Classifying and Loading of Crude Oil into Rail Tank Cars

Provides guidance on the material characterization, transport classification, and quantity measurement for overfill prevention of petroleum crude oil, for the loading of rail tank cars.

This document applies only to petroleum crude oil classified as Hazard Class 3—Flammable Liquid under the U.S. Code of Federal Regulations (CFR) at the time of publication.

RP 3000 identifies criteria for determining the frequency of sampling and testing of petroleum crude oil for transport classification. It discusses how to establish a sampling and testing program and provides an example of such a program.

This document provides guidance on Packing Group (PG) assignment, including the potential effect of heel, and mixing of crude oils of differing PGs. The document provides guidance on initial testing and an ongoing sampling and testing for assignment of PG.

RP 3000 provides guidance on determining the loading target quantity (LTQ) of crude oil transported by rail tank car. This includes crude oil temperature and density determination, identification of sampling points based on loading scenarios, and measurement equipment and processes.

Guidance on the documentation of measurement results and record retention is also provided. Pages: 46

1st Edition | September 2014 | Product Number: A30001 | Price: $136.00

PIPELINE PUBLIC EDUCATION AND AWARENESS

API Guidelines for Right-of-Way Activities
Brochure

The liquid petroleum pipeline industry has developed these guidelines to improve understanding and increase awareness of the nature of underground pipelines that transport oil, petroleum products, natural gas liquids, and other hazardous liquids and how to conduct land development and use activity near pipeline rights of way.

The guidelines are intended for use by anyone who is involved in land development, agriculture and excavation/construction activities near a pipeline. The industry’s goal is to protect public safety of the people who live and work along pipeline rights of way, protect the environment along rights of way, and maintain the integrity of the pipeline so that petroleum products can be delivered to customers safely and without interruption.

A pipeline right-of-way (ROW) is property in which a pipeline company and a landowner both have a legal interest. Each has a right to be there, although each has a different type of use for the land. Pipeline companies are granted permission from private landowners to transport petroleum products across their private lands. That permission is documented in a written agreement called an easement, and it is obtained through purchase, license, or by agreement with the landowner. In cases where the land is owned by the government—whether local, state or federal—similar arrangements for their private lands. That permission is documented in a written agreement.

This document applies only to petroleum crude oil classified as Hazard Class 3—Flammable Liquid under the U.S. Code of Federal Regulations (CFR) at the time of publication.

RP 3000 identifies criteria for determining the frequency of sampling and testing of petroleum crude oil for transport classification. It discusses how to establish a sampling and testing program and provides an example of such a program.

This document provides guidance on Packing Group (PG) assignment, including the potential effect of heel, and mixing of crude oils of differing PGs. The document provides guidance on initial testing and an ongoing sampling and testing for assignment of PG.

RP 3000 provides guidance on determining the loading target quantity (LTQ) of crude oil transported by rail tank car. This includes crude oil temperature and density determination, identification of sampling points based on loading scenarios, and measurement equipment and processes.

Guidance on the documentation of measurement results and record retention is also provided. Pages: 46

1st Edition | September 2014 | Product Number: A30001 | Price: $136.00

Get the Dirt

Video

A damage prevention awareness video produced by the Dig Safely team. The video explains the call first process and encourages its use. Available in both English and Spanish.

Single copies free from the API Pipeline Segment: 202-682-8125
Multiple copies available for $1.30 each plus shipping from Revak & Associates: 330-533-1727

PIPELINE OPERATIONS PUBLICATIONS

RP 80
Guidelines for the Definition of Onshore Gas Gathering Lines

Developed by an industry coalition that included representatives from over 20 petroleum industry associations, provides a functional description of onshore gas gathering pipelines for the sole purpose of providing users with a practical guide for determining the application of the definition of gas gathering in the federal Gas Pipeline Safety Standards, 49 CFR Part 192, and state programs implementing these standards. Pages: 53

1st Edition | April 2000 | Reaffirmed: January 2013
Product Number: G80001 | Price: $136.00

RP 1102
Steel Pipelines Crossing Railroads and Highways

(has Errata 1 dated November 2008, Errata 2 dated May 2010, Errata 3 dated September 2012, Errata 4 dated February 2014, and Errata 5 dated March 2014)

Covers the design, installation, inspection, and testing required to ensure safe crossings of steel pipelines under railroads and highways. The provisions apply to the design and construction of welded steel pipelines under railroads and highways. The provisions of this practice are formulated to protect the facility crossed by the pipeline, as well as to provide adequate design for safe installation and operation.

The provisions herein should be applicable to the construction of pipelines crossing under railroads and highways and to the adjustment of existing pipelines crossed by railroad or highway construction. This practice should not be applied retroactively. Neither should it apply to pipelines under contract for construction on or prior to the effective date of this edition.

Neither should it be applied to directionally drilled crossings or to pipelines installed in utility tunnels. Pages: 64

7th Edition | December 2007 | Reaffirmed: December 2017
Product Number: D11021 | Price: $125.00

Std 1104
Welding of Pipelines and Related Facilities

Covers the gas and arc welding of butt, fillet, and socket welds in carbon and low-alloy steel piping used in the compression, pumping, and transmission of crude petroleum, petroleum products, fuel gases, carbon dioxide, nitrogen, and where applicable, covers welding on distribution systems. It applies to both new construction and in-service welding. The welding may be done by a shielded metal-arc welding, submerged arc welding, gas tungsten-arc welding, gas metal-arc welding, flux-cored arc welding, plasma arc welding, oxyacetylene welding, or flash butt welding process or by a combination of these processes using a manual, semiautomatic, mechanized, or automatic welding technique or a combination of these techniques. The welds may be produced by position or roll welding or by a combination of position and roll welding.

This standard also covers the procedures for radiographic, magnetic particle, liquid penetrant, and ultrasonic testing, as well as the acceptance standards to be applied to production welds tested to destruction or inspected by
Transportation

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)
Phone Orders: +1 303 397 7956 (Local and International)

radiographic, magnetic particle, liquid penetrant, ultrasonic, and visual testing methods. It is intended that all work performed in accordance with this standard shall meet or exceed the requirements of this standard. Pages: 118
21st Edition | September 2013 | Product Number: D110421 | Price: $373.00

**Std 1104 *
Welding of Pipelines and Related Facilities—Kazakh**
Kazakh translation of Std 1104.
21st Edition | September 2013
Product Number: D110421K | Price: $299.00

**Std 1104 *
Welding of Pipelines and Related Facilities—Portuguese**
Portuguese translation of Std 1104.
21st Edition | September 2013
Product Number: D110421P | Price: $373.00

**Std 1104 *
Welding of Pipelines and Related Facilities—Russian**
Russian translation of Std 1104.
21st Edition | September 2013
Product Number: D110421R | Price: $299.00

**Std 1104 *
Welding of Pipelines and Related Facilities—Spanish**
Spanish translation of Std 1104.
21st Edition | September 2013
Product Number: D110421SP | Price: $373.00

RP 1109
Line Markers and Signage for Hazardous Liquid Pipelines and Facilities
Addresses the permanent marking of liquid petroleum pipeline transportation facilities. It covers the design, message, installation, placement, inspection, and maintenance of markers and signs on pipeline facilities located onshore and at inland waterway crossings. Markers and signs indicate the presence of a pipeline facility and warn of the potential hazards associated with its presence and operation. The markers and signs may contain information to be used by the public when reporting emergencies and seeking assistance in determining the precise location of a buried pipeline.
The provisions of this recommended practice cover the minimum marker and sign requirements for liquid petroleum pipeline facilities. Alternative markers, which are recommended for some locations under certain circumstances, are also discussed. The pipeline operator is responsible for determining the extent of pipeline marking. Consideration should be given to the consequences of pipeline failure or damage; hazardous characteristics of the commodity being transported; and the pipeline's proximity to industrial, commercial, residential, and environmentally sensitive areas. The pipeline marking programs are also integral parts of the pipeline operator's maintenance and emergency plans.
This recommended practice is not intended to be applied retroactively. Its recommendations are for new construction and for normal marker maintenance programs subsequent to the effective date of this edition. Pages: 24
5th Edition | October 2017 | Product Number: D11095 | Price: $107.00

RP 1110
Recommended Practice for the Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids, or Carbon Dioxide
Applies to all parts of a pipeline or pipeline facility including line pipe, pump station piping, terminal piping, compressor station piping, metering station piping, delivery station piping, regulator station piping, appurtenances connected to line pipe, appurtenances connected to facility piping, fabricated assemblies, valves, tees, elbows, reducers, flanges, and any other pipeline equipment or appurtenances. This RP does not apply to pumping units, compressor units, breakout tanks, pressure vessels, control piping, sample piping, instrument piping/tubing, or any component or piping system for which other codes specify pressure testing requirements (i.e. ASME Boiler and Pressure Vessel Code, piping systems covered by building codes, etc.). Although this recommended practice (RP) contains guidelines that are based on sound engineering judgment, it is important to note that certain governmental requirements may differ from the guidelines presented in this document. Nothing in this RP is intended to inhibit the use of engineering solutions that are not covered in this document. This may be particularly applicable where there is innovative developing technology. Where an alternative is offered, the RP may be used, provided any and all variations from the document are identified and documented. This RP does not address piping systems that are pressure tested with natural gas, nitrogen, or air. Pages: 25
6th Edition | February 2013 | Reaffirmed: July 2018
Product Number: D11106 | Price: $103.00

RP 1111
Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design)
Sets criteria for the design, construction, testing, operation, and maintenance of offshore steel pipelines used in the production, production support, or transportation of hydrocarbons from the outlet flange of a production facility. The criteria applies to transportation piping facilities located on production platforms after separation and treatment, including meter facilities, gas compression facilities, liquid pumps, and associated piping and appurtenances. This document may also be used for water injection pipelines offshore.
Limit state design has been incorporated into the document to provide a uniform factor of safety with respect to rupture or burst failure as the primary design condition independent of the pipe diameter, wall thickness, and grade. The criteria contained in this document are intended to permit the economical transportation of hydrocarbons while providing for the safety of life and property and the protection of the environment. The general adoption of these criteria should assure that offshore hydrocarbon pipelines possess the requisite structural integrity for their safe and efficient operation. Pages: 78
5th Edition | September 2015 | Product Number: D11115 | Price: $152.00

RP 1115
Design and Operation of Solution-Mined Salt Caverns Used for Liquid Hydrocarbon Storage
Provides guidance on the design and operation of solution-mined underground hydrocarbon liquid or liquefied petroleum gas storage facilities. It is intended for cavern engineers, supervisors, and all persons involved in liquid cavern operations. This recommended practice is based on the accumulated knowledge and experience of geologists, engineers, and other personnel in the petroleum industry. All aspects of solution-mined liquid hydrocarbon underground storage design and operation are covered, including site selection, cavern development, cavern hydraulics, brine facilities, wellhead and hanging strings, cavern testing, and cavern abandonment. A section on risk management is included. Pages: 112
2nd Edition | November 2018 | Product Number: D11152 | Price: $164.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
This publication is related to an API licensing, certification, or accreditation program.
RP 1117
Recommended Practice for Movement in In-Service Pipelines
(includes Errata 1 dated December 2008 and Errata 2 dated August 2009)
Covers the design, execution, inspection, and safety of a pipeline-lowering or other movement operation conducted while the pipeline is in service. (In this document, the terms lowering and movement can be used interchangeably.) This recommended practice presents general guidelines for conducting a pipeline-movement operation without taking the pipeline out of service. It also presents equations for estimating the induced stresses. To promote the safety of the movement operation, it describes stress limits and procedures. Additionally, it outlines recommendations to protect the pipeline against damage. The practicality and safety of trench types, support systems, and lowering or other methods are considered. Inspection procedures and limitations are presented. Pages: 46
3rd Edition | July 2008 | Reaffirmed: March 2018
Product Number: D11173 | Price: $143.00

RP 1130
Computational Pipeline Monitoring for Liquids
Focuses on the design, implementation, testing, and operation of CPM systems that use an algorithmic approach to detect hydraulic anomalies in pipeline operating parameters. The primary purpose of these systems is to provide tools that assist pipeline controllers in detecting commodity releases that are within the sensitivity of the algorithm. It is intended that the CPM system would provide an alarm and display other related data to the pipeline controllers to aid in decision-making. The pipeline controllers would undertake an immediate investigation, confirm the reason for the alarm and initiate an operational response to the hydraulic anomaly when it represents an irregular operating condition or abnormal operating condition or a commodity release. The purpose of this recommended practice is to assist the pipeline operator in identifying issues relevant to the selection, implementation, testing, and operation of a CPM system. Pages: 54
1st Edition | September 2007 | Reaffirmed: November 2017
Product Number: D011301 | Price: $121.00

RP 1133
Managing Hydrotechnical Hazards for Pipelines Located Onshore or Within Coastal Areas
Sets out criteria for the design, construction, operation, maintenance, and abandonment of onshore pipelines that could affect high consequence floodplains and associated commercially navigable waterways. This document applies only to steel pipelines that transport gas, hazardous liquids, alcohols or carbon dioxide. The design, construction, inspection, and testing provisions of this document should not apply to pipelines that were designed or installed prior to the latest revision of this publication. The operation and maintenance provisions of this document should apply to existing facilities. The contents in this document should not be considered a fixed rule for application without regard to sound engineering judgment. Pages: 94
2nd Edition | December 2017 | Product Number: D11332 | Price: $176.00

TR 1149
Pipeline Variable Uncertainties and Their Effects on Leak Detectability
Describes procedures for predicting uncertainties in the detection of leaks in pipelines using computational methods based upon physical hydraulic state measurements. This class of pipeline leak detection methods is commonly called Computational Pipeline Monitoring (CPM). Pages: 160
2nd Edition | September 2015 | Product Number: D11492 | Price: $179.00

RP 1160
Managing System Integrity for Hazardous Liquid Pipelines
Outlines a process that an operator of a pipeline system can use to assess risks and make decisions about risks in order to reduce incidents and the adverse effects of errors and incidents. An integrity management program provides a means to improve the safety of pipeline systems and to allocate operator resources effectively to: identify and analyze actual and potential precursor events that can lead to incidents; examine the likelihood and potential severity of incidents; provide a comprehensive and integrated means for examining and comparing the spectrum of risks and risk reduction activities available; provide a structured, easily communicated means for selecting and implementing risk reduction activities; and establish and track system performance with the goal of improving that performance. This recommended practice (RP) is specifically designed to provide the operator with a description of industry-proven practices in pipeline integrity management. The RP is largely targeted to onshore pipelines along the right-of-way, but the process and approach can be applied to pipeline facilities, including pipeline stations, terminals, and delivery facilities associated with pipeline systems. Pages: 137
3rd Edition | February 2019
Product Number: D116003 | Price: $215.00

RP 1161
Recommended Practice for Pipeline Operator Qualification (OQ)
Provides guidance to the liquids pipeline industry. The U.S. Department of Transportation (DOT) requires that pipeline operators develop a written qualification program to evaluate personnel and contractor ability to perform covered tasks and to recognize and respond to abnormal operating conditions that may be encountered while performing these covered tasks. This is a performance-based qualification program. Pages: 267

RP 1162
Public Awareness Programs for Pipeline Operators
Provides guidance for pipeline operators to develop and manage public awareness programs tailored to meet the needs of the community. It is meant to raise the quality of public awareness programs and align baseline core safety messages across the oil and gas industry. The scope of this recommended practice (RP) covers the development, implementation, evaluation, and documentation of public awareness programs associated with the normal operation of existing pipeline systems and facilities, including transmission pipelines, local distribution systems, and gathering lines. Two important objectives of this RP are to provide a framework to help each pipeline operator create and manage a public awareness program as well as a process for periodic program evaluation to encourage each operator to enhance the program, at the operator's discretion, as circumstances warrant. Communications related to new pipeline construction, offshore operations, and during emergencies are not covered by this RP; nor is it intended to provide guidance to operators for communications about operator-specific performance measures that are addressed through other means of communication or regulatory reporting. This RP provides the operator with the elements of a recommended baseline public awareness program and considerations to determine when and how to enhance the program to provide the appropriate level of public awareness outreach. Enhancements may affect messages, delivery frequency and methods, geographic coverage areas, program evaluation, and other elements. Pages: 72
Product Number: D11622 | Price: $135.00
Std 1163
In-Line Inspection Systems Qualification
Covers the use of in-line inspection (ILI) systems for onshore and offshore gas and hazardous liquid pipelines. This includes, but is not limited to, tethered, self-propelled, or free flowing systems for detecting metal loss, cracks, mechanical damage, pipeline geometries, and pipeline location or mapping. The standard applies to both existing and developing technologies. This standard is an umbrella document that provides performance-based requirements for ILI systems, including procedures, personnel, equipment, and associated software. Nothing in this standard is intended to inhibit the use of inspection systems or engineering solutions that are not covered by the standard. This may be particularly applicable where there is innovative developing technology. Where an alternative is offered, the standard may be used, provided any and all variations from the standard are identified and documented. Pages: 90
2nd Edition | April 2013 | Reaffirmed: August 2018
Product Number: D11632 | Price: $142.00

Std 1163 * = In-Line Inspection Systems Qualification—Russian
Russian translation of Std 1163.
2nd Edition | April 2013 | Product Number: D11632R | Price: $114.00

Std 1164
Pipeline SCADA Security
Provides guidance to the operators of oil and gas liquids pipeline systems for managing SCADA system integrity and security. The use of this document is not limited to pipelines regulated under Title 49 CFR 195.1, but should be viewed as a listing of best practices to be employed when reviewing and developing standards for a SCADA system. This document embodies API’s Security Guidelines for the Petroleum Industry. This guideline is designed to provide operators with a description of industry practices in SCADA security, and to provide the framework needed to develop sound security practices within the operator’s individual companies. It is important that operators understand system vulnerability and risks when reviewing the SCADA system for possible system improvements. The goal of an operator is to control the pipeline such that there are no adverse effects on employees, the environment, the public, or the customers as a result of actions by the operator, or by other parties. This document’s main body provides a high-level view of holistic security practices. The annexes provide further details and technical guidance. Reviewing this document and following the guidance set forth in the annexes assists in creating inherently secure operations. Implementation of this standard to advance supervisory control and data acquisition (SCADA) cyber security is a continuous process. The overall process could take years to implement, depending on the complexity of the SCADA system. Additionally, the process would optimally be started as part of a SCADA upgrade project and use this standard to “design in” security as an element of the new system. Pages: 76
Product Number: D11642 | Price: $158.00

RP 1165
Recommended Practice for Pipeline SCADA Displays
Focuses on the design and implementation of displays used for the display, monitoring, and control of information on pipeline Supervisory Control and Data Acquisition Systems (SCADA). The primary purpose is to document industry practices that provide guidance to a pipeline company or operator who want to select a new SCADA system, or update or expand an existing SCADA system. This document assists pipeline companies and SCADA system developers in identifying items that are considered best practices when developing human machine interfaces (HMI). Design elements that are discussed include, but are not limited to, hardware, navigation, colors, fonts, symbols, data entry, and control/selection techniques. Pages: 58
1st Edition | January 2007 | Reaffirmed: January 2018
Product Number: D11651 | Price: $165.00

TR 1166
Excavation Monitoring and Observation for Damage Prevention
Provides a consistently applied decision making process for monitoring and observing of excavation and other activities on or near pipeline Rights-of-Way for “hazardous liquid” and “natural and other gas” transmission pipelines. (NOTE: One call provisions and laws vary by state, and it is the operator’s responsibility to be familiar with and comply with all applicable one-call laws.) This document’s purpose is to protect the public, excavation employees, and the environment by preventing damage to pipeline assets from excavation activities. Pages: 16
2nd Edition | October 2015 | Product Number: D11662 | Price: $115.00

RP 1167
Pipeline SCADA Alarm Management
Provides pipeline operators with recommended industry practices in the development, implementation, and maintenance of a SCADA alarm management program. It provides guidance on elements that include, but are not limited to, alarm definition, philosophy, documentation, management of change, and auditing. This document is not intended to be a step-by-step set of instructions on how to build an alarm management system. Each pipeline operator has a unique operating philosophy and will therefore have a unique alarm philosophy. This document is intended to outline key elements for review when building an alarm management system. SCADA systems used within the pipeline industry vary in their alarm-related capabilities, and there are many different software systems available to aid in alarm management. It is the responsibility of the pipeline operator to determine the best method to achieve their alarm management goals. This document uses industry best practices to help to illustrate aspects of alarm management. The scope is intended to be broad. Pages: 48
2nd Edition | June 2016 | Product Number: D116702 | Price: $136.00

RP 1168
Pipeline Control Room Management
Provides pipeline operators and controllers with guidance on control room management best practices to consider when developing or enhancing practices and procedures. This document was written for operators with continuous and non-continuous operations, as applicable. This document addresses four pipeline safety elements for hazardous liquid and natural gas pipelines in both the transportation and distribution sectors: pipeline control room personnel roles, authorities, and responsibilities; guidelines for shift turnover; pipeline control room fatigue management; and pipeline control room management of change. Pages: 28
2nd Edition | February 2015 | Product Number: D11682 | Price: $98.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
RP 1169
Recommended Practice for Basic Inspection Requirements—New Pipeline Construction
Covers the basic requirements and their associated references needed to effectively and safely perform inspection activities during construction of new onshore pipelines. Use of this document will provide the basis for what construction inspectors need to know and where to find detailed information related to each facet of new pipeline construction inspection activities. The requirements are organized into the following major sections:
- inspector responsibilities,
- personnel and general pipeline safety,
- environmental and pollution control,
- general pipeline construction inspection.

Users of this document include those individuals either engaged in pipeline construction inspection or seeking to become certified inspectors. Pipeline owner/operators and pipeline inspection service companies may also use this document to aid and enhance their inspector training programs. Pages: 54

1st Edition | July 2013 | Reaffirmed: July 2018
Product Number: D11691 | Price: $124.00

RP 1170
Design and Operation of Solution-Mined Salt Caverns Used for Natural Gas Storage
Provides functional recommendations for salt cavern facilities used for natural gas storage service and covers facility geomechanical assessments, cavern well design and drilling, and solution mining techniques and operations, including monitoring, and maintenance practices. The recommended practice is based on the accumulated knowledge and experience of geologists, engineers, and other personnel in the petroleum and gas storage industries and promotes public safety by providing a comprehensive set of design guidelines. The recommended practice recognizes the nature of subsurface geological diversity and stresses the need for in-depth, site-specific geomechanical assessments with a goal of long-term facility integrity and safety.

This recommended practice includes the cavern well system (wellhead, wellbore, and cavern) from the emergency shutdown valve down to the cavern and facilities having significant impact to safety and integrity of the cavern system. This recommended practice does not apply to caverns used for the storage of liquid or liquefied petroleum products, brine production, or waste disposal; nor to caverns that are mechanically mined, or depleted hydrocarbon or aquifer underground gas storage systems. Pages: 96

RP 1171
Functional Integrity of Natural Gas Storage in Depleted Hydrocarbon Reservoirs and Aquifer Reservoirs
Applies to natural gas storage in depleted oil and gas reservoirs and aquifer reservoirs, and focuses on storage well, reservoir, and fluid management for functional integrity in design, construction, operation, monitoring, maintenance, and documentation practices. Storage design, construction, operation, and maintenance include activities in risk management, site security, safety, emergency preparedness, and procedural documentation and training to embed human and organizational competence in the management of storage facilities. This recommended practice (RP) embodies historical knowledge and experience and emphasizes the need for case-by-case and site-specific conditional assessments.

This RP applies to both existing and newly constructed facilities. Applicable distinctions for aquifer facilities are identified, as necessary. "Replacement," as used in this document, refers to the complete replacement of a facility unit, as, for example, when an existing well is abandoned and replaced with a new well. This document recommends that operators manage integrity through monitoring, maintenance, and remediation practices and apply specific integrity assessments on a case-by-case basis.

1st Edition | December 2015 | Product Number: D11741 | Price: $101.00

RP 1172
Recommended Practice for Construction Parallel to Existing Underground Transmission Pipelines
Emphasis of these guidelines is on the interaction between existing transmission pipeline operators and those planning to construct in a parallel fashion. These activities may involve many different parties. Contractors working on behalf of the constructing party, including environmental and survey professionals, design engineers, construction contractors, and operators of excavation and earth moving equipment, should engage in work practices that are in conformance with these guidelines and apply vigilance in identifying unanticipated circumstances that may indicate a problem. This RP refers to all of these entities as the "constructing party." These guidelines have been developed such that they can be incorporated into contract documents executed with contractors and subcontractors by whichever party is involved or responsible for construction activities. Pages: 30

1st Edition | April 2014 | Product Number: D11721 | Price: $93.00

RP 1173
Pipeline Safety Management Systems (ANSI/API RP 1173)
Establishes a pipeline safety management systems (PSMS) framework for organizations that operate hazardous liquids and gas pipelines jurisdictional to the U.S. Department of Transportation. Operators of other pipelines may find this document applicable useful in operating to their systems. This recommended practice (RP) provides pipeline operators with safety management system requirements that when applied provide a framework to reveal and manage risk, promote a learning environment, and continuously improve pipeline safety and integrity. At the foundation of a PSMS is the operator's existing pipeline safety system, including the operator's pipeline safety processes and procedures. This RP provides a comprehensive framework and defines the elements needed to identify and address safety for a pipeline's life cycle. These safety management system requirements identify what is to be done, and leaves the details associated with implementation and maintenance of the requirements to the individual pipeline operators. The document does not explicitly address personnel safety, environmental protection, and security, but the elements herein can be applied to those aspects of an operation. Pages: 42

1st Edition | July 2015 | Product Number: D117301 | Price: $93.00

RP 1174
Recommended Practice for Onshore Hazardous Liquid Pipeline Emergency Preparedness and Response
Provides operators of onshore hazardous liquid pipelines a framework that promotes the continual improvement of emergency planning and response processes, including identification and mitigation of associated risks and implementation of changes from lessons learned. This recommended practice (RP) assists the operator in preparing for a safe, timely, and effective response to a pipeline emergency.

This RP applies to assets under the jurisdiction of the U.S. Department of Transportation (DOT), specifically U.S. Title 49 Code of Federal Regulations (CFR) Parts 194 and 195. Operators of non-DOT jurisdictional pipelines or tank assets may also make voluntary use of this document. Pages: 48

1st Edition | December 2015 | Product Number: D11741 | Price: $101.00
RP 1175
Pipeline Leak Detection—Program Management (includes Errata 1 dated March 2017)
Establishes a framework for Leak Detection Program (LDP) management for hazardous liquid pipelines that are jurisdictional to the U.S. Department of Transportation (specifically, 49 CFR Part 195).
This recommended practice (RP) is specifically designed to provide pipeline operators with a description of industry practices in risk-based pipeline LDP management and to provide the framework to develop sound program management practices within a pipeline operator’s individual companies. It is important that pipeline operators understand system vulnerabilities, risks, and program management best practices when reviewing a pipeline LDP management process either for a new program or for possible system improvements.
This RP focuses on using a risk-based approach to each pipeline operator’s LDP and following the guidance set forth assists in creating an inherently risk mitigating LDP management system. The overall goal of the LDP is to detect leaks quickly and with certainty, thus facilitating quicker shutdown and therefore minimizing negative consequences. This RP focuses on management of LDPs, not the design of leak detection systems (LDDs).
Pages: 95
1st Edition | December 2015 | Product Number: D11751 | Price: $174.00

RP 1176
Recommended Practice for Assessment and Management of Cracking in Pipelines
Applies to any pipeline system used to transport hazardous liquid or natural gas, including those defined in U.S. Title 49 Code of Federal Regulations (CFR) Parts 192 and 195. This RP is designed to provide the operator with a description of industry-proven practices in the integrity management of cracks and threats that give rise to cracking mechanisms. The guidance is largely targeted to the line pipe along the right-of-way (ROW), but some of the processes and approaches can be applied to pipeline facilities, including pipeline stations, terminals, and delivery facilities associated with pipeline systems. Defects associated with lap-welded (LW) pipe and selective seam weld corrosion (SSWC) are not covered within this RP.
This RP presents the pipeline industry’s understanding of pipeline cracking. Mechanisms that cause cracking are discussed, methods to estimate the failure pressure of cracks are reviewed, and methods to estimate crack growth are presented. Selection of the appropriate integrity assessment method for various types of cracking, operating conditions, and pipeline characteristics is discussed. This RP also reviews current knowledge about in-line inspection (ILI) technology and in-the-ditch (ITD) nondestructive evaluation technology. A methodology for responding to ILI indications and specific criteria for when to respond to certain results is presented. Applicable repair techniques are reviewed. Sections are included for the discussion of reassessment interval determination and the consideration of appropriate preventive and mitigative measures. Some performance metrics for measuring the effectiveness of a crack management program are discussed. The technical discussion about crack formation, growth, and failure is to provide the knowledge needed by operators to effectively make integrity decisions about managing cracking on their pipeline systems.
Pages: 144
1st Edition | July 2016 | Product Number: D117601 | Price: $182.00

RP 1177
Recommended Practice for Steel Pipeline Construction Quality Management Systems
Establishes minimum Quality Management System (QMS) processes for organizations that own, operate, construct, or provide construction-related services for onshore carbon and low-alloy steel pipelines used in the transportation of hazardous liquids, carbon dioxide, and gas.
This recommended practice specifies the elements of a QMS to manage the construction process systematically from design verification, materials manufacturing, procurement, construction, inspection, and testing to initiation of operations. Pages: 68
1st Edition | November 2017 | Product Number: D110701 | Price: $128.00

Bull 1178
Integrity Data Management and Integration
Provides a compendium of methodologies and considerations for integrating the underlying data used to support integrity management. Any one approach may not be appropriate or applicable in all circumstances. The document reviews possible approaches for consideration by operators in the context of their specific circumstances.
The primary focus of this bulletin is the methodologies and processes used to spatially integrate and normalize the data to support the application of comparative techniques used in interpreting integrity data, with particular emphasis on in-line inspection (ILI) data. The begins with a discussion of general data quality processes, goals, and considerations such that data quality approaches can be considered in the context of the data integration processes.
An impediment to informed integrity decisions is the inability to efficiently review a broad spectrum of data in a format that has been normalized and spatially aligned. With the variations in organizational structures, integrity management programs, and technologies used across the pipeline sector, individual operators design data integration procedures that are customized to their organizational structure, processes, and pipeline systems.
Propriety managed and integrated data supports agile analytics to integrate new data as they become available and to recognize coincident events and patterns. The source of the data may be from within an organization or may be external to the company, as in the case of representative data based on industry experience or manufacturing processes. The intent is to empower operators to efficiently analyze and integrate threat- and integrity-related data to support their integrity management programs.
Pages: 62
1st Edition | November 2017 | Product Number: D11781 | Price: $113.00

TR 1179
Hydrostatic Testing as an Integrity Management Tool
Provides guidelines related to hydrostatic testing as a tool for integrity management in gas and liquids pipelines. It specifically focuses on program design and key parameters for consideration in hydrostatic test programs, as well as potential detrimental effects of hydrostatic testing. Several case studies supplement the guidelines provided.
Pages: 64
1st Edition | May 2019 | Product Number: D11791 | Price: $117.00

RP 1181
Pipeline Operational Status Determination
Provides guidance for operations, inspection, and maintenance activities based on the operational status of a pipeline. This establishes:
- four statuses: precommissioned, active/in-service, idled, and abandoned;
- operations, inspections, and maintenance recommendations for various pipeline operational statuses;
- pipeline status documentation requirements;
- recommendations regarding safe transition between pipeline statuses.
For the purposes of this document, the word “pipeline” refers to transmission and regulated gathering pipelines and pipeline systems, although the principles may be applied to nonregulated gathering and flow lines.
Pages: 17
1st Edition | October 2019 | Product Number: D11811 | Price: $65.00
RP 2611
Terminal Piping Inspection—Inspection of In-Service Terminal Piping Systems

Covers the inspection of typical terminal piping systems within terminal boundaries, which includes off-plot piping. Off-plot piping includes, but is not limited to piping between facilities, piping that comes from or goes to a refinery, or other type facility, or piping that may cross a road, ditch, or other property outside the confines of a terminal facility. Piping for transportation of finished fuel products, such as gasoline, diesel, lubricating oils, jet fuel, and aviation fuel, are covered by the scope of this document. Also covered are piping systems for nonfuel-type fluids. The piping for other terminal nonfuel-type fluids typically found in terminals, include asphaltic products, process water, transmix, slope water, and biofuels. This document does not address piping in a refinery facility, sanitary waste piping, cast iron piping, and nonmetallic gravity flow piping systems. Pages: 42

PIPELINE MAINTENANCE WELDING

Investigated and improved the methods of predicting cooling rates during pipeline maintenance welding. The scope of this study included:
- a review of three previous research efforts to develop satisfactory methods for welding appurtenances to in-service pipelines;
- a survey of pipeline leak and rupture incidents associated with appurtenances;
- the enhancement of existing analytical models for predicting cooling rates and temperatures during welding on an in-service pipeline; and
- a validation of the thermal-analysis models that was achieved by performing welds on pipeline carrying three different liquid-petroleum products.

May 2002 | Product Number: | Version 4.2 | May 2002
Please order this document from PRCI: https://www.prci.org

Std 1104
Welding of Pipelines and Related Facilities

Welding of Pipelines and Related Facilities

Covers the gas and arc welding of butt, fillet, and socket welds in carbon and low-alloy steel piping used in the compression, pumping, and transmission of crude petroleum, petroleum products, fuel gases, carbon dioxide, nitrogen, and where applicable, covers welding on distribution systems. It applies to both new construction and in-service welding. The welding may be done by a shielded metal-arc welding, submerged arc welding, gas tungsten-arc welding, gas metal-arc welding, flux-cored arc welding, plasma arc welding, oxyacetylene welding, or flash butt welding process or by a combination of these processes using a manual, semiautomatic, mechanized, or automatic welding technique or a combination of these techniques. The welds may be produced by position or root welding or by a combination of position and root welding.

This standard also covers the procedures for radiographic, magnetic particle, liquid penetrant, and ultrasonic testing, as well as the acceptance standards to be applied to production welds tested to destruction or inspected by radiographic, magnetic particle, liquid penetrant, ultrasonic, and visual testing methods. It is intended that all work performed in accordance with this standard shall meet or exceed the requirements of this standard. Pages: 118
21st Edition | September 2013
Product Number: D110421 | Price: $373.00
RP 1112
Developing a Highway Emergency Response Plan for Incidents Involving Hazardous Materials

Provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks, and for coordinating and cooperating with local, state, and federal officials. Covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activities. The appendices outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles. Pages: 21

2-Year Extension: January 2018
Product Number: A11123 | Price: $82.00

SECURITY

Std 780
Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries

Prepared by a Security Risk Assessment (SRA) Committee of the American Petroleum Institute (API) to assist the petroleum and petrochemical industries in understanding security risk assessment and in conducting SRAs. The standard describes the recommended approach for assessing security risk widely applicable to the types of facilities operated by the industry and the security issues the industry faces. The standard is intended for those responsible for conducting security risk assessments and managing security at these facilities. The method described in this standard is widely applicable to a full spectrum of security issues from theft to insider sabotage to terrorism. The API SRA Methodology was developed for the petroleum and petrochemical industry, for a broad variety of both fixed and mobile applications. This recommended practice describes a single methodology, rather than a general framework for SRAs, but the methodology is flexible and adaptable to the needs of the user. This methodology constitutes one approach for assessing security vulnerabilities at petroleum and petrochemical industry facilities. However, there are other risk assessment techniques and methods available to industry, all of which share common risk assessment elements. Pages: 113

1st Edition | May 2013 | Product Number: K78001 | Price: $206.00

RP 781
Facility Security Plan Methodology for the Oil and Natural Gas Industries

Provides the framework to establish a secure workplace. The plan provides an overview of the threats facing the facility and describes the security measures and procedures designed to mitigate risk and protect people, assets, operations, and company reputation. This API standard was prepared with guidance and direction from the API Security Committee, to assist the petroleum and petrochemical industries in the preparation of a Facility Security Plan (FSP). This standard specifies the requirements for preparing an FSP as well as a discussion of the typical elements included in an FSP. This standard is intended to be flexible and adaptable to the needs of the user. It is noted that the content of an FSP can vary depending on circumstances such as facility size, location, and operations. This methodology is one approach for preparing an FSP at petroleum and petrochemical facilities. There are other security plan formats available for the industry. It is the responsibility of the user to choose the format and content of the FSP that best meets the needs of a specific facility. The format and content of some FSPs should be dictated by government regulations for covered facilities. This standard is not intended to supersede the requirements of any regulated facility but may be used as a reference document. Pages: 82

1st Edition | September 2016 | Product Number: K78101 | Price: $157.00
If you have any questions or comments regarding API standards, please visit https://www.api.org/standards
NOTE Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

INSPECTION OF REFINERY EQUIPMENT

API 510
Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration (includes Addendum 1 dated May 2017 and Addendum 2 dated March 2018)
Covers the in-service inspection, repair, alteration, and rerating activities for pressure vessels and the pressure-relieving devices protecting these vessels. This inspection code applies to most refining and chemical process vessels that have been placed in service. This includes:
- vessels constructed in accordance with an applicable construction code;
- vessels constructed without a construction code (non-code)—a vessel not fabricated to a recognized construction code and meeting no known recognized standard;
- vessels constructed and approved as jurisdictional special based upon jurisdictional acceptance of particular design, fabrication, inspection, testing, and installation;
- non-standard vessels—a vessel fabricated to a recognized construction code but has lost its nameplate or stamping.

10th Edition | May 2014 | Product Number: C51010 | Price: $244.00

API 510
Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Chinese
Chinese translation of API 510.
10th Edition | May 2014 | Product Number: C51010C | Price: $172.00

API 510
Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish
Spanish translation of API 510.
10th Edition | May 2014 | Product Number: C51010S | Price: $244.00

API 570
Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems (includes Addendum 1 dated May 2017, Addendum 2 dated March 2018, and Errata 1 dated April 2018)
Covers inspection, rating, repair, and alteration procedures for metallic and fiberglass reinforced plastic (FRP) piping systems and their associated pressure-relieving devices that have been placed in service. This inspection code applies to all hydrocarbon and chemical process piping covered in 1.2.1 that have been placed in service unless specifically designated as optional per 1.2.2. This publication does not cover inspection of specialty equipment including instrumentation, exchanger tubes, and control valves. However, this piping code could be used by owner/users in other industries and other services at their discretion. Process piping systems that have been retired from service and abandoned in place are no longer covered by this “in-service inspection” Code. However abandoned in place piping may still need some amount of inspection and/or risk mitigation to assure that it does not become a process safety hazard because of continuing deterioration. Process piping systems that are temporarily out of service but have been mothballed (preserved for potential future use) are still covered by this Code. Pages: 88

RP 571
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry
Provides background information on damage that can occur to equipment in the refining process. It is intended to supplement Risk-Based Inspection (RP 580 and Publ 581) and Fitness-for-Service (API 579-1/ASME FFS-1) technologies developed in recent years by API to manage existing refining equipment integrity. It is also an excellent reference for inspection, operations, and maintenance personnel. This RP covers over 60 damage mechanisms. Each write-up consists of a general description of the damage, susceptible materials, construction, critical factors, inspection method selection guidelines, and control measures. Wherever possible, pictures are included and references are provided for each mechanism. In addition, generic process flow diagrams have been included that contain a summary of the major damage flow mechanism expected for typical refinery process units. Pages: 362
Product Number: C57102 | Price: $356.00

RP 571
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry—Chinese
Chinese translation of RP 571.
2nd Edition | April 2011 | Product Number: C57102C | Price: $250.00

RP 572
Inspection Practices for Pressure Vessels
Supplements API 510 by providing pressure vessel inspectors with information that can improve skills and increase basic knowledge of inspection practices. This recommended practice (RP) describes inspection practices for the various types of pressure vessels (e.g., drums, heat exchangers, columns, reactors, air coolers, spheres) used in petroleum refineries and chemical plants. This RP addresses vessel components, inspection planning processes, inspection intervals, methods of inspection and assessment, methods of repair, records, and reports. API 510 has requirements and expectations for inspection of pressure vessels. Pages: 154
4th Edition | December 2016 | Product Number: C57204 | Price: $249.00

RP 573
Inspection of Fired Boilers and Heaters
Covers the inspection practices for fired boilers and process heaters (furnaces) used in petroleum refineries and petrochemical plants. The practices described in this document are focused to improve equipment reliability and plant safety by describing the operating variables which impact reliability and to ensure that inspection practices obtain the appropriate data, both on-stream and off-stream, to assess current and future performance of the equipment. Pages: 109
3rd Edition | October 2013 | Product Number: C57303 | Price: $163.00

RP 574
Inspection Practices for Piping System Components
Supplements API 570 by providing piping inspectors with information that can improve skill and increase basic knowledge of inspection practices. This recommended practice describes inspection practices for piping, tubing, valves (other than control valves), and fittings used in petroleum refineries and chemical plants. Common piping components, valve types, pipe joining methods, inspection planning processes, inspection intervals and techniques, and types of records are described to aid the inspectors in fulfilling their role implementing API 570. This document does not cover inspection of specialty items, including instrumentation, furnace tubulars, and control valves. Pages: 113
4th Edition | November 2016 | Product Number: C57404 | Price: $227.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 575 •
Inspection Practices for Atmospheric and Low-Pressure Storage Tanks
Covers the inspection of atmospheric and low-pressure storage tanks that have been designed to operate at pressures from atmospheric to 15 psig. Includes reasons for inspection, frequency and methods of inspection, methods of repair, and preparation of records and reports. This recommended practice is intended to supplement Std 653, which covers the minimum requirements for maintaining the integrity of storage tanks after they have been placed in service. Pages: 96
3rd Edition | April 2014 | Product Number: C57503 | Price: $206.00

RP 575 *
Inspection Practices for Atmospheric and Low-Pressure Storage Tanks—Chinese
Chinese translation of RP 575.
3rd Edition | April 2014 | Product Number: C57503C | Price: $144.00

RP 576 •
Inspection of Pressure-Relieving Devices
Describes the inspection and repair practices for self-actuated pressure-relieving devices commonly used in the oil/gas and petrochemical industries. As a guide to the inspection and repair of these devices in the user's plant, it is intended to ensure their proper performance. This publication covers self-actuated devices such as direct acting spring loaded valves, pilot operated pressure-relief valves, rupture disks, pin actuated devices, and weight-loaded pressure vacuum vents.

The recommendations in this publication are not intended to supersede requirements established by regulatory bodies. This publication excludes tank relief systems. The inspection and repair of these devices in the user's plant is intended to ensure their proper performance. This publication covers self-actuated devices such as direct acting spring loaded valves, pilot operated pressure-relief valves, rupture disks, pin actuated devices, and weight-loaded pressure vacuum vents.

The guidelines provided in this standard can be used to make run-repair-replacement decisions to help determine if components in pressurized equipment containing flaws that have been identified by inspection can continue to operate safely for some period of time. These FFS assessments are currently recognized and referenced by the API Codes and Standards (510, 570, and 653), and by NB-23 as suitable means for evaluating the structural integrity of pressure vessels, piping systems, and storage tanks where inspection has revealed degradation and flaws in the equipment. The methods and procedures in this standard are intended to supplement and augment the requirements in API 510, API 570, Std 653, and other post-construction codes that reference FFS evaluations such as NB-23.

The assessment procedures in this standard can be used for FFS assessments and/or rerating of equipment designed and constructed to the following codes: (a) ASME B&PV Code, Section VIII, Division 1; (b) ASME B&PV Code, Section VIII, Division 2; (c) ASME B&PV Code, Section I; (d) ASME B31.1 Piping Code; (e) ASME B31.3 Piping Code; (f) ASME B31.4 Piping Code; (g) ASME B31.8 Piping Code; (h) ASME B31.12 Piping Code; (i) Std 650; (j) Std 620; and (k) Std 530. The assessment procedures in this standard may also be applied to pressure-containing equipment constructed to other recognized codes and standards, including international and internal corporate standards.

This standard has broad applications since the assessment procedures are based on allowable stress methods and plastic collapse loads for non-crack-like flaws, and the Failure Assessment Diagram Approach for crack-like flaws. The FFS assessment procedures in this standard can be used to evaluate flaws commonly encountered in pressure vessels, piping, and tankage. The procedures are not intended to provide a definitive guideline for every possible situation that may be encountered. However, flexibility is provided to the user in the form of an advanced assessment level to handle uncommon situations that may require a more detailed analysis.

Copies may be purchased in hard copy, CD, or together for the prices listed below. Please note that the CD product is read-only and cannot be copied or printed. Pages: 1292
3rd Edition | April 2017 | Product Number: C57603 | Price: $227.00

API 579-1/ASME FFS-1
Fitness-For-Service
Fitness-For-Service (FFS) assessments are quantitative engineering evaluations that are performed to demonstrate the structural integrity of an in-service component that may contain a flaw or damage or that may be operating under a specific condition that might cause a failure. This standard provides guidance for conducting FFS assessments using methodologies specifically prepared for pressurized equipment.

The guidelines provided in this standard can be used to make run-repair-replacement decisions to help determine if components in pressurized equipment containing flaws that have been identified by inspection can continue to operate safely for some period of time. These FFS assessments are currently recognized and referenced by the API Codes and Standards (510, 570, and 653), and by NB-23 as suitable means for evaluating the structural integrity of pressure vessels, piping systems, and storage tanks where inspection has revealed degradation and flaws in the equipment. The methods and procedures in this standard are intended to supplement and augment the requirements in API 510, API 570, Std 653, and other post-construction codes that reference FFS evaluations such as NB-23.

The assessment procedures in this standard can be used for FFS assessments and/or rerating of equipment designed and constructed to the following codes: (a) ASME B&PV Code, Section VIII, Division 1; (b) ASME B&PV Code, Section VIII, Division 2; (c) ASME B&PV Code, Section I; (d) ASME B31.1 Piping Code; (e) ASME B31.3 Piping Code; (f) ASME B31.4 Piping Code; (g) ASME B31.8 Piping Code; (h) ASME B31.12 Piping Code; (i) Std 650; (j) Std 620; and (k) Std 530. The assessment procedures in this standard may also be applied to pressure-containing equipment constructed to other recognized codes and standards, including international and internal corporate standards.

This standard has broad applications since the assessment procedures are based on allowable stress methods and plastic collapse loads for non-crack-like flaws, and the Failure Assessment Diagram Approach for crack-like flaws. The FFS assessment procedures in this standard can be used to evaluate flaws commonly encountered in pressure vessels, piping, and tankage. The procedures are not intended to provide a definitive guideline for every possible situation that may be encountered. However, flexibility is provided to the user in the form of an advanced assessment level to handle uncommon situations that may require a more detailed analysis.

The guidelines provided in this standard can be used to make run-repair-replacement decisions to help determine if components in pressurized equipment containing flaws that have been identified by inspection can continue to operate safely for some period of time. These FFS assessments are currently recognized and referenced by the API Codes and Standards (510, 570, and 653), and by NB-23 as suitable means for evaluating the structural integrity of pressure vessels, piping systems, and storage tanks where inspection has revealed degradation and flaws in the equipment. The methods and procedures in this standard are intended to supplement and augment the requirements in API 510, API 570, Std 653, and other post-construction codes that reference FFS evaluations such as NB-23.

The assessment procedures in this standard can be used for FFS assessments and/or rerating of equipment designed and constructed to the following codes: (a) ASME B&PV Code, Section VIII, Division 1; (b) ASME B&PV Code, Section VIII, Division 2; (c) ASME B&PV Code, Section I; (d) ASME B31.1 Piping Code; (e) ASME B31.3 Piping Code; (f) ASME B31.4 Piping Code; (g) ASME B31.8 Piping Code; (h) ASME B31.12 Piping Code; (i) Std 650; (j) Std 620; and (k) Std 530. The assessment procedures in this standard may also be applied to pressure-containing equipment constructed to other recognized codes and standards, including international and internal corporate standards.

This standard has broad applications since the assessment procedures are based on allowable stress methods and plastic collapse loads for non-crack-like flaws, and the Failure Assessment Diagram Approach for crack-like flaws. The FFS assessment procedures in this standard can be used to evaluate flaws commonly encountered in pressure vessels, piping, and tankage. The procedures are not intended to provide a definitive guideline for every possible situation that may be encountered. However, flexibility is provided to the user in the form of an advanced assessment level to handle uncommon situations that may require a more detailed analysis.

Copies may be purchased in hard copy, CD, or together for the prices listed below. Please note that the CD product is read-only and cannot be copied or printed. Pages: 1292
3rd Edition | April 2017 | Product Number: C57603 | Price: $227.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

92

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
API 579-2/ASME FFS-2
Fitness-For-Service Example Problem Manual

Fitness-For-Service (FFS) assessments in API 579-1/ASME FFS-1 are engineering evaluations that are performed to determine the structural integrity of an in-service component that may contain a flaw or damage or that may be operating under specific conditions that could produce a failure. API 579-1/ASME FFS-1 provides guidance for conducting FFS assessments using methodologies specifically prepared for pressurized equipment. The guidelines provided in this standard may be used to make run-repair-replace decisions to help determine if pressurized equipment containing flaws that have been identified by inspection can continue to operate safely for some period of time. These FFS assessments of API 579-1/ASME FFS-1 are currently recognized and referenced by the API Codes and Standards (510, 570, and 653), and by NB-23 as a suitable means for evaluating the structural integrity of pressure vessels, piping systems, and storage tanks where inspection has revealed degradation and flaws in the equipment or where operating conditions suggest that a risk of failure may be present.

Example problems illustrating the use and calculations required for Fitness-For-Service assessments described in API 579-1/ASME FFS-1 are provided in this document. Example problems are provided for all calculation procedures in both SI and U.S. customary units.

An introduction to the example problems in this document is described in Part 2 of this standard. The remaining parts of this document contain the example problems. The parts in this document coincide with the parts in API 579-1/ASME FFS-1. For example, example problems illustrating calculations for local thin areas are provided in Part 5 of this document. This coincides with the assessment procedures for local thin areas contained in Part 5 of API 579-1/ASME FFS-1. Pages: 366

1st Edition | August 2009 | Product Number: C57921 | Price: $168.00

RP 580 ◆
Risk-Based Inspection

Provides users with the basic minimum and recommended elements for developing, implementing, and maintaining a risk-based inspection (RBI) program. It also provides guidance to owner-users, operators, and designers of pressure-containing equipment for developing and implementing an inspection program. These guidelines include means for assessing an inspection program and its plan. The approach emphasizes safe and reliable operation through risk-prioritized inspection. A spectrum of complementary risk analysis approaches (qualitative through fully quantitative) can be considered as part of the inspection planning process. RBI guidelines issues covered include an introduction to the concepts and principles of RBI for risk management and individual sections that describe the steps in applying these principles within the framework of the RBI process. Pages: 94

3rd Edition | February 2016 | Product Number: C58003 | Price: $287.00

RP 581
Risk-Based Inspection Methodology

(includes Addendum 1 dated April 2019)

Provides quantitative procedures to establish an inspection program using risk-based methods for pressurized fixed equipment including pressure vessel, piping, tankage, pressure relief devices (PRDs), and heat exchanger tube bundles. RP 580 provides guidance for developing Risk-Based Inspection (RBI) programs on fixed equipment in refining, petrochemical, chemical process plants, and oil and gas production facilities. The intent is for RP 580 to introduce the principles and present minimum guidelines for RBI, while this recommended practice provides quantitative calculation methods to determine an inspection plan.

The calculation of risk outlined in API RP 581 involves the determination of a probability of failure (POF) combined with the consequence of failure (COF). Failure is defined as a loss of containment from the pressure boundary resulting in leakage to the atmosphere or rupture of a pressurized component. Risk increases as damage accumulates during in-service operation as the risk tolerance or risk target is approached and an inspection is recommended of sufficient effectiveness to better quantify the damage state of the component. The inspection action itself does not reduce the risk; however, it does reduce uncertainty and therefore allows more accurate quantification of the damage present in the component. Pages: 632

3rd Edition | April 2016 | Product Number: C58103 | Price: $936.00

API Risk-Based Inspection Software

API RBI software, created by petroleum refinery and chemical plant owner/users for owner/users, finds its basis in API Publication 581, Base Resource Document—Risk-Based Inspection. Practical, valuable features are built into the technology, which is based on recognized and generally accepted good engineering practices.

The purposes of the Risk-Based Inspection Program are:

- • screen operating units within a plant to identify areas of high risk;
- • estimate a risk value associated with the operation of each equipment item in a refinery or chemical process plant based on a consistent methodology;
- • prioritize the equipment based on the measured risk;
- • design a highly effective inspection program; and
- • systematically manage the risks associated with equipment failures.

The RBI method defines the risk of operating equipment as the combination of two separate terms: the consequence of failure and the likelihood of failure.

For more information: e-mail rbi@api.org or call 281-537-8848

RP 582
Welding Guidelines for the Chemical, Oil, and Gas Industries

Provides supplementary guidelines and practices for welding and welding related topics for shop and field fabrication, repair, and modification of the following:

- • pressure-containing equipment, such as pressure vessels, heat exchangers, piping, heater tubes, and pressure boundaries of rotating equipment and attachments welded thereto;
- • tanks and attachments welded thereto;
- • non-removable internals for process equipment;
- • structural items attached and related to process equipment;
- • other equipment or component items, when referenced by an applicable purchase document.

This document is general in nature and augments the welding requirements of ASME BPVC Section IX and similar codes, standards, specifications, and practices, such as those listed in Section 2. The intent of this document is to be inclusive of chemical, oil, and gas industry standards, although there are many areas not covered herein, e.g., pipeline welding and offshore structural welding are intentionally not covered. This document is based on industry experience, and any restrictions or limitations may be waived or augmented by the purchaser. Pages: 38

3rd Edition | May 2016 | Product Number: C58203 | Price: $149.00

RP 583 ◆
Corrosion Under Insulation and Fireproofing

Covers the design, maintenance, inspection, and mitigation practices to address external corrosion under insulation (CUI) and corrosion under fireproofing (CUF). The document discusses the external corrosion of carbon and low alloy steels under insulation and fireproofing, and external chloride stress corrosion cracking (CSSCC) of austenitic and duplex stainless steels under insulation. The document does not cover atmospheric corrosion or corrosion at uninsulated pipe supports, but does discuss corrosion at insulated pipe supports.

The purpose of this RP is to:

- • help owner/users understand the complexity of the many CUI/CUF issues,
- • provide owner/users with understanding the advantages and limitations of the various NDE methods used to identify CUI and CUF damage,
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)
Phone Orders: +1 303 397 7956 (Local and International)

- provide owner/users with an approach to risk assessment (i.e. likelihood of failure, and consequence of failure) for CUI and CUF damage, and
- provide owner/users guidance on how to design, install, and maintain insulation systems to avoid CUI and CUF damage. Pages: 88

1st Edition | May 2014 | Product Number: CS58301 | Price: $184.00

RP 584 ◆ Integrity Operating Windows

Explains the importance of IOWs for process safety management and to guide users in how to establish and implement an IOW program for refining and petrochemical process facilities for the express purpose of avoiding unexpected equipment degradation that could lead to loss of containment. It is not the intent of this document to provide a complete list of specific IOWs or operating variables that might need IOWs for the numerous types of hydrocarbon process units in the industry (though some generic examples are provided in the text and in Appendix A), but rather to provide the user with information and guidance on the work process for development and implementation of IOWs for each process unit. Pages: 35

1st Edition | May 2014 | Product Number: CS8401 | Price: $131.00

RP 585 ◆ Pressure Equipment Integrity Incident Investigation

Provides owner/users with guidelines and recommended practices for developing, implementing, sustaining, and enhancing an investigation program for pressure equipment integrity incidents. This recommended practice describes characteristics of an effective investigation and how organizations can learn from pressure equipment integrity incident investigations. This RP is intended to supplement and provide additional guidance for the OSHA Process Safety Management (PSM) Standard 29 CFR 1910.119 (m) incident investigation requirements, with a specific focus on incidents caused by integrity failures of pressure equipment. Pages: 41

1st Edition | April 2014 | Product Number: CS8501 | Price: $136.00

RP 588 ◆ Recommended Practice for Source Inspection and Quality Surveillance of Fixed Equipment

Summarizes the basic body of knowledge that the source inspector typically needs to know to perform as a source inspector for fixed equipment. A secondary purpose is to assist candidates intending to take the API Source Inspection Examination to become certified source inspectors. This recommended practice outlines the fundamentals of source inspection and may be useful to all personnel conducting such activities to perform their jobs in a competent and ethical manner. This RP covers the process of specifying the necessary quality surveillance of materials, equipment, and fabrications being supplied for use in the oil, petrochemical, and gas industry, including upstream, midstream, and downstream segments. This RP may be used as the basis for providing a systematic approach to risk-based source inspection in order to provide confidence that materials and equipment being purchased meet the minimum requirements as specified in the project documents and contractual agreements. Pages: 72

1st Edition | July 2019 | Product Number: CS58801 | Price: $175.00

Std 653 ◆ Tank Inspection, Repair, Alteration, and Reconstruction—Chinese

Chinese translation of Std 653.

5th Edition | November 2014 | Product Number: C65305C | Price: $179.00

MECHANICAL EQUIPMENT STANDARDS FOR REFINERY SERVICE

Std 610/ISO 13709:2009

Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries

(ANSI/API Std 610)

(includes Errata 1 dated July 2011)

Specifies requirements for centrifugal pumps, including pumps running in reverse as hydraulic power recovery turbines, for use in petroleum, petrochemical, and gas industry process services. This International Standard is applicable to overhung pumps, between bearings pumps, and vertically suspended pumps. Clause 9 provides requirements applicable to specific types of pumps. All other clauses of this International Standard apply to all pump types. Illustrations are provided of the various specific pump types and the designations assigned to each specific pump type. It does not cover sealless pumps.

This edition of API Std 610 is the identical national adoption of ISO 13709:2009. Pages: 205

Product Number: CX81011 | Price: $279.00

Std 610/ISO 13709:2009 *

Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries—Russian

Russian translation of Std 610.

11th Edition | September 2010

Product Number: CX81011R | Price: $223.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services

Covers the minimum requirements for general-purpose steam turbines. These requirements include basic design, materials, related lubrication systems, controls, auxiliary equipment, and accessories. General-purpose turbines are horizontal or vertical turbines used to drive equipment that is usually spared, is relatively small in size, or is in non-critical service. They are generally used where steam conditions will not exceed a pressure of 48 bar (700 psig) and a temperature of 400°C (750°F) or where speed will not exceed 6000 rpm. This standard does not cover special-purpose turbines.

Pages: 118

Product Number: C61105 | Price: $159.00

Regular Price: $239.00

Russian translation of Std 611.

Product Number: C61105R | Price: $127.00

5th Edition | March 2008 | Product Number: C61105R | Price: $127.00

Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services

(ANSI/API Std 613)

Includes Errata 1 dated December 2005

Covers the minimum requirements for special-purpose, enclosed, precision single- and double-helical one-and two-stage speed increasers and reducers of parallel-shaft design for refinery services. Primarily intended for gear units that are in continuous service without installed spare equipment. Pages: 94

Product Number: C61305 | Price: $179.00

Regular Price: $239.00

Russian translation of Std 613.

5th Edition | February 2003 | Product Number: C61305R | Price: $143.00

Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries—Steam Turbines—Special-Purpose Applications

Specifies the minimum requirements for steam turbines for special-purpose applications for use in the petroleum, petrochemical, and natural gas industries. These requirements include basic design, materials, fabrication, inspection testing, and preparation for shipment. It also covers the related lube oil systems, instrumentation, control systems, and auxiliary equipment. It is not applicable to general-purpose steam turbines, which are covered in Std 611.

Pages: 146

7th Edition | August 2014 | Product Number: C61207 | Price: $239.00

Axial and Centrifugal Compressors and Expander-Compressors

(Std 617)

Includes Errata 1 dated August 2016

Covers the minimum requirements for centrifugal compressors used in petroleum, chemical, and gas industry services that handle air or gas, including process gear mounted. Does not apply to fans or blowers that develop less than 34 kPa (5 psi) pressure rise above atmospheric pressure; these are covered by Std 673. This standard also does not apply to packaged, integrally-geared centrifugal air compressors, which are covered by Std 672.

Pages: 374

8th Edition | September 2014 | Product Number: C61707 | Price: $260.00

Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services

(ANSI/API Std 618)

Includes Errata 1 dated November 2009 and Errata 2 dated July 2010

Covers the minimum requirements for reciprocating compressors and their drivers used in petroleum, chemical, and gas industry services for handling process air or gas with either lubricated or nonlubricated cylinders. Compressors covered by this standard are of low to moderate speed and in critical services. Also covered are related lubricating systems, controls, instrumentation, intercoolers, aftercoolers, pulsation suppression devices, and other auxiliary equipment. Pages: 190

5th Edition | December 2007 | Reaffirmed: July 2017
Product Number: C61805 | Price: $196.00

Rotation-Type Positive Displacement Compressors for Petroleum, Petrochemical and Natural Gas Industries

(Std 619)

Includes Errata 1 to datasheets dated August 2018

Specifies requirements for dry and oil-flooded, helical-lobe rotary compressors used for vacuum or pressure or both in petroleum, petrochemical, and gas industry services. It is intended for compressors that are in special-purpose applications. It is not applicable to general-purpose air compressors, liquid-ring compressors, or vane-type compressors.

Pages: 182

8th Edition | September 2014 | Product Number: C61907 | Price: $260.00

Russian translation of Std 619.

Product Number: C61905R | Price: $254.00

5th Edition | April 2008 | Product Number: C61905R | Price: $254.00

This edition of API Std 614 is the identical national adoption of ISO 10438:2007. Pages: 202

Product Number: C61605 | Price: $318.00

Covers the minimum requirements for centrifugal gas turbine units for services of mechanical drive, generator drive, or process gas generation. All auxiliary equipment required for operating, starting, controlling, and protecting gas turbine units are either discussed directly in this standard or referred to in this standard through references to other publications. Specifically, gas turbine units that are capable of firing gas or liquid or both are covered by this standard. This standard covers both industrial and aeroderivative gas turbines.

Pages: 168

5th Edition | April 2008 | Product Number: C61605R | Price: $223.00

Axial and Centrifugal Compressors and Expander-Compressors

This publication is related to an API licensing, certification, or accreditation program.

Product Number: C61605 | Price: $223.00

Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services

This publication is a new entry in this catalog.

Product Number: C61805 | Price: $196.00

Rotation-Type Positive Displacement Compressors for Petroleum, Petrochemical and Natural Gas Industries

Product Number: C61907 | Price: $260.00

This edition of API Std 614 is the identical national adoption of ISO 10438:2007. Pages: 202

Product Number: C61605 | Price: $318.00

This publication is related to an API licensing, certification, or accreditation program.
This edition of API Std 619 is the identical national adoption of ISO 10440-1:2007. Pages: 135

5th Edition | December 2010 | Product Number: CX61905 | Price: $234.00

Std 670

Machinery Protection Systems

Provides a purchase specification to facilitate the manufacture, procurement, installation, and testing of vibration, axial-position, and bearing temperature monitoring systems for petroleum, chemical, and gas industry services. Covers the minimum requirements for monitoring radial shaft vibration, casing vibration, shaft axial position, and bearing temperatures. It outlines a standardized monitoring system and covers requirements for hardware (sensors and instruments), installation, testing, and arrangement. Pages: 244

5th Edition | November 2014 | Product Number: C67005 | Price: $212.00

Std 671/ISO 10441:2007

Special Purpose Couplings for Petroleum, Chemical and Gas Industry Services

Specifies the requirements for couplings for the transmission of power between the rotating shafts of two machines in special-purpose applications in the petroleum, petrochemical and natural gas industries. Such applications are typically in large and/or high speed machines, in services that can be required to operate continuously for extended periods, are often unsparse and are critical to the continued operation of the installation. By agreement, it can be used for other applications or services.

Couplings covered are designed to accommodate parallel (or lateral) offset, angular misalignment and axial displacement of the shafts without imposing unacceptable mechanical loading on the coupled machines. It is applicable to gear, metallic flexible element, quill shaft and torsionally resilient type couplings. Torsional damping and resilient type couplings are detailed in Annex A; gear-type couplings are detailed in Annex B and quill shaft style coupling are detailed in Annex C. Also covers the design, materials of construction, manufacturing quality, inspection and testing special purpose couplings.

This edition of API Std 671 is the identical national adoption of ISO 10441:2007. Pages: 56

4th Edition | August 2007 | Reaffirmed: September 2010
2-Year Extension: November 2015
Product Number: C67104 | Price: $181.00

Std 672

Packaged, Integrimally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services

Covers the minimum requirements for constant-speed, packaged, general purpose integrally geared centrifugal air compressors, including their accessories. This standard is not applicable to machines that develop a pressure rise of less than 0.35 bar (5.0 psi) above atmospheric pressure, which are classed as fans or blowers. Pages: 125

5th Edition | August 2019 | Product Number: C67205 | Price: $315.00

Std 673

Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services

Covers the minimum requirements for centrifugal fans for use in petroleum, chemical, and gas industry services. Fan static pressure rise is limited to differential usually not exceeding 130 in. (330 cm) of water equivalent air pressure from a single impeller or each impeller in a two stage fan. This standard does not apply to axial flow, axial cooler, cooling tower, and ventilation fans and positive displacement blowers.

This standard covers equipment for both general purpose and special purpose applications. The purchaser shall determine which classification applies. Refer to Section 3 for definition of the terms general purpose and special purpose.

NOTE: See Std 674 for positive displacement reciprocating pumps and Std 670 for positive displacement rotary pumps.

Std 674

Positive Displacement Pumps—Reciprocating

(includes Errata 1 dated May 2014 and Errata 2 dated April 2015)

Covers the minimum requirements for reciprocating positive displacement pumps and pump units for use in the petroleum, petrochemical, and gas industry services. Both direct-acting and power-frame types are included. Controlled-volume pumps, hydraulically driven pumps, and rotary pumps are not included. Pages: 95

2-Year Extension: November 2015
Product Number: C67403 | Price: $202.00

**Std 674 * **

Positive Displacement Pumps—Reciprocating—Russian

Russian translation of Std 674.

3rd Edition | December 2010
Product Number: C67403R | Price: $162.00

Std 675

Positive Displacement Pumps—Controlled Volume for Petroleum, Chemical, and Gas Industry Services

(includes Errata 1 dated June 2014 and Errata 2 dated April 2015)

Covers the minimum requirements for reciprocating, controlled volume pumps, and pump units for use in the petroleum, petrochemical, and gas industry services. These pumps are either hydraulic diaphragm or packed plunger design. Rotary positive displacement pumps are not included. Diaphragm pumps that use direct mechanical actuation are also excluded.

NOTE: See Std 674 for positive displacement reciprocating pumps and Std 670 for positive displacement rotary pumps.

This standard requires the purchaser to specify certain details and features. A bullet (•) at the beginning of a paragraph indicates that either a decision by, or further information from, the purchaser is required. Further information should be shown on the datasheets (see example in Annex A) or stated in the quotation request and purchase order. Pages: 64

3rd Edition | November 2012 | Product Number: C67503 | Price: $138.00

Std 676

Positive Displacement Pumps—Rotary

Covers the minimum requirements for rotary positive displacement process pumps and pump units for use in the petroleum, petrochemical, and gas industry services. Controlled-volume pumps, hydraulically driven pumps, and positive displacement reciprocating pumps are not included. Pages: 102

3rd Edition | November 2009 | Reaffirmed: March 2015
Product Number: C67603 | Price: $163.00
Refining

Fax Orders: +1 303 397 2740

Std 676 *
Positive Displacement Pumps—Rotary—Chinese
Chinese translation of Std 676.
3rd Edition | November 2009
Product Number: C67603 CN945 | Price: $114.00

Std 677
General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services
(includes Errata 1 dated February 2012)
Covers the minimum requirements for general-purpose, enclosed, single, and multistage gear units incorporating parallel shaft helical and right angle spiral bevel gears for the petroleum, chemical, and gas industries. Gears manufactured according to this standard shall be limited to the following pitchline velocities. Helical gears shall not exceed 60 meters per second (12,000 feet per minute), and spiral bevels shall not exceed 40 meters per second (8,000 feet per minute). Typical applications for which this standard is intended are cooling tower water pump systems, forced and induced draft fan systems, and other general-purpose equipment trains. Pages: 84
Product Number: C67703 | Price: $179.00

Std 681
Liquid Ring Vacuum Pumps and Compressors for Petroleum, Chemical, and Gas Industry Services
Defines the minimum requirements for the basic design, inspection, testing, and preparation for shipment of liquid ring vacuum pump and compressor systems for service in the petroleum, chemical, and gas industries. It includes both vacuum pump and compressor design and system design. Pages: 86
1st Edition | February 1996 | Reaffirmed: November 2010
2-Year Extension: November 2015
Product Number: C68101 | Price: $154.00

Std 682
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps
Specifies requirements and gives recommendations for sealing systems for centrifugal and rotary pumps used in the petroleum, natural gas, and chemical industries. See A.1.1 and A.1.2. It is the responsibility of the purchaser or seal vendor to ensure that the selected seal and auxiliaries are suitable for the intended service condition. It is applicable mainly for hazardous, flammable, and/or toxic services where a greater degree of reliability is required for the improvement of equipment availability and the reduction of both emissions to the atmosphere and life-cycle sealing costs. It covers seals for pump shaft diameters from 20 mm (0.75 in.) to 110 mm (4.3 in.). This standard is also applicable to seal spare parts and can be referred to for the upgrading of existing equipment. A classification system for the seal configurations covered by this standard into categories, types, arrangements, and orientations is provided. This standard is referenced normatively in Std 610. It is applicable to both new and retrofitted pumps and to pumps other than Std 610 pumps (e.g. ASME B73.1, ASME B73.2, and Std 676 pumps). This standard might also be referenced by other machinery standards such as other pumps, compressors, and agitators. Users are cautioned that this standard is not specifically written to address all of the potential applications that a purchaser may specify. This is especially true for the size envelope specified for Std 682 seals. The purchaser and seal vendor shall mutually agree on the features taken from this standard and used in the application. Pages: 256
4th Edition | May 2014 | Product Number: C68204 | Price: $277.00

Std 682 *
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Chinese
Chinese translation of Std 682.
4th Edition | May 2014 | Product Number: C68204C | Price: $194.00

Std 682 *
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Russian
Russian translation of Std 682.
4th Edition | May 2014 | Product Number: C68204R | Price: $222.00

RP 684
Describes, discusses, and clarifies the section of the API Standard Paragraphs that outline the complete lateral and torsional rotodynamics and rotor balancing acceptance program designed by API to ensure equipment mechanical reliability. Background material on the fundamentals of these subjects (including terminology) along with rotor modeling utilized in this analysis is presented for those unfamiliar with the subject. This document is an introduction to the major aspects of rotating equipment vibrations that are addressed during a typical lateral dynamics analysis. Pages: 303
2nd Edition | August 2005 | Reaffirmed: November 2010
Product Number: C68402 | Price: $191.00

TR 684-1
Describes, discusses, and clarifies the section of the API Standard Paragraphs that outlines the complete rotodynamics acceptance program. The acceptance program was designed by API to ensure mechanical reliability of equipment. This document is an introduction to the major aspects of rotating equipment vibrations that are addressed during a typical lateral dynamics analysis. Pages: 538
1st Edition | November 2019 | Product Number: C684101 | Price: $245.00

Std 685
Sealless Centrifugal Pumps for Petroleum, Petrochemical, and Gas Industry Process Service
Specifies the minimum requirements for sealless centrifugal pumps for use in petroleum, heavy duty petrochemical and gas industry services. This standard is applicable to single stage overhung pumps of two classifications: magnetic drive pumps and canned motor pumps. Pages: 170
2nd Edition | February 2011 | Product Number: C68502 | Price: $223.00

RP 686
Recommended Practice for Machinery Installation and Installation Design
Provides recommended procedures, practices, and checklists for the installation and precommissioning of new, existing, and reapplied machinery and to assist with the installation design of such machinery for petroleum, chemical, and gas industry services facilities. In general, this RP is intended to supplement vendor instructions and the instructions provided by the original equipment manufacturer (OEM) should be carefully followed with regard to equipment installation and checkout. Most major topics of this RP are subdivided into sections of “Installation Design” and “Installation” with the intent being that each section can be removed and used as needed by the appropriate design or installation personnel. Pages: 254
Product Number: C68602 | Price: $203.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
ISO

This edition of API Std 689 is the identical national adoption of RM data are addressed. Examples, guidelines, and principles for the exchange and merging of such requirements found in the API purchasing specifications for positive displacement machinery. The fundamentals of pulsation and piping system analysis are presented in Part 1. Part 2 deals specifically with reciprocating compressors and provides commentary regarding each paragraph of Section 7.9 of Std 618, 5th Edition. Pages 128

1st Edition | April 2012 | Product Number: C68801 | Price: $170.00

Std 689/ISO 14224:2006

Collection and Exchange of Reliability and Maintenance Data for Equipment (ANSI/API Std 689)

Provides a comprehensive basis for the collection of reliability and maintenance (RM) data in a standard format for equipment in all facilities and operations within the petroleum, natural gas, and petrochemical industries during the operational life cycle of equipment. It describes data-collection principles and associated terms and definitions that constitute “reliability language” that can be useful for communicating operational experience. The failure modes defined in the normative part of this standard can be used as a “reliability thesaurus” for various quantitative as well as qualitative applications. This standard also describes data quality control and assurance practices to provide guidance for the user. Std 689 establishes requirements that any inhouse or commercially available RM data system is required to meet when designed for RM data exchange. Examples, guidelines, and principles for the exchange and merging of such RM data are addressed.

This edition of API Std 689 is the identical national adoption of ISO 14224:2006. Pages: 171

RP 691

Risk-Based Machinery Management

Defines the minimum requirements for the management of health, safety, and environmental (HSE) risks across the machinery life cycle. It shall be applied to the subset of operating-company- and/or vendor-defined high-risk machinery. Pages: 198

1st Edition | June 2017 | Product Number: C69101 | Price: $177.00

Std 692

Dry Gas Sealing Systems for Axial, Centrifugal, and Rotary Screw Compressors and Expanders

Covers the minimum dry gas sealing system requirements in association with axial, centrifugal, and rotary screw compressors and expanders for use in the petroleum, chemical, and gas industry services as described in API 617 and API 619. Pages: 258

1st Edition | June 2018 | Product Number: C69201 | Price: $179.00

EQUIPMENT DATASHEETS

Electronically formatted mechanical equipment standards datasheets are now available in electronic format (Excel 5.0 spreadsheets):

All of the following datasheets are available for single user at $65.00 each or for intranet licensing at $317.00 each.

Std 618, 5th Edition | Std 672, 4th Edition
Std 619, 5th Edition | Std 673, 3rd Edition

Mechanical Equipment Residual Unbalance Worksheets

Electronic versions of the residual unbalance worksheets that appear in mechanical equipment standards (Excel) along with instructions (Word).

Price: $124.00

The API Specification Database

The American Petroleum Institute Specification Database Software™ provides a knowledge-management toolset for the project engineering team. Facilitates the entire equipment specification process including the entry of process data and release to design to the final entry of mechanical datasheets and development of the technical bid specification package. Electronic outputs can be combined to form a master technical specification bid package for quotation and purchasing purposes with a modern tree-view format for ease of navigation. Completed projects provide on-going documentation for plant equipment assets—improving safety and reliability. Available in a full-featured corporate-wide Oracle® format or a portable ODBC database format with primary focus on equipment datasheets.

Contact EPCON International at (281) 398-9400 or visit the EPCON website: http://www.epcon.com

STORAGE TANKS

Impact of Gasoline Blended with Ethanol on the Long-Term Structural Integrity of Liquid Petroleum Storage Systems and Components

Summarizes the results of a literature review conducted for the American Petroleum Institute on the impact of gasoline blended with ethanol on the long-term structural integrity of liquid petroleum storage systems and components. It is anticipated that the use of ethanol in motor fuels will continue to increase. This has generated interest about the potential long-term structural effects of ethanol on liquid petroleum storage systems, including underground storage tanks (USTs), underground piping, and associated components. The objective of the literature review is to determine the state of industry knowledge and research on the effects of ethanol/gasoline blends on the long-term structural integrity of UST systems and components. This review is intended to assist decision-makers on further research requirements and needed changes or supplements to existing standards for underground storage system components used for storing and dispensing gasoline blended with ethanol. Appendix A may be purchased separately as an electronic database file. The database synopsis and bibliographic information for all articles reviewed for the project. The report is organized by article index number. Reference numbers cited in this report refer to the article index number. Pages: 25

January 2003 | Executive Summary | Price: $71.00
Appendix A—Literature Review | Price $138.00
Spec 12B ◆
Specification for Bolted Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for vertical, cylindrical, aboveground, closed and open top, bolted steel storage tanks in various standard sizes and capacities for internal pressures approximately atmospheric. This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 31
16th Edition | November 2014
Product Number: G12B156 | Price: $130.00

Spec 12D ◆
Specification for Field-Welded Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for new shop-fabricated vertical, cylindrical, aboveground, welded steel storage tanks in the standard sizes and capacities, and for internal pressures approximately atmospheric, given in Table 1.
This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 29
12th Edition | June 2017 | Effective Date: December 1, 2017
Product Number: G12D12 | Price: $111.00

Spec 12F ◆◆
Specification for Shop-Welded Tanks for Storage of Production Liquids
Covers material, design, fabrication, and testing requirements for new shop-fabricated vertical, cylindrical, aboveground, welded steel storage tanks in the standard sizes and capacities, and for internal pressures approximately atmospheric, given in Table 1.
This specification is designed to provide the oil production industry with tanks of adequate safety and reasonable economy for use in the storage of crude petroleum and other liquids commonly handled and stored by the production segment of the industry. This specification is for the convenience of purchasers and manufacturers in ordering and fabricating tanks. Pages: 35
13th Edition | January 2019 | Effective Date: July 1, 2019
Product Number: G12F13 | Price: $146.00

Spec 12P ◆
Specification for Fiberglass Reinforced Plastic Tanks
Covers material, design, fabrication, and testing requirements for fiberglass reinforced plastic (FRP) tanks. Only shop-fabricated, vertical, cylindrical tanks are covered. Tanks covered by this specification are intended for above ground and atmospheric pressure service. This specification applies to new tanks. The requirements may be applied to existing tanks at the discretion of the owner/ operator.
This specification is designed to provide the petroleum industry with various standard sizes of FRP tanks. Because of the versatility of FRP tanks, the user shall be responsible for determining the suitability of FRP tanks for the intended service. Unsupported cone bottom tanks are outside the scope of this specification. Pages: 27
4th Edition | February 2016 | Effective Date: August 1, 2016
Product Number: G12P04 | Price: $117.00

RP 12R1
Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service
(includes Addendum 1 dated December 2017)
Serves as a guide on new tank installations and maintenance of existing tanks. It contains recommendations for good practices in (a) the collection of well or lease production, (b) gauging, (c) delivery to pipeline carriers for transportation, and (d) other production storage and treatment operations. In particular, the spill prevention and examination/inspection provisions of this recommended practice should be companion to the spill prevention and countermeasures (SPCC) to prevent environmental damage. This recommended practice is intended primarily for application to tanks fabricated to Specs 12F, 12D, 12F, and 12P when employed in on-land production service; but its basic principles are applicable to atmospheric tanks of other dimensions and specifications when they are employed in similar oil and gas production, treatment, and processing services. It is not applicable to refineries, petrochemical plants, marketing bulk stations, or pipeline storage facilities operated by carriers.

Addendum 1 to the 5th Edition specifically adds Annex J, Unmanned Upstream Facility Design and Safety Considerations. Annex J is a guide for the design and security of storage tanks at unmanned exploration and production facilities for all produced fluids. It contains recommendations for practices when such facilities may be subject to tampering or introduction of ignition sources by members of the public that could result in damage, injury, or accidental release of tank contents into the environment. Pages: 63
2-Year Extension: November 2015
Product Number: G12R15 | Price: $143.00

Std 620
Design and Construction of Large, Welded, Low-Pressure Storage Tanks
(includes Addendum 1 dated November 2014 and Addendum 2 dated April 2018)
Covers the design and construction of large field-assembled, welded, low-pressure carbon steel above ground storage tanks (including flat-bottom tanks) that have a single vertical axis of revolution, that contain petroleum intermediates (gases or vapors) and finished products, as well as other liquid products commonly handled and stored by the various branches of the industry.
Covered are tanks designed for metal temperatures not greater than 250 °F and with pressures in their gas or vapor spaces not more than 15 pounds per square inch gauge. The basic rules in this standard provide for installation in areas where the lowest recorded 1-day mean atmospheric temperature is -50 °F. Annex S covers stainless steel low-pressure storage tanks in ambient temperature service in all areas, without limit on low temperatures. Annex R covers low-pressure storage tanks for refrigerated products at temperatures from -40 °F to -60 °F. Annex Q covers low-pressure storage tanks for liquefied gases at temperatures not lower than -325 °F.
This standard is applicable to tanks that (a) hold or store liquids with gases or vapors above their surface or (b) hold or store gases or vapors alone. These rules do not apply to lift-type gas holders.
Although the rules in this standard do not cover horizontal tanks, they are not intended to preclude the application of appropriate portions to the design and construction of horizontal tanks designed in accordance with good engineering practice. Pages: 288
12th Edition | October 2013 | Product Number: C62012 | Price: $471.00

Std 620 *
Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese
Chinese translation of Std 620.

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Liquid phase. Also covered are tank systems with a minimum design containment constructed of metal, concrete, or a metal/concrete Tank system configurations covered consist of a primary liquid and vapor temperature of 93 °C (200 °F) or less. Pages: 498 and to tanks in non-refrigerated service that have a maximum design internal pressure is permitted when addition requirements are met. This requirements on responsibilities, selection of storage concept, performance criteria, accessories/appurtenances, quality assurance, insulation, and commissioning of tank systems. Included are tank systems having a storage capacity of 800 cubic meters (5000 bbls) and larger. Stored product shall be liquids which are in a gaseous state at ambient temperature and pressure and require refrigeration to less than 5 °C (40 °F) to maintain a liquid phase. Also covered are tank systems with a minimum design temperature of -198 °C (-325 °F), a maximum design internal pressure of 50 kPa (7 psig), and a maximum design uniform external pressure of 1.75 kPa (0.25 psig).

Tank system configurations covered consist of a primary liquid and vapor containment constructed of metal, concrete, or a metal/concrete combination and, when required, a secondary liquid containment. Pages: 63

1st Edition | August 2010 | Product Number: C62501 | Price: $251.00

Std 650 ◆ Welded Tanks for Oil Storage
(includes Addendum 1 dated July 2013, Addendum 2 dated November 2014, and Addendum 3 dated June 2018)

Establishes minimum requirements for material, design, fabrication, erection, and testing for vertical, cylindrical, aboveground, closed- and open-top, welded carbon, or stainless steel storage tanks in various sizes and capacities for internal pressures approximating atmospheric pressure (internal pressures not exceeding the weight of the roof plates), but a higher internal pressure is permitted when addition requirements are met. This standard applies only to tanks whose entire bottom is uniformly supported and to tanks in non-refrigerated service that have a maximum design temperature of 93 °C (200 °F) or less. Pages: 498

12th Edition | March 2013 | Product Number: C65012 | Price: $514.00

Std 650 ◆ Welded Tanks for Oil Storage—Chinese
Chinese translation of Std 650.

12th Edition | March 2013 | Product Number: C65012C | Price: $361.00

RP 651 ◆ Cathodic Protection of Aboveground Petroleum Storage Tanks

Presents procedures and practices for achieving effective corrosion control on aboveground storage tank bottoms through the use of cathodic protection. This RP provides provisions for the application of cathodic protection to existing and new aboveground storage tanks. Corrosion control methods based on chemical control of the environment or the use of protective coatings are not covered in detail.

When cathodic protection is used for aboveground storage tank applications, it is the intent of this RP to provide information and guidance specific to aboveground metallic storage tanks in hydrocarbon service. Certain practices recommended herein may also be applicable to tanks in other services. It is intended to serve only as a guide to persons interested in cathodic protection. Specific cathodic protection designs are not provided. Such designs should be developed by a person thoroughly familiar with cathodic protection practices for aboveground petroleum storage tanks.

This RP does not designate specific practices for every situation because the varied conditions in which tank bottoms are installed preclude standardization of cathodic protection practices. Pages: 46

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
procedures or acceptance criteria for a specific type of degradation or when this standard explicitly allows the use of fitness-for-service criteria. API 579-1/ASME FFS-1 may be used to evaluate the various types of degradation or test requirements addressed in this standard. Pages: 162

5th Edition | November 2014 | Product Number: C65305 | Price: $255.00

Std 653 *
Tank Inspection, Repair, Alteration, and Reconstruction—Chinese
Chinese translation of Std 653.
5th Edition | November 2014 | Product Number: C65305C | Price: $179.00

TR 654 *
Aboveground Storage Tank Caulking or Sealing the Bottom Edge Projection to the Foundation
Provides guidance to owner/operators that have tanks that are set on a foundation system with the goal to protect the asset from deterioration by minimizing corrosion and foundation deterioration and allowing for proper support of the tank shell. The asset includes the tank itself, as well as the foundation system. This document does not require that caulk or sealants be installed at the bottom edge projection and the foundation of aboveground storage tanks. It provides guidance in situations in which caulk, or sealants may be advantageous and should be considered. This technical report applies to situations where an owner/operator is considering caulk or sealant in this area, or if any regulatory agency requires or recommends that an owner/operator installs some type of caulk or sealant. This document will also consider how to inspect existing caulk and sealant, including maintenance procedures, and includes a suggested inspection schedule. Pages: 23
1st Edition | May 2019 | Product Number: C65401 | Price: $115.00

Publ 937
Evaluation of Design Criteria for Storage Tanks with Frangible Roof Joints
Describes research that evaluated the ability of the present Std 650 tank design criteria to ensure the desired frangible joint behavior. Particular questions include:
- evaluation of the area inequality as a method to predict the buckling response of the compression ring,
- effect of roof slope, tank diameter, and weld size on the frangible joint, and
- effect of the relative strength of the roof-to-shell joint compared to the shell-to-bottom joint. Pages: 73
1st Edition | April 1996 | Product Number: C93701 | Price: $146.00

Publ 937-A
Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell and Shell-to-Bottom Joints
Investigates the relative strengths of the roof-to-shell and shell-to-bottom joints, with the goal of providing suggestions for frangible roof design criteria applicable to smaller tanks. Pages: 68
1st Edition | August 2005 | Product Number: C937A0 | Price: $133.00

TR 939-D
Stress Corrosion Cracking of Carbon Steel in Fuel Grade Ethanol—Review, Experience Survey, Field Monitoring, and Laboratory Testing (includes Addendum 1 dated October 2013)
Addresses stress corrosion cracking (SCC) in carbon steel equipment used in distribution, transportation, storage, and blending of denatured fuel ethanol. API, with assistance from the Renewable Fuels Association (RFA), conducted research on the potential for metal cracking and product leakage in certain portions of the fuel ethanol distribution system. TR 939-D contains a review of existing literature, results of an industry survey on cracking events and corrosion field monitoring, and information on mitigation and prevention. Pages: 172
2nd Edition | May 2007 | Product Number: C939D0 | Price: $174.00

Std 2015 *
Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks
Applicable to stationary atmospheric and low-pressure (up to and including 15 psig) aboveground petroleum storage tanks used in all sectors of the petroleum and petrochemical industry, including crude oil and gas production; refining; petrochemicals; pipelines and terminals; bulk storage; and ethanol facilities. This standard provides requirements for safety planning, coordinating, and conducting tank entry and cleaning operations, from removal from service through return to service. Pages: 146
8th Edition | January 2018 | Product Number: K20158 | Price: $215.00

RP 2026 *
Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service
Provides information to enable safe access/egress involving floating roofs of storage tanks used in petroleum service and identifies common hazards and potentially hazardous conditions associated with these activities. The objective of this recommended practice (RP) is to establish general precautionary measures appropriate for individual situations. It provides the appropriate precautions for preventing accidents and injuries. This RP is intended primarily for those persons who are required to perform inspections, service, maintenance, and/or repair activities that involve descent onto floating roofs of in-service petroleum tanks. This RP does not cover general considerations that apply to climbing onto petroleum storage tanks and other structures. Pages: 28
3rd Edition | June 2017 | Product Number: K20263 | Price: $99.00

RP 2027
Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service
Provides safe work practices for the prevention and control of vapor, ignition, and other potential hazards during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. It also provides assistance to employers in developing operating procedures that provide for hazard recognition to significantly reduce ignition risks during abrasive blasting of hydrocarbon storage tanks in service that may contain or have the potential to develop a flammable atmosphere in the vapor space. This RP applies to safe work practices required for abrasive blasting of exterior shells and exterior roofs of all aboveground atmospheric storage tanks in liquid hydrocarbon service. It also applies to safe work practices for abrasive blasting conducted on the roofs and inner portions of the exposed surfaces of shells (that portion of the shell above the roof level) on open-top (external) floating roof tanks. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static electricity, internal combustion engines, electric motors, friction sparks, hot metal surfaces, and external-to-the-work ignition sources. Pages: 27
4th Edition | November 2018 | Product Number: C20274 | Price: $132.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Refining

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

RP 2207 ◆ Preparing Tank Bottoms for Hot Work

Provides information to assist safe performance of hot work on the bottoms of storage tanks that have been in service to store flammable products. This work activity has specific precautions and work practices.

It also addresses the safety aspects of hot work performed on petroleum storage tank bottoms. It discusses safety precautions for preventing fires, explosions, and associated injuries. The term “hot work,” as used in this publication, is defined as an operation that can produce a spark or flame hot enough to ignite flammable vapors.

This recommended practice does not contain all safety precautions and procedures that may be required prior to, during, or after a specific hot work activity. All hot work should be performed in compliance with applicable federal, state, and local regulatory requirements and recognized industry practices. Work practices of concern for working on tank bottoms include, but are not limited to, confined space entry, lockout/tagout, atmospheric testing, ventilation, and requirements for use of personal protective equipment (PPE).

Pages: 27

9th Edition | July 2014 | Product Number: C520109 | Price: $368.00

Std 520, Part I *
Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection—Russian

Russian translation of Std 520, Part I.

RP 520, Part II
Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation

Covers the methods of installation for pressure relief devices for equipment that has a maximum allowable working pressure (MAWP) of 15 psig (1.03 bar g) or greater. Pressure relief valves or rupture disks may be used independently or in combination with each other to provide the required protection against excessive pressure accumulation. The term “pressure relief valve” includes safety relief valves used in either compressible or incompressible fluid service, and relief valves used in incompressible fluid service. Covers gas, vapor, steam, and incompressible fluid service.

Pages: 55

RP 520, Part II *
Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation—Russian

Russian translation of Std 520, Part II.

Std 521 Pressure-Relieving and Depressuring Systems

Applies to pressure-relieving and vapor depressuring systems. Although intended for use primarily in oil refineries, it is also applicable to petrochemical facilities, gas plants, liquefied natural gas (LNG) facilities, and oil and gas production facilities. The information provided is designed to aid in the selection of the system that is most appropriate for the risks and circumstances involved in various installations. This standard specifies requirements and gives guidelines for the following:

- examining the principal causes of overpressure;
- determining individual relieving rates;
- selecting and designing disposal systems, including such component parts as piping, vessels, flares, and vent stacks.

This standard does not apply to direct-fired steam boilers. Pages: 248

Std 521 *
Pressure-Relieving and Depressuring Systems—Russian

Russian translation of Std 521.

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Inspection of Pressure-Relieving Devices—Spanish

Spanish translation of RP 576.

4th Edition | April 2017 | Product Number: C57604S | Price: $227.00

Std 520

Venting Atmospheric and Low-Pressure Storage Tanks

Covers the normal and emergency vapour venting requirements for aboveground liquid petroleum or petroleum products storage tanks and aboveground and underground refrigerated storage tanks, designed for operation at pressures from full vacuum through 103,4 kPa (ga) [15 psig].

Discussed in this International Standard are the causes of overpressure and vacuum; determination of venting requirements; means of venting; selection, and installation of venting devices; and testing and marking of relief devices.

This International Standard is intended for tanks containing petroleum and petroleum products but it can also be applied to tanks containing other liquids; however, it is necessary to use sound engineering analysis and judgment whenever this International Standard is applied to other liquids.

This International Standard does not apply to external floating-roof tanks.

Pages: 87

7th Edition | March 2014 | Product Number: C20007 | Price: $244.00

PIPING COMPONENT AND VALVE STANDARDS

API 570

Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems

(includes Addendum 1 dated May 2017, Addendum 2 dated March 2018, and Errata 1 dated April 2018)

Covers inspection, rating, repair, and alteration procedures for metallic and fiberglass reinforced plastic (FRP) piping systems and their associated pressure-relieving devices that have been placed in service. This inspection code applies to all hydrocarbon and chemical process piping covered in 1.2.1 that have been placed in service unless specifically designated as optional per 1.2.2. This publication does not cover inspection of specialty equipment including instrumentation, exchanger tubes, and control valves.

However, this piping code could be used by owner/users in other industries and other services at their discretion. Process piping systems that have been retired from service and abandoned in place are no longer covered by this “in-service inspection” Code. However abandoned in place piping may still need some amount of inspection and/or risk mitigation to assure that it does not become a process safety hazard because of continuing deterioration. Process piping systems that are temporarily out of service but have been mothballed (preserved for potential future use) are still covered by this Code.

Pages: 88

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 574 ●

Inspection Practices for Piping System Components

Supplements API 570 by providing piping inspectors with information that can improve skill and increase knowledge of inspection practices. This recommended practice describes inspection practices for piping, tubing, valves (other than control valves), and fittings used in petroleum refineries and chemical plants. Common piping components, valve types, pipe joining methods, inspection planning processes, inspection intervals and techniques, and types of records are described to aid the inspectors in fulfilling their role implementing API 570. This publication does not cover inspection of specialty items, including instrumentation, furnace tubulars, and control valves. Pages: 113

4th Edition | November 2016 | Product Number: C57404 | Price: $227.00

RP 578 ●

Guidelines for a Material Verification Program (MVP) for New and Existing Assets

Provides the guidelines for the owner/user to develop and implement a material verification program (MVP) as part of an asset integrity program. The MVP uses positive material identification and other methods to verify that the nominal composition of an asset, an asset component, or weldment within the pressure envelope is consistent with the selected or specified construction materials.

A well-designed and implemented MVP is an important management system used to minimize the potential for the release of hazardous substances due to nonconforming materials of construction. Pages: 29

3rd Edition | February 2018 | Product Number: C57803 | Price: $227.00

RP 591 ●

Process Valve Qualification Procedure

Provides recommendations for evaluation of a manufacturer’s valve construction and quality management system for the purpose of determining a manufacturer’s capability to provide new valves manufactured in accordance with applicable standards listed. Testing per this recommended practice that does not have an established requirement in the applicable standard is for information only. Pages: 32

Std 594 ●

Check Valves: Flanged, Lug, Wafer, and Butt-Welding

Covers design, materials, face-to-face dimensions, pressure-temperature ratings, and examination, inspection, and test requirements for two types of check valves:

- **Type ‘A’** check valves are short face-to-face and can be: wafer, lug, or double flanged; single plate or dual plate; gray iron, ductile iron, steel, nickel alloy, or other alloy designed for installation between Classes 125 and 250 cast iron flanges as specified in ASME B16.1, between Classes 150 and 300 ductile iron flanges as specified in ASME B16.42, between Classes 150 and 2500 steel flanges as specified in ASME B16.5, and between Classes 150 and 600 steel pipeline flanges as specified in MSS SP-44 or steel flanges as specified in ASME B16.47.

- **Type ‘B’** bolted cover swing check valves are long face-to-face as defined in 5.1.2 and can be: flanged or butt-welding ends of steel, nickel alloy, or other alloy material. End flanges shall be as specified in ASME B16.5 or ends shall be butt-welding as specified in ASME B16.25. Pages: 35

8th Edition | July 2017 | Effective Date: January 14, 2018
Product Number: C59408 | Price: $128.00

Std 598 ●

Valve Inspection and Testing

Covers inspection, examination, supplementary examinations, and pressure test requirements for resilient-seated, nonmetallic-seated (e.g. ceramic), and metal-to-metal-seated valves of the gate, globe, plug, ball, check, and butterfly types. Pages: 14

10th Edition | October 2016 | Product Number: C59810 | Price: $104.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall replace the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
It includes provisions for the following valve characteristics.

- Outside screw with rising stems (OS & Y), in sizes 1/4 NPS 4 (8 DN 100) welding and threaded end compact valves.
- Corresponding to nominal sizes DN 8, DN 10, DN 15, DN 20, DN 25, DN 32, DN 40, DN 50, DN 65, DN 80, and DN 100.

This standard covers the requirements for corrosion-resistant gate valves for use in process piping applications. Covered are requirements for outside-screw-and-yoke (OS&Y) valves with rising stems, non-rising hand-wheels, bolted bonnets, and various types of gate configurations. Pages: 9

Std 607

Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seats

Specifies fire type-testing requirements and a fire type-test method for confirming the pressure-containing capability of quarter-turn valves and other valves with nonmetallic seating under pressure during and after the fire test. It does not cover the testing requirements for valve actuators other than manually operated gear boxes or similar mechanisms when these form part of the normal valve assembly. Other types of valve actuators (e.g. electrical, pneumatic, or hydraulic) may need special protection to operate in the environment considered in this valve test, and the fire testing of such actuators is outside the scope of this standard. Pages: 14

7th Edition | June 2016 | Product Number: C60707 | Price: $105.00

Std 608

Metal Ball Valves—Flanged, Threaded, and Welding Ends

Specifies the requirements for metal ball valves suitable for petroleum, petrochemical and industrial applications that have butt-welding or flanged ends for NPS 1/2 through NPS 20 and threaded or socket-welding ends for NPS 1/4 through NPS 2, corresponding to the nominal pipe sizes in ASME B36.10M. Also applies to metal ball valves in pressure classes 150, 300, 600, and 800 for flanged and butt-welding and in pressure classes 150, 300, 600, and 800 for socket-welding and threaded ends. Establishes requirements for bore sizes described as full bore, single reduced bore, and double reduced bore. Covers additional requirements for ball valves that are otherwise in full conformance to the requirements of ASME B16.34, Standard Class. Pages: 15

5th Edition | November 2012 | Product Number: C60805 | Price: $118.00

Std 609

Metal Ball Valves—Flanged, Threaded, and Welding Ends—Chinese

Chinese translation of Std 608.

5th Edition | November 2012 | Product Number: C60805C | Price: $83.00

Std 608

Metal Ball Valves—Flanged, Threaded, and Welding Ends—Russian

Russian translation of Std 608.

5th Edition | November 2012 | Product Number: C60805R | Price: $96.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersedes the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Butterfly Valves: Double-Flanged, Lug- and Wafer-Type
Includes Errata 1 dated April 2017
Covers design, materials, face-to-face dimensions, pressure-temperature ratings, and examination, inspection, and test requirements for gray iron, ductile iron, bronze, steel, nickel-based alloy, or special alloy butterfly valves that provide tight shutoff in the closed position. The following two categories of butterfly valves are included.

Category A—Manufacturer's rated cold working pressure (CWP) butterfly valves, usually with a concentric disc and seat configuration. Sizes covered are NPS 2 to NPS 48 for valves having ASME Class 125 or Class 150 flange bolting patterns.

Category B—ASME Class and pressure-temperature rated butterfly valves that have an offset seat and either an eccentric or a concentric disc configuration. These valves may have a seat rating less than the body rating. For lug and wafer, Class 150, 300, and 600, sizes covered are NPS 3 to NPS 24. For double-flanged long pattern, Class 150, 300, and 600, sizes covered are NPS 3 to NPS 36. For double-flanged short pattern, Class 600, sizes covered are NPS 3 to NPS 24. Pages: 36

8th Edition | February 2016 | Effective Date: August 1, 2016

Product Number: C60908 | Price: $114.00

RP 615
Valve Selection Guide
Provides general guidance on valve selection for the hydrocarbon processing industry, which includes refineries and petrochemical, chemical, and liquefied natural gas plants and their various associated processes. Selection guidance is provided for valve types covered by ASME B16.34 and API Valve Standards for the Downstream Segment, which include gate, ball, plug, butterfly, check, and globe valves. Modulating control valves and pressure-relief valves are outside the scope of this recommended practice. Pages: 36

2nd Edition | August 2016 | Product Number: C61502 | Price: $96.00

RP 621
Reconditioning of Metallic Gate, Globe, and Check Valves
Provides guidelines for reconditioning heavy wall (API 600 and API 594 type) carbon steel, ferritic alloy (up to 9 % Cr), stainless steel, and nickel alloy gate, globe, and check valves for ASME pressure classes 150, 300, 400, 600, 900, 1500, and 2500. Guidelines contained in this RP apply to flanged and butt weld cast or forged valves.

This RP does not cover reconditioning or remanufacturing of used or surplus valves intended for resale. The only intent of this RP is to provide guidelines for refurbishing an end user's (Owner) valves for continued service in the Owner's facility. Valves reconditioned or remanufactured to this RP may not meet API standard requirements for new valves. Pages: 36

4th Edition | October 2018 | Product Number: C62104 | Price: $162.00

Std 622
Type Testing of Process Valve Packing for Fugitive Emissions
Specifies the requirements for comparative testing of block valve stem packing for process applications where fugitive emissions are a consideration. Packing(s) shall be suitable for use at -29 °C to 538 °C (-20 °F to 1000 °F). Factors affecting fugitive emissions performance that are considered by this standard include temperature, pressure, thermal cycling, mechanical cycling, and corrosion. Pages: 37

3rd Edition | October 2018 | Product Number: C62203 | Price: $162.00

Std 623
Steel Globe Valves—Flanged and Butt-Welding Ends, bolted Bonnets
Specifies the requirements for a heavy-duty series of bolted bonnet steel globe valves for petroleum refinery and related applications where corrosion, erosion, and other service conditions would indicate a need for heavy wall sections and large stem diameters. This standard sets forth the requirements for the following globe valve features:

- bolted bonnet,
- outside screw and yoke,
- rotating rising stems, and nonrotating rising stems,
- rising handwheels and nonrising handwheels,
- conventional, y-pattern, right-angle,
- stop-check (nonreturn type globe valves in which the disc may be positioned against the seat by action of the stem, but is free to rise as a check valve due to flow from under the disc, when the stem is in a full or partially open position),
- plug, narrow, conical, ball, or guided disc,
- metallic seating surfaces,
- flanged or butt-welding ends.

It covers valves of the nominal pipe sizes NPS:
- 2, 2-1/2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24;

corresponding to nominal pipe sizes DN:
- 50, 65, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600;

applies for pressure class designations:
- 150, 300, 600, 900, 1500, 2500. Pages: 27

1st Edition | September 2013 | Product Number: C62301 | Price: $81.00

Std 624
Type Testing of Rising Stem Valves Equipped with Flexible Graphite Packing for Fugitive Emissions
Specifies the requirements and acceptance criteria (100 ppmv) for fugitive emission type testing of rising and rising-rotating stem valves equipped with packing previously tested in accordance with Std 622. Packing shall be suitable for use at service temperatures -29 °C to 538 °C (-20 °F to 1000 °F). The type testing requirements contained herein are based upon elements of EPA Method 21. Valves larger than NPS 24 or valves greater than class 1500 are outside the scope of this standard. Pages: 12

1st Edition | February 2014 | Product Number: C62401 | Price: $93.00

Std 641
Type Testing of Quarter-Turn Valves for Fugitive Emissions
Specifies the requirements and acceptance criteria for fugitive emission type testing of quarter-turn valves. The type testing requirements contained herein are based on elements of EPA Method 21. Valves larger than NPS 24 and valves greater than ASME B16.34 class 1500 are outside the scope of this standard. Valves with a pressure rating at ambient temperature less than 6.89 barg (100 psig) are outside the scope of this standard. Repacking or resealing of valves is outside the scope of this standard. Pages: 14

1st Edition | October 2016 | Product Number: C64101 | Price: $81.00
HEAT TRANSFER EQUIPMENT STANDARDS FOR REFINERY SERVICE

Std 530
Calculation of Heater-Tube Thickness in Petroleum Refineries
(includes Addendum 1 dated July 2019)

Specifies the requirements and gives recommendations for the procedures and design criteria used for calculating the required wall thickness of new tubes and associated component fittings for fired heaters for the petroleum, petrochemical, and natural gas industries. These procedures are appropriate for designing tubes for service in both corrosive and non-corrosive applications. These procedures have been developed specifically for the design of refinery and related fired heater tubes (direct-fired, heat-absorbing tubes within enclosures). These procedures are not intended to be used for the design of external piping. This standard does not give recommendations for tube retirement thickness; Annex A describes a technique for estimating the life remaining for a heater tube. Pages: 264

7th Edition | April 2015 | Product Number: C53007 | Price: $314.00
RP 534
Heat Recovery Steam Generators
Provides guidelines for the selection and evaluation of heat recovery steam generator (HRSG) systems. Details of related equipment designs are considered only where they interact with the HRSG system design. The document does not provide rules for design, but indicates areas that need attention and offers information and descriptions of HRSG types available to the designer/user for purposes of selecting the appropriate HRSG. Pages: 60
2-Year Extension: April 2013 | Product Number: C53402 | Price: $103.00

RP 535
Burners for Fired Heaters in General Refinery Services
Provides guidelines for the selection and/or evaluation of burners installed in fired heaters in general refinery services. Details of fired heater and related equipment designs are considered only where they interact with the burner selection. This RP does not provide rules for design, but indicates areas that need attention. It offers information and descriptions of burner types available to the designer/user for purposes of selecting the appropriate burner for a given application.
The burner types discussed are those currently in industry use. It is not intended to imply that other burner types are not available or recommended. Many of the individual features described in these guidelines are applicable to most burner types.
In addition to specification of burners, this RP has been updated to include practical guidelines for troubleshooting in service burners as well as including considerations for safe operation. Pages: 84
3rd Edition | May 2014 | Product Number: CS5503 | Price: $163.00

Std 536
Post-Combustion NOx Control for Equipment in General Refinery and Petrochemical Services
Specifies requirements and provides guidance for the selection, design specification, mechanical description, operation, maintenance, and test procedures for post-combustion NOx control equipment and related mechanical systems and components used for fired equipment in petrochemical and general refinery service.
This document covers the following methods of post combustion NOx reduction for both new and retrofit applications:
 - Selective Non-catalytic Reduction (SNCR), and
 - Selective Catalytic Reduction (SCR).
This standard is primarily intended for direct application to fired process heaters, reformers, industrial, and power boilers in petrochemical and general refinery services. The same fundamental NOx control technologies and systems may also be applied to Fluid Catalytic Cracking Units (FCCUs), incinerators, gas turbine exhaust, and other exhaust gas process systems however SCRs may require additional considerations beyond the scope of this standard to address unique aspects, such as high particulate content and corrosive chemicals, in the flue gas stream.
This document does not cover:
 - Reduced NOx formation through combustion controls and design techniques such as low NOx burners, flue gas recirculation (FGR), and staged combustion; and
 - Non-selective Catalytic Reduction (NSCR) for the control of NOx and other pollutant emissions. Pages: 117
3rd Edition | September 2017 | Product Number: CS5603 | Price: $182.00

Std 537
Flare Details for Petroleum, Petrochemical, and Natural Gas Industries (ANSI/API Std 537)
Specifies requirements and provides guidance for the selection, design, specification, operation, and maintenance of flares and related combustion and mechanical components used in pressure-relieving and vapor-depressurizing systems for petroleum, petrochemical, and natural gas industries. While this standard is primarily intended for onshore facilities, guidance related to offshore applications is included.
Annexes A through D provide further guidance and best practices for the selection, specification, and mechanical details for flares and on the design, operation, and maintenance of flare combustion and related equipment. Annex E explains how to use the data sheets provided in Annex F; it is intended that these data sheets be used to communicate and record design information. Pages: 170
3rd Edition | March 2017 | Product Number: CS5703 | Price: $260.00

RP 538
Industrial Fired Boilers for General Refinery and Petrochemical Service
Specifies requirements and gives recommendations for design, operation, maintenance, and troubleshooting considerations for industrial fired boilers used in refineries and chemical plants. Covers waterside control, combustion control, burner management systems, feedwater preparation, steam purity, emissions, and more.
This recommended practice (RP) is based on the accumulated knowledge and experience of manufacturers and users of industrial fired boilers. It directly meets the business needs of refining and petrochemical industry operator-users, equipment vendors and manufacturers, and contractors. This RP reflects prevailing technical expertise.
This RP does not apply to fire tube boilers, gas turbine exhaust boilers, or fluidized bed boilers. It does not cover boiler mechanical construction, nor does it cover forced circulation boilers. Pages: 348
1st Edition | October 2015 | Product Number: CS5801 | Price: $330.00

Std 560
Fired Heaters for General Refinery Service
Specifies requirements and gives recommendations for the design, materials, fabrication, inspection, testing, preparation for shipment, and erection of fired heaters, air preheaters (APHs), fans, and burners for general refinery service. This standard does not apply to the design of steam reformers or pyrolysis furnaces. Pages: 327
5th Edition | February 2016 | Product Number: CS6005 | Price: $363.00

RP 573
Inspection of Fired Boilers and Heaters
Covers the inspection practices for fired boilers and process heaters (furnaces) used in petroleum refineries and petrochemical plants. The practices described in this document are focused to improve equipment reliability and plant safety by describing the operating variables which impact reliability and to ensure that inspection practices obtain the appropriate data, both on-stream and off-stream, to assess current and future performance of the equipment. Pages: 109
3rd Edition | October 2013 | Product Number: CS7303 | Price: $163.00

This publication is related to an API licensing, certification, or accreditation program.
Std 660
Shell-and-Tube Heat Exchangers
Specifies requirements and gives recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of shell-and-tube heat exchangers for the petroleum, petrochemical, and natural gas industries. This standard is applicable to the following types of shell-and-tube heat exchangers: heaters, condensers, coolers, and reboilers. This standard is not applicable to vacuum-operated steam surface condensers and feed-water heaters. Pages: 62
9th Edition | March 2015 | Product Number: C66009 | Price: $201.00

Std 661
Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service
(ANSI/API Std 661)
Gives requirements and recommendations for the design, materials, fabrication, inspection, testing, and preparation for shipment of air-cooled heat exchangers for use in the petroleum, petrochemical, and natural gas industries. This standard is applicable to air-cooled heat exchangers with horizontal bundles, but the basic concepts can also be applied to other configurations. Pages: 147
7th Edition | July 2013 | Reaffirmed: November 2018
Product Number: C66107 | Price: $271.00

Std 661 *
Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service—Russian
Russian translation of Std 661.
7th Edition | July 2013 | Product Number: C66107R | Price: $217.00

Std 662, Part 1/ISO 15547-1:2005
Plate Heat Exchangers for General Refinery Services, Part 1—Plate-and-Frame Heat Exchangers
(ANSI/API Std 662, Part 1)
Gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of plate-and-frame heat exchangers for use in petroleum, petrochemical and natural gas industries. It is applicable to gasketed, semi-welded and welded plate-and-frame heat exchangers.
This edition of Std 662-1 is an identical national adoption of ISO 15547-1:2005. Pages: 34
2-Year Extension: May 2016 | Product Number: C662101 | Price: $143.00

Std 663
Hairpin-Type Heat Exchangers
Specifies requirements and gives recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of hairpin heat exchangers for use in the petroleum, petrochemical, and natural gas industries. Hairpin heat exchangers include double-pipe and multi-tube type heat exchangers. Pages: 44
1st Edition | May 2014 | Product Number: C66301 | Price: $189.00

Std 664
Spiral Plate Heat Exchangers
Specifies the requirements and gives recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of spiral plate heat exchangers for the petroleum, petrochemical, and natural gas industries. It is applicable to standalone spiral plate heat exchangers and those integral with a pressure vessel. Pages: 39
1st Edition | March 2014 | Product Number: C66401 | Price: $189.00

Std 668
Brazed Aluminum Plate-Fin Heat Exchangers
Gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of brazed aluminum plate-fin heat exchangers for use in the petroleum, petrochemical, and natural gas industries. This edition is a revision of the First Edition of Std 662, Part 2. Pages: 49
1st Edition | November 2018 | Product Number: C66801 | Price: $147.00

INSTRUMENTATION AND CONTROL SYSTEMS

RP 551
Process Measurement Instrumentation
Provides procedures for the installation of the more generally used measuring and control instruments and related accessories. Pages: 233
2nd Edition | February 2016 | Product Number: C55102 | Price: $171.00

RP 552
Transmission Systems
Reviews the recommended practices for the installation of electronic and pneumonic measurement and control-signal transmission systems. It does not discuss leased wire, radio, and telemetering transmission. Pages: 39
2-Year Extension: November 2012 | Product Number: C55201 | Price: $118.00

RP 553
Refinery Valves and Accessories for Control and Safety Instrumented Systems
Addresses the special needs of automated valves in refinery services. The knowledge and experience of the industry has been captured to provide proven solutions to well-known problems. This document provides recommended criteria for the selection, specification, and application of piston (i.e. double-acting and spring-return) and diaphragm-actuated (spring-return) control valves. Control valve design considerations are outlined such as valve selection, material selection, flow characteristic evaluation, and valve accessories. It also discusses control valve sizing, fugitive emissions, and consideration of the effects of flashing, cavitation, and noise. Recommendations for emergency block and vent valves, on/off valves intended for safety instrumented systems, and special design valves for refinery services, such as Fluid Catalytic Cracking Unit (FCCU) slide valves and vapor depressurizing systems, are also included in this recommended practice. Pages: 109
2nd Edition | October 2012 | Product Number: C55302 | Price: $157.00

RP 554, Part 1
Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topics addressed in Part 1 is the basic functions that a process control system may need to perform, and recommended methodologies for determining the functional and integration requirements for a particular application. Pages: 32
2nd Edition | November 2016 | Product Number: C55402 | Price: $151.00

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 554, Part 1 *
2nd Edition | July 2007 | Product Number: C55402R | Price: $121.00

RP 554, Part 2
Process Control Systems, Part 2—Process Control System Design
 Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topic addressed in Part 2 is practices to select and design the installation for hardware and software required to meet the functional and integration requirements. Pages: 65
2-Year Extension: November 2012
Product Number: C554201 | Price: $151.00

RP 554, Part 2 *
Russian translation of RP 554, Part 2.
1st Edition | October 2008 | Product Number: C554201R | Price: $121.00

RP 554, Part 3
Process Control Systems, Part 3—Project Execution and Process Control System Ownership
 Addresses the processes required to successfully implement process control systems for refinery and petrochemical services. The major topic addressed in Part 3 is project organization, skills and management required to execute a process control project and then to own and operate a process control system. Pages: 40
2-Year Extension: November 2012
Product Number: C554301 | Price: $116.00

API 555
Process Analyzers
 Addresses the considerations in the application of analyzers and associated systems, installation, and maintenance. Process monitors that measure and transmit information about chemical composition, physical properties, or chemical properties are known as process analyzer systems. Process analyzers are now used widely in the refining industry for:
- monitoring and controlling product quality,
- implementing advanced control strategies in improving process operations,
- enhancing area safety, and
- continuous emission monitoring and environmental measurement of air and water quality. Pages: 314
3rd Edition | June 2013 | Product Number: C55503 | Price: $206.00

RP 556
Instrumentation, Control, and Protective Systems for Gas Fired Heaters
 Provides guidelines that specifically apply to instrument, control, and protective system installations for gas fired heaters in petroleum production, refineries, petrochemical, and chemical plants. Includes primary measuring and actuating instruments, controls, alarms, and protective systems as they apply to fired heaters. Not covered in this RP are:
- oil fired and combination fired heaters;
- water tube boilers which consist of single or multiple burners and are designed for utility operation or where the primary purpose is steam generation;
- fired steam generators used to recover heat from combustion turbines; and
- furnaces used for the primary purpose of incineration, oxidation, reduction, or destruction of the process medium;
- water bath or oil bath indirect fired heaters; and
- CO boilers, pyrolysis furnaces, and other specialty heaters. Pages: 66
2nd Edition | April 2011 | Reaffirmed: April 2019
Product Number: C55602 | Price: $165.00

RP 556 *
Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian
Russian translation of RP 556.
2nd Edition | April 2011 | Product Number: C55602R | Price: $133.00

RP 557
Guide to Advanced Control Systems
 Addresses the implementation and ownership of advanced control systems for refinery purposes. The document also described commonly used practices for the opportunity identification, justification, project management, implementation, and maintenance of advanced control system applications in refinery service. Pages: 45
2nd Edition | October 2013 | Product Number: C55702 | Price: $119.00

TECHNICAL DATA BOOK PETROLEUM REFINING

Electronic Version of the API Technical Data Book
 Improve the overall design and operations in today's highly complex petroleum refinery process systems with the API Technical Database. Version 1.0 of the API Technical Database replaces the printed format of the popular API Tech Data Books with a modern Windows interface that is so unique it is patented. This single screen approach provides access to the latest API physical property estimation methods and the software is critically reviewed and approved by the API Technical Data Committee. Included is a database of property data for nearly 900 components, characterization of petroleum fractions, and petroleum fraction distillation interconversions. Users can quickly determine petroleum fraction physical property data such as critical properties, vapor pressure, density, liquid enthalpy, gas enthalpy, heat of vaporization, liquid heat capacity, gas heat capacity, surface tension, liquid viscosity, gas viscosity, liquid thermal conductivity, gas thermal conductivity, and heat of combustion. Temperature-dependent properties can be tabulated and graphed over any range, and distillation interconversions are displayed graphically. This data can then be exported for use in simulation and engineering software programs.
Contact EPCON International at 281-389-9400 or visit the EPCON website: http://www.epcon.com

TECHNICAL DATA BOOK PETROLEUM REFINING: RELATED ITEMS

Reports Issued by Research Project 49
1951
API Research Project 49, Reference Clay Minerals, issued a series of eight reports, as follows:
No. 1, Glossary of Mineral Names
No. 2, Reference Clay Localities—United States
No. 3, Differential Thermal Analysis of Reference Clay Mineral Specimens
No. 4, Reference Clay—Europe
No. 5, Occurrence and Microscopic Examination of Reference Clay Mineral Specimens
No. 6, Electron Micrographs of Reference Clay Minerals
No. 7, Analytical Data on Reference Clay Minerals
No. 8, Infrared Spectra of Clay Minerals
TR 997
Comprehensive Report of API Crude Oil Characterization Measurements

A consortium of API member companies has sponsored a research program consisting of a series of projects on the characterization of crude oils. The goal of this program was to obtain complete sets of assay and thermophysical property data on a few widely varying crude oil refining and refining facilities. This report provides descriptions of the test procedures, discussions of their accuracy, and comprehensive compilation of the data for the crude oils measured under this program. Pages: 129

1st Edition | August 2000 | Product Number: C99701 | Price: $228.00

CHARACTERIZATION AND THERMODYNAMICS

API Monograph Series
Each publication discusses the properties of solid, liquid, and gaseous phases of one or a few closely related, industrially important compounds in a compact, convenient, and systematic form. In addition to the basic physical properties, each publication covers density, molar volume, vapor pressure, enthalpy of vaporization, surface tension, thermodynamic properties, viscosity, thermal conductivity, references to properties of mixtures, and spectrophotographic data.

Publ 705, Tetralin, 1978
Publ 706, cis- and trans-Decalin, 1978
Publ 707, Naphthalene, 1978
Publ 708, Anthracene and Phenanthrene 9, 1979
Publ 709, Four-Ring Condensed Aromatic Compounds, 1979
Publ 710, Pyridine and Phenylpyridines, 1979
Publ 711, Quinoline, 1979
Publ 712, Isoquinoline, 1979
Publ 713, Indanols, 1980
Publ 714, Indan and Indene, 1980
Publ 715, Acenaphthylene, Acenaphthene, Fluorene, and Fluoranthenes, 1981
Publ 716, Carbazole, 9-Methylocarbazole, and Acidine, 1981
Publ 717, Thiphene, 2,3- and 2,5-Dihydrothiophene, and Tetrahydrothiophene, 1981
Publ 718, Aniline, 1982
Publ 719, Indole, 1982
Publ 720, 2-, 3-, and 4-Methylanilines, 1983
Publ 721, Benzofuran, Dibenzofuran, and Benzophenones, 1983
Publ 722, Isopropylbenzene, and 1-Methyl-2-, 3-, and -4-Isopropylbenzenes, 1984
Publ 723, tert-Butyl methyl ether, 1984
Publ 724, 1- and 2-Methylnaphthalene and Dibenzanthracenes, 1985

Thermodynamic Properties and Characterization of Petroleum Fractions
February 1988

MATERIALS ENGINEERING PUBLICATIONS

API Coke Drum Survey 1996
Final Report

In 1996 a survey was sent by the API Subcommittee on Inspection, Coke Drum Task Group, to companies operating coke drums in the United States and abroad. This was the third survey of similar nature conducted by API. Fifty-four surveys were returned representing 17 operating companies and a total of 145 drums. The purpose of the survey was to collect data covering a broad range of issues including: 1. General Information; 2. Design; 3. Operating Information; 4. Inspection Practices; 5. Deterioration Experience; and 6. Repair Procedures.

Three of the six areas, Operation Information, Inspection Practices and Deterioration Experience, were not covered in previous industry surveys. Additionally, this survey requested more detailed information than previous surveys. Pages: 61

October 2003 | Product Number: C096C1 | Price: $134.00

Impact of Gasoline Blended with Ethanol on the Long-Term Structural Integrity of Liquid Petroleum Storage Systems and Components

Summarizes the results of a literature review conducted for the American Petroleum Institute on the impact of gasoline blended with ethanol on the long-term structural integrity of liquid petroleum storage systems and components. It is anticipated that the use of ethanol in motor fuels will continue to increase. This has generated interest about the potential long-term structural effects of ethanol on liquid petroleum storage systems, including underground storage tanks (USTs), underground piping, and associated components. The objective of the literature review is to determine the state of industry knowledge and research on the effects of ethanol/gasoline blends on the long-term structural integrity of UST systems and components. This review is intended to assist decision-makers on further research requirements and needed changes or supplements to existing standards for underground storage system components used for storing and dispensing gasoline blended with ethanol. Appendix A may be purchased separately as an electronic database file. The database synopsis and bibliographic information for all articles reviewed for the project. The report is organized by article index number. Reference numbers cited in this report refer to the article index number.

January 2003 | Executive Summary | Price: $71.00
Appendix A—Literature Review | Price: $138.00

RP 571 *
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry

Provides background information on damage that can occur to equipment in the refining process. It is intended to supplement Risk-Based Inspection (RP 580 and Publ 581) and Fitness-for-Service (API 579-1/ASME FFS-1) technologies developed in recent years by API to manage existing refining equipment integrity. It is also an excellent reference for inspection, operations, and maintenance personnel. This RP covers over 60 damage mechanisms. Each write-up consists of a general description of the damage, susceptible materials, construction, critical factors, inspection method, selection guidelines, and control measures. Wherever possible, pictures are included and references are provided for each mechanism. In addition, generic process flow diagrams have been included that contain a summary of the major damage flow mechanism expected for typical refinery process units. Pages: 362

Product Number: C57102 | Price: $356.00

RP 571 *
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry—Chinese

Chinese translation of RP 571.

2nd Edition | April 2011 | Product Number: C57102C | Price: $250.00

RP 582
Welding Guidelines for the Chemical, Oil, and Gas Industries

Provides supplementary guidelines and practices for welding and welding related topics for shop and field fabrication, repair, and modification of the following:

* These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
• pressure-containing equipment, such as pressure vessels, heat exchangers, piping, heater tubes, and pressure boundaries of rotating equipment and attachments welded thereto;
• tanks and attachments welded thereto;
• non-removable internals for process equipment;
• structural items attached and related to process equipment;
• other equipment or component items, when referenced by an applicable purchase document.

This document is general in nature and augments the welding requirements of ASME BPVC Section IX and similar codes, standards, specifications, and practices, such as those listed in Section 2. The intent of this document is to be inclusive of chemical, oil, and gas industry standards, although there are many areas not covered herein, e.g., pipeline welding and offshore structural welding are intentionally not covered. This document is based on industry experience, and any restrictions or limitations may be waived or augmented by the purchaser. Pages: 38

TR 932-A
A Study of Corrosion in Hydroprocess Reactor Effluent Air Cooler Systems
Provides technical background for controlling corrosion in hydroprocess reactor effluent systems based on industry experience and consensus practice. Information for this report has been gathered from open literature, private company reports, and interviews with representatives of major refining companies. The findings in this report are the basis for the guidance in Bull 932-B. Pages: 49

2nd Edition | September 2002 | Product Number: C932A0 | Price: $164.00

RP 932-B
Design, Materials, Fabrication, Operation, and Inspection Guidelines for Corrosion Control in Hydroprocessing Reactor Effluent Air Cooler (REAC) Systems
Provides guidance to engineering and plant personnel on equipment and piping design, material selection, fabrication, operation, and inspection practices to manage corrosion and fouling in the wet sections of hydroprocessing reactor effluent systems. The reactor effluent system includes the equipment and piping subject to ammonium salting, NH4HS corrosion, and associated fouling. This system usually begins at the last feed/effluent exchanger or first water injection point and continues through the cold high-pressure separators (4 and 5 separator designs). The reactor effluent system specifically excludes the stripper, fractionator, and final separation sections. However, guidance in this document may be applicable to ammonium salt corrosion mitigation in those areas, as well. The majority of these systems have an air cooler; however, some systems utilize only shell and tube heat exchangers. Reactor effluent systems are prone to fouling and corrosion by ammonium bisulfide (NH4HS) and ammonium chloride (NH4Cl) salts.

This recommended practice is applicable to process streams in which NH4Cl and NH4HS salts can form and deposit in equipment and piping or dissolve in water to form aqueous solutions of these salts. Included in this practice are: details of deterioration mechanisms; methods to assess and monitor the corrosivity of systems; details on materials selection, design, and fabrication of equipment for new and revamped processes; considerations in equipment repairs; and details of an inspection plan. Pages: 70

3rd Edition | June 2019 | Product Number: C932B03 | Price: $278.00

RP 934-A
Materials and Fabrication of 2 1/4Cr-1Mo, 2 1/4Cr-1Mo-1/4V, 3Cr-1Mo, and 3Cr-1Mo-1/4V Steel Heavy Wall Pressure Vessels for High-Temperature, High-Pressure Hydrogen Service
Covers materials and fabrication requirements for new 2 1/4Cr and 3Cr steel heavy wall pressure vessels for high-temperature, high-pressure hydrogen service. For this recommended practice (RP), “heavy wall” is defined as a shell thickness of 4 in. (100 mm) or greater, and high-temperature is considered to be operating temperatures of 650 °F (345 °C) and above. This RP applies to vessels that are designed, fabricated, certified, and documented in accordance with ASME Section VIII, Division 2, including Paragraph 3.4, Supplemental Requirements for Cr-Mo Steels, and ASME Code Case 2151, as applicable.

Materials covered by this RP are conventional steels including standard 2 1/4Cr-1Mo and 3Cr-1Mo steels, and advanced steels which include 2 1/4Cr-1Mo-1/4V, 3Cr-1Mo-1/4V-Ti-B, and 3Cr-1Mo-1/4V-Nb-Ca steels. This document may be used as a reference document for the fabrication of vessels made of enhanced steels (steels with mechanical properties increased by special heat treatments such as ASME SA-542, Grade B, Class 4) at the purchaser’s discretion. However, no attempt has been made to cover specific requirements for the enhanced steels and they may be different than the requirements for vanadium grade. Pages: 57

3rd Edition | January 2019 | Product Number: C934A03 | Price: $135.00

TR 934-B
Fabrication Considerations for Vanadium-Modified Cr-Mo Steel Heavy Wall Pressure Vessels
Best practice guideline to be used by fabricators, in conjunction with RP 934-A, when constructing new heavy wall pressure vessels with vanadium-modified Cr-Mo steels intended for service in petroleum refining, petrochemical or chemical facilities. These materials are primarily used in high temperature, high pressure services which contain hydrogen. This document provides typical practices to be followed during fabrication, based upon experience and the knowledge gained from actual problems that have occurred during the fabrication of vanadium-modified Cr-Mo steels. Pages: 29

1st Edition | April 2011 | Product Number: C934B01 | Price: $146.00

RP 934-C
Materials and Fabrication of 1 1/4Cr-1/2Mo Steel Heavy Wall Pressure Vessels for High-Pressure Hydrogen Service Operating at or Below 825 °F (440 °C)
Covers materials and fabrication requirements for new 1 1/4Cr-Mo steel heavy wall pressure vessels and heat exchangers for high-temperature, high-pressure hydrogen service. It applies to vessels that are designed, fabricated, certified, and documented in accordance with ASME Section VIII, Division 1 or Division 2. This document may also be used as a resource for equipment fabricated of 1Cr-½Mo Steel. This document may also be used as a resource when planning to modify an existing heavy wall pressure vessel.

The interior surfaces of these heavy wall pressure vessels may have an austenitic stainless steel or ferritic stainless steel weld overlay or cladding to provide additional corrosion resistance. For this recommended practice, “heavy wall” is defined as a shell thickness of 2 in. (50 mm) or greater, but less than or equal to 4 in. (100 mm) at the time of mill heat treatment. Although outside of its scope, this document can be used as a resource for vessels down to 1 in. (25 mm) or lower in shell thickness, with changes defined by the purchaser. Pages: 25

2nd Edition | February 2019 | Product Number: C934C02 | Price: $118.00

TR 934-D
Technical Report on the Materials and Fabrication Issues of 1 1/4Cr-1/2Mo and 1Cr-1/2Mo Steel Pressure Vessels
Numerous 1 1/4Cr-1/2Mo and 1Cr-1/2Mo vessels have been constructed and successfully used in various applications in petroleum industry and in other types of service applications. These vessels have been constructed to the requirements of the ASME Boiler & Pressure Vessel Code, Section VIII, Divisions 1 and 2, and to various international pressure vessel codes and standards. The 1 1/4Cr-1/2Mo and 1Cr-1/2Mo vessels are typically used in service conditions (e.g., high temperature and/or high pressure hydrogen), which require heavy walls and cause in service deterioration. As such, the steels are subject to special requirements, such as notch toughness, elevated temperature tensile properties, hardness, fabrication heat treatments, etc., which may limit the maximum thickness to be able to meet the desired properties. Corrosion protection by stainless steel weld overlay or cladding may also be required.
This report provides background information and guidance on the implementation of RP 934-C. In recent years it has been recognized that there are important distinctions that need to be considered for 1/4Cr-1/2Mo steels. Whereas RP 934-A continues to provide materials and fabrication requirements for new 2/3Cr-1Mo and 2/3Cr-1/2Mo steel heavy wall pressure vessels in high temperature, high pressure hydrogen service, different material, and fabrication requirements have been developed for 1/4Cr-1/2Mo steel heavy wall pressure vessels. These requirements are covered in RP 934-C and 934-E. This document contains a description of key damage mechanisms that relate specifically to 1/4Cr-1/2Mo pressure vessels used in a variety of services. These damage mechanisms include elevated temperature damage such as “reheat cracking” or “creep embrittlement,” as well as other damage mechanisms that may occur at lower temperatures. This document provides information and guidance on successful practices for fabrication of 1/4Cr-1/2Mo steel heavy wall pressure vessels for the intended services of both RP 934-C and RP 934-E. The survey of steel producers and vessel fabricators (Annex 1) indicates that there is a need to evaluate the effect of heat treat cycles on materials properties (CVN toughness, tensile and yield strength). Pages: 56

1st Edition | September 2010
Product Number: C934D01 | Price: $146.00

RP 934-E
Recommended Practice for Materials and Fabrication of 1/4Cr-1/2Mo Steel Pressure Vessels for Service Above 825 °F (440 °C)

Includes materials and fabrication requirements for new 1¼Cr-½Mo and 1Cr-¾Mo steel pressure vessels, including heat exchanger shells and channels for elevated temperature service. It applies to vessels that are designed, fabricated, and documented in accordance with ASME Code Section VIII, Division 1, or Division 2 (hereafter referred to as “Code”). This document may also be used as a resource when planning to modify existing pressure vessels. The interior surfaces of these pressure vessels and heat exchangers (i.e. the surfaces exposed to the process) may or may not have an austenitic stainless steel (SS), ferritic SS, or nickel alloy weld overlay or cladding to provide additional corrosion resistance.

This RP is primarily intended for wall thicknesses less than 4 in. (100 mm), and a preferred option for thicker components is to use 2¼Cr-1Mo alloys. This RP is applicable to shell thicknesses greater than 1 in. (25 mm). Although outside of the scope, this document can be used as a resource for vessels down to lower shell thicknesses with changes defined by the purchaser. Pages: 27

2nd Edition | January 2018 | Product Number: C934E02 | Price: $147.00

TR 934-F, Part 1
Impact of Hydrogen Embrittlement on Minimum Pressurization Temperature for Thick-Wall Cr-Mo Steel Reactors in High-Pressure H₂ Service—Initial Technical Basis for RP 934-F

In support of API Recommended Practice 934-F [Guidance for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Reactors in High Temperature Hydrogen Service During Startups and Shutdowns, not yet published], the objective of this study is to establish the technical basis for determining a minimum pressurization temperature necessary to avoid Internal Hydrogen Assisted Cracking (IHAC) of weld metal and base metal of temper embrittled 2¼Cr-1Mo steel in high pressure H₂ service. The threshold condition for the onset of subcritical crack propagation—and its dependencies on dissolved hydrogen concentration, temperature, and steel purity/temper embrittlement—are targeted as particularly important to pressure vessel safe operations. A second objective is to improve the underlying database for fracture mechanics fitness-for-service (FFS) modeling of IHAC. Both analyses are built on the conservative rising-displacement threshold stress intensity factor for IHAC (KIH).

This investigation has accomplished 5 tasks, leading to conclusions that are sufficient to establish RP 934-F on MPT to conservatively avoid IHAC in 2¼Cr-1Mo steel.

Task 1—Summarize and clarify the technical approach, assumptions, data, and modeling results used in Phase II JIP research to quantitatively establish the H concentration and temperature dependencies of the threshold stress intensity, KIH, for IHAC and the concentration dependence of MPT for moderate-impurity 2¼Cr-1Mo steel.

Task 2—Validate the Phase II correlation of KIH and critical temperature vs H concentration, based on new analyses of post-Phase-II IHAC data.

Task 3.0—Enhance the Phase II analysis of KIH vs crack tip H concentration, and thus MPT, by describing the interaction between temper embrittlement and IHAC using JIP Phase I data so as to predict the influence of modern steel purity.

Task 4.0—Build on the hydrogen-damage-mechanism-based master correlation between KIH and crack tip stress field/microstructure-trapped H to develop a H concentration similitude parameter that is useful in engineering analysis of thick-wall reactor FTS and MPT.

Task 5.0—Validate the empirically based trends and predictions of the effects of temperature and steel purity on the threshold stress intensity through consideration of state-of-the art theory and micromechanical modeling of IHAC.

Pages: 118

1st Edition | September 2017
Product Number: C934F01 | Price: $202.00

TR 934-F, Part 2
Literature Review of Fracture Mechanics-Based Experimental Data for Internal Hydrogen-Assisted Cracking of Vanadium-Modified 2¼Cr-1Mo Steel

Documents a critical assessment of the existing literature on IHAC of V-modified Cr-Mo steels for use in interpreting the results of the present laboratory work and so as to establish a definitive characterization of the H cracking resistance of this steel class. Since these modern Cr-Mo-V steels are of relatively high purity, and thus retain a low FATT after laboratory simulation of in-service temper embrittlement, the database for 2¼Cr-1Mo provides a context for assessment of the IHAC performance of V-modified grades. Hydrogen cracking of less pure V-modified Cr-Mo steels was not considered in this review. The content that follows is chronologically organized into initial and more modern works, as justified by improvement in test execution, data analysis, and reporting, as well as the evolution from laboratory to commercial scale heats of Cr-Mo-V.

Pages: 46

1st Edition | August 2017 | Product Number: C934F201 | Price: $135.00

TR 934-F, Part 3
Subcritical Cracking of Modern 2¼Cr-1Mo-¼V Steel Due to Dissolved Internal Hydrogen and H₂ Environment, Research Report

Conveys the results of API-sponsored research to: (a) quantitatively characterize the internal hydrogen assisted cracking (IHAC) resistance of modern 2¼Cr-1Mo-¼V steel, in both base metal and weld metal product forms and including the effect of stressing temperature, (b) scope the hydrogen environment assisted cracking (HEAC) resistance of 2¼Cr-1Mo-¼ V base metal, (c) understand the mechanism(s) for the IHAC and HEAC behaviors of Cr-Mo and Cr-Mo-V steels, centered on H interactions with microstructure-scale trap sites, and (d) assess application of data and understanding of IHAC and HEAC to determine the role of subcritical H-assisted cracking on a minimum pressurization temperature estimate relevant to thick-wall hydro-treating reactor vessels. Pages: 170

1st Edition | December 2017 | Product Number: C934F01 | Price: $189.00

TR 934-F, Part 4
The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels

Hydrogen, dissolved in the thick wall of a steel pressure vessel during steady-state operation in elevated temperature, high-pressure H₂, can cause both slow-subcritical crack advance as well as unstable-catastrophic fracture during shutdown and startup. This behavior is defined in Section 2. It follows that modern fracture-mechanics assessments of the minimum pressurization temperature (MPT) and fitness for service (FFS) must include the deleterious effect of H on both subcritical and unstable internal hydrogen assisted...
cracking (IHAC). Two approaches are in draft stage to develop standard procedures that address this need: an API 934-F recommended practice and a WRC Bulletin 562 basis for ASME/API 579. The objective of this technical report is to establish the technical basis necessary to enable and validate these best practices for quantifying the effects of hydrogen on (a) the MFT and (b) FFS of a thick wall hydroprocessing reactor. Pages: 112

1st Edition | November 2018
Product Number: C934F401 | Price: $189.00

RP 934-G
Design, Fabrication, Operational Effects, Inspection, Assessment, and Repair of Coke Drums and Peripheral Components in Delayed Coking Units

Includes information and guidance on the practices used by industry practitioners on the design, fabrication, operation, inspection, assessment, and repair of coke drums and peripheral components in delayed coking units. The guidance is general and does not reflect specific details associated with a design offered by licensors of delayed coking technology, or inspection tools, operating devices/components, repairs techniques, and/or engineering assessments offered by contractors. For details associated with the design offered by a licensor or services provided by contractors, the licensor or contractor should be consulted for guidance and recommendations for their design details and operating guidance. This document is a technical report and as such provides generally used practices in industry and is not an API recommended practice for coke drums in delayed coking units. Pages: 57

1st Edition | April 2016 | Product Number: C934G01 | Price: $163.00

Publ 935
Thermal Conductivity Measurement Study of Refractory Castables

Compares the differences between measurement techniques used to develop thermal conductivity of refractory castables. The following procedures were examined: Water Calorimeter, Calorimeter-Pilkington Method, Hot Wire Method, Comparative Thermal Conductivity Method, and Panel Test. The refractory industry uses various methods for measuring and reporting thermal conductivity. The accuracy of reporting and understanding thermal conductivity are vital to developing the most cost effective, efficient, and reliable equipment. The study makes no attempt to rank, classify or assign accuracy to each of the measurement techniques. Pages: 22

1st Edition | September 1999 | Product Number: C93501 | Price: $66.00

Std 936
Refractory Installation Quality Control—Inspection and Testing Monolithic Refractory Lining and Materials

Provides installation quality control procedures for monolithic refractory linings and may be used to supplement owner specifications. Materials, equipment, and personnel are qualified by the methods described, and applied refractory quality is closely monitored, based on defined procedures and acceptance criteria. The responsibilities of inspection personnel who monitor and direct the quality control process are also defined. In addition, this standard provides guidance for the establishment of quality control elements necessary to achieve the defined requirements. Pages: 49

Publ 937-A
Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shelf and Shelf-to-Bottom Joints

Investigates the relative strengths of the roof-to-shell and shell-to-bottom joints, with the goal of providing suggestions for frangible roof design criteria applicable to smaller tanks. Pages: 68

1st Edition | August 2005 | Product Number: C937A0 | Price: $133.00

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
Recalling the corrosion of carbon steel used in hydrogen service at elevated temperatures and pressures. The RP also does not address the issue of corrosion in high-temperature hydrogen environments (HTHA) when operated within the guidelines given. However, they may not be resistant to other corrosive environments present in a process stream or to other metallurgical damage mechanisms that can occur in the operating HTHA range. This RP also does not address the issues surrounding possible damage from rapid cooling of the material after it has been in high temperature, high pressure hydrogen service (e.g., possible need for outgassing hydrotreating reactors). This RP will discuss in detail only the resistance of steels to HTHA.

Presented in this document are curves that indicate the operating limits of temperature and hydrogen partial pressure for satisfactory resistance of carbon steel and Cr-Mo steels to HTHA in elevated temperature, hydrogen service. In addition, it includes a summary of inspection methods to evaluate equipment for the existence of HTHA. Pages: 45

2nd Edition | January 2019 | Product Number: C939C02 | Price: $150.00

TR 941-A
The Technical Basis Document for API RP 941
(includes Addendum 1 dated June 2019)

Even before the first edition of API Publ 941, Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants appeared in 1970, there had been fundamental questions regarding the technical basis for the material performance curves contained in the document (1–6). Based upon sparse laboratory data combined with plant experience, with only a few exceptions, the curves have done an exceptionally good job at safely directing the refining industry in selecting materials based upon operating temperature, hydrogen partial pressure, and the metallurgy of the equipment being considered. Pages: 301

1st Edition | September 2008 | Product Number: C09410 | Price: $215.00

TR 942-A
Materials, Fabrication, and Repair Considerations for Hydrogen Reformer Furnace Outlet Pigtails and Manifolds

Addresses materials, fabrication, and repair issues related to hydrogen and syngas reformer furnace outlet pigtails and manifolds. High reliability of outlet pigtails and manifold components, such as headers, tees, and fittings, is important to the successful long-term operation of hydrogen and syngas reformer furnaces. These components typically operate at high temperatures in the range of 750 to 950 °C (1382 to 1742 °F) where they are potentially subject to high-temperature creep, stress relaxation, hot corrosion, and thermal fatigue damage. In recent years a number of reformer furnace operators have encountered problems of in-service degradation and cracking of outlet pigtails and manifold components. Others have had little or no problems of this type. Both direct experience in addressing specific cases of outlet pigtail and manifold cracking problems and indirect...
experience gained from surveying industry with regard to these problems were used in preparing this report. The objective of the project was to develop an understanding, based on published literature and industry experience, of why some refiner furnaces had had problems with embrittlement and cracking of outlet pigtals and manifold components in service, while others have not had such problems. Pages: 53

TR 942-B
Material, Fabrication, and Repair Considerations for Austenitic Alloys Subject to Embrittlement and Cracking in High Temperature 565 °C to 760 °C (1050 °F to 1400 °F) Refinery Services

Focuses on the materials, fabrication, and repair of austenitic stainless steels and nickel-iron-chromium alloys in high temperature 565 °C to 760 °C (1050 °F to 1400 °F) refinery services. Many of these alloys are subject to embrittlement and cracking after prolonged exposure to these temperatures. Susceptible equipment in the following processing units are addressed: fluid catalytic cracking units, hydrogen/syngas plants, catalytic reformers, cokers, and hydrosprocessing units. This report summarizes industry experience and recommends methods to improve reliability and process safety, and increases industry awareness to high temperature embrittlement issues.

As a basis of this report, technical literature, industry experience, and published case studies were reviewed. The review included materials of construction, damage mechanisms, and component-specific fabrication and repair issues. The scope of this report includes the following wrought austenitic alloys: Alloys 800, 800H, 800HT, and 300 series austenitic stainless steels, and corresponding welding consumables. Limits in chemical composition, microstructural requirements, and heat treating practices that mitigate susceptibility to embrittlement and cracking are identified. Potentially viable upgrades to commonly used alloys are identified where applicable.

The remainder of this report is organized as follows: Section 3, Process Units, gives a brief process overview followed by an explanation of the various damage mechanisms found in that unit. Component specific considerations and examples of in-service damage are also included. Inspection recommendations and general repair method considerations are also included. Section 4, Damage Mechanisms, contains detailed discussions of high-temperature damage mechanisms, including fundamental details of the solid state reactions, their rate of reaction, and recommended mitigation measures. Section 4 also incorporates fabrication and repair practices that can be used for cracked or embrittled equipment. Pages: 88

1st Edition | June 2014 | Product Number: C942A01 | Price: $152.00

RP 970
Corrosion Control Documents

Provides users with the basic elements for developing, implementing and maintaining a Corrosion Control Document (CCD) for refining, and at the owner's discretion, may be applied at petrochemical and chemical process facilities. A CCD is a document or other repository or system that contains all the necessary information to understand materials damage susceptibility issues in a specific type of operating process unit at a plant site. CCDs are a valuable addition to an effective Mechanical Integrity Program. They help to identify the damage mechanism susceptibilities of pressure containing piping and equipment, factors that influence damage mechanism susceptibilities, and recommended actions to mitigate the risk of loss of containment or unplanned outages.

This recommended practice serves as the basis for tracking CCD development, implementation, and maintenance to maintain consistency and to integrate the CCD work process with other plant integrity programs, such as Management of Change (MOC), Process Hazards Analysis (PHA), and Reliability Centered Maintenance (RCM). Some of these programs have significant overlap with the development of CCDs, including Risk-Based Inspection studies (see RP 580 and RP 581), Integrity Operating Windows (see RP 584), in-house unit corrosion reviews, circuitization/systemization programs, and similar types of corrosion studies. Development of CCDs can serve as a useful starting point for establishing these programs if they have not been undertaken.

This recommended practice provides the owner/user with information and guidance on the work processes for development and implementation of CCDs for the owners'/users' process units. Pages: 59

1st Edition | January 1982 | Product Number: C95900 | Price: $171.00

Std 976
Refractory Installation Quality Control—Inspection and Testing of AES/RCF Fiber Linings and Materials

Provides installation quality control procedures and lining system design requirements for AES/RCF fiber linings and may be used to supplement owner specifications. Materials, equipment, and personnel are qualified by the methods described, and applied refractory quality is closely monitored, based on defined procedures and acceptance criteria. The responsibilities of inspection personnel who monitor and direct the quality control process are also defined. The lining described in this standard is for internal refractory linings on the process side of the equipment. External insulation and jacketing are not covered in this standard. Pages: 34

1st Edition | March 2018 | Product Number: C97601 | Price: $131.00

TR 977
ASTM C704 Test Variability Reduced to Allow Further Optimization of Erosion-Resistant Refractories for Critical Oil Refining Applications

Documents the results of a joint project conducted by the API CRE Subcommittee on Refractory Materials and the ASTM C08 Committee to improve the reproducibility of the 2015 edition of ASTM C704/C704M, Standard Test Method for Abrasion Resistance of Refractory Materials at Room Temperature. Erosion-resistant refractories are used in many oil refining applications, such as Fluid Catalytic Cracking Units (FCCUs), to resist the wearing effects of solids particles circulating at elevated velocities in a high-temperature process environment. This technical report also reviews the drivers for continuing improvement in erosion-resistant refractories and the role of ASTM C704/C704M for the selection and installation quality control
of refractories used in these installations. This report documents changes made to the setup and procedures to improve the reproducibility of the test. These changes are designed to achieve this end, while providing a rough equivalency consistent with historical data before the changes were made. These results are validated by the results of extensive international round-robin and ruggedness testing, and are reported herein. Pages: 27

1st Edition | February 2018 | Product Number: C97701 | Price: $120.00

TR 978

Monolithic Refractories: Manufacture, Properties, and Selection

Covers the installation and dryout of monolithic refractory lining materials for Hydrocarbon Processing Industry (HPI) applications. It discusses the best practice procedures and techniques used in the installation of refractory concrete, as well as those for air and heat setting plastics and ramming mixes. In addition, it addresses the need for curing and dryout procedures to achieve successful results. This instruction is consistent with API 936, which is the HPI industry standard for the installation quality control of monolithic refractories. Pages: 82

1st Edition | March 2019 | Product Number: C97801 | Price: $115.00

TR 979

Applications of Refractory Lining Materials

Covers the use of refractory concrete (castables), plastics, and ramming mixes for applications for the hydrocarbon processing industry (HPI). Its content is complemented by the two other reports in this series:

- API TR 978, Monolithic Refractories: Manufacture, Properties and Selection;
- API TR 980, Monolithic Refractories: Installation and Dryout.

These technical reports update and add to the original reports written by Committee 547 of the American Concrete Institute (ACI) in 1979 and 1989. These are ACI 547.R-79, State-of-the Art Report: Refractory Concrete, and ACI 547.R-89, State-of-the Art Report: Refractory Plastics and Ramming Mixes. TR 979 focuses specifically on the information on the applications of refractories contained in ACI 547.R-79 and ACI 547.R-89.

The original content of these reports was focused primarily on steel- and glass-making applications, which represent the largest refractory markets. API, in tailoring the revision of this content to the HPI, has greatly expanded the text pertaining to the specialized oil-refining and petrochemical-processing applications. At the same time, API has retained and updated the information covering applications outside of the HPI (see Section 5) because of the similarities and applicability that this information has for refractory professionals in these other industries. Pages: 63

1st Edition | October 2018 | Product Number: C97901 | Price: $135.00

TR 980

Monolithic Refractories: Installation and Dryout

Covers the installation and dryout of monolithic refractory lining materials for hydrocarbon processing industry (HPI) applications. It discusses the best practice procedures and techniques used in the installation of refractory concrete, as well as those for air-and heat-setting plastics and ramming mixes. In addition, it discusses the need for curing and dryout and procedures to achieve successful results. This instruction is consistent with Std 936, which is the HPI industry standard for the installation quality control of monolithic refractories. It also serves as the body of knowledge document for the API 936 Refractory Personnel Certification Program. This report is the last in a series of three API reports covering the use of refractory concrete (castables), plastics, and ramming mixes for applications for the hydrocarbon processing industry. Its content is complemented by the two other reports in this series:

- API TR 978, Monolithic Refractories: Manufacture, Properties and Selection, and
- API TR 979, Applications of Refractory Lining Materials. Pages: 66

1st Edition | April 2018 | Product Number: G98001 | Price: $157.00
Management Standard, 29
where loss of containment has the potential to cause harm. Applicability
was developed for the refining and petrochemical industries, but may also
be recognized as a more effective approach to managing and mitigating
employee fatigue risk in the 24/7 workplace. The core feature of the FRMS
is that it is a data-driven, risk-informed, safety performance-based system.
The FRMS implementation process first identifies all sources of fatigue risk in
the business operation, then introduces mitigating policies, technologies, and
procedures to reduce the risk, and most importantly then maintains them in
a proactively managed continuous improvement system. The history of FRMS
was recently summarized.
This method represents a significant step change from the traditional
approaches of either relying on maximum limits to hours of work or minimum
limits to hours of rest (variously called Hours of Service, Work-Rest Rules,
Working Time Directives), or adopting intermittent or piece-meal solutions
(e.g., fatigue training program or a shift schedule redesign), depending on
the interests and initiative of local site managers.
One essential feature of FRMS is that it is a system meant to be improved
upon on a regular and continuous basis. It is not a set of guidelines
designed for one-time compliance but instead provides a framework that will
evolve over time, driven by the collection of data on fatigue risk and fatigue
outcomes (e.g., fatigue-related incidents). Pages: 49
1st Edition | April 2010 | Product Number: K755101 | Price: $112.00

Fatigue Risk Management Systems for Personnel in the Refining and
Petrochemical Industries
(ANSI/API RP 755)
Provides guidance to all stakeholders (e.g. employees, managers,
supervisors) on understanding, recognizing, and managing employee fatigue
in the workplace. Should sites decide to use this document, the owners/
operators shall establish policies and procedures to meet the purpose of this
recommended practice.
This document was developed for refineries, petrochemical and chemical
operations, natural gas liquefaction plants, and other facilities such as those
covered by the OSHA Process Safety Management Standard, 29 CFR
1910.119. This document is intended to apply to a workforce that is
commuting daily to a job location.
ANSI/API RP 755 applies to all employees working night shifts, rotating
shifts, extended hours/days, or call outs who are involved in process safety-
sensitive decisions. It should also be considered for others making process
safety-sensitive actions. On-site contractors involved in process safety-
sensitive actions shall have fatigue risk management systems equivalent to
the criteria outlined in this document. Pages: 17
2nd Edition | May 2019 | Product Number: K75502 | Price: $145.00

TR 755-1
Management Systems for Personnel in the Refining and Petrochemical Industries
Identifies and explains the scientific and operational issues considered
during the preparation of RP 755. By providing the reasoning behind the
specific wording in the RP 755 document, this document supports each key
statement in RP 755 in sequence so that it can be used in parallel with the
RP 755 text. To make this document accessible and manageable, key
scientific sources and references are provided to help readers gain access to
the scientific literature.
Fatigue Risk Management Systems (FRMS) have emerged and been widely
recognized as a more effective approach to managing and mitigating
employee fatigue risk in the 24/7 workplace. The core feature of the FRMS
is that it is a data-driven, risk-informed, safety performance-based system.
The FRMS implementation process first identifies all sources of fatigue risk in
the business operation, then introduces mitigating policies, technologies, and
procedures to reduce the risk, and most importantly then maintains them in
a proactively managed continuous improvement system. The history of FRMS
was recently summarized.
This method represents a significant step change from the traditional
approaches of either relying on maximum limits to hours of work or minimum
limits to hours of rest (variously called Hours of Service, Work-Rest Rules,
Working Time Directives), or adopting intermittent or piece-meal solutions
(e.g., fatigue training program or a shift schedule redesign), depending on
the interests and initiative of local site managers.
One essential feature of FRMS is that it is a system meant to be improved
upon on a regular and continuous basis. It is not a set of guidelines
designed for one-time compliance but instead provides a framework that will
evolve over time, driven by the collection of data on fatigue risk and fatigue
outcomes (e.g., fatigue-related incidents). Pages: 49
1st Edition | April 2010 | Product Number: K755101 | Price: $112.00
Management of Hazards Associated with Location of Process Plant Tents

Provides guidance for managing the risk from explosions, fires and toxic material releases to on-site personnel located in tents. The term “tent” is used to describe a wide range of structures and is defined in §3.15. This RP was developed for use at refineries, petrochemical and chemical operations, natural gas liquids extraction plants, natural gas liquefaction plants, and other onshore facilities covered by OSHA 29 CFR 1910.119.

The focus of this RP is primarily on process related hazards. However, non-process related hazards may exist which could present risks to tent occupants. Previous accidents have demonstrated that tent occupants are susceptible to injuries from fires originating inside the tent, from tent collapse due to extreme weather, and from falling objects. Some of these hazards are addressed by tent design standards, manufacturer's recommendations, and local regulations. Pages: 25

1st Edition | September 2014 | Product Number: C75601 | Price: $136.00

Process Plant Tent Responses to Vapor Cloud Explosions—Results of the American Petroleum Institute Tent Testing Program

Beginning in 2011, the American Petroleum Institute (API) to performed vapor cloud explosion (VCE) tests to determine the response of tents to the potential explosion hazards that may be present at refineries, petrochemical and chemical operations, natural gas and other onshore process facilities covered by OSHA 29 CFR 1910.119. The testing was conducted to provide data for use by the API committee developing RP 756. This publication, TR 756-1, contains information on the results of the API tent testing program.

Pages: 597

1st Edition | September 2014 | Product Number: C756101 | Price: $206.00

Safe Operation of Hydrofluoric Acid Alkylation Units

The refining industry has long demonstrated that HF acid alkylation units can be operated safely and responsibly. Like many industrial processes, the HF acid alkylation process presents operational risk and must be properly designed, well-maintained and operated to assure safe operation. RP 751 is an industry document that communicates proven industry practices to support the safe operation of an HF acid alkylation unit. The philosophy of this 4th Edition is to build on the previous editions' base of recommendations for HF acid leak prevention, detection, and mitigation with the document section topics of hazard management, operating procedures and worker protection, material inspection and maintenance, transportation and inventory control, relief and utility systems, and risk mitigation. This edition changes some previous provisions from recommendations (should) to requirements (shall) based on regulatory requirements, broad industry acceptance and proven effective industry practices along with the addition of some new recommendations and requirements. The recommendations presented in the document are those that have been found effective or those that are advised for safe operations. Pages: 67

Overfill Protection for Storage Tanks in Petroleum Facilities (ANSI/API Std 2350)

Applies to storage tanks associated with marketing, refining, pipeline, and terminals and operations with tanks containing Class I or Class II petroleum liquids and use is recommended for Class III petroleum liquids. This standard addresses overfill protection for petroleum storage tanks. It recognizes that prevention provides the most basic level of protection, thus while using both terms “protection” and “prevention,” the document emphasizes prevention. The standard's scope covers overfill (and damage) prevention practices for aboveground storage tanks in petroleum facilities, including refineries, marketing terminals, bulk plants, and pipeline terminals that receive flammable and combustible liquids. The fourth edition continues to build on experience and new technology through the use of management systems. Since operations are the primary overfill prevention safeguard, new definitions and requirements are established for alarms. Risk reduction is also addressed by current and generally accepted industry practices.

The essential elements of this document are based on current industry safe operating practices and existing consensus standards. Federal, state, and local regulations or laws may contain additional requirements for tank overfill protection programs. For existing facilities, the results of a risk-based analysis of aboveground atmospheric petroleum storage tanks may indicate the need for more protection against overfilling. In such cases, some provisions from this standard may be suitable.

The purpose of this standard is to assist owner/operators and operating personnel in the prevention of tank overfills by implementation of a comprehensive overfill prevention process (OPP). The goal is to receive product into the intended storage tank without overfill or loss of containment.

This standard does not apply to: underground storage tanks; aboveground tanks of 1320 US gallons (5000 liters) or less; aboveground tanks which comply with PEI 600; pressure vessels; tanks containing non-petroleum liquids; tanks storing LPG and LNG; tanks at service stations; tanks filled exclusively from wheeled vehicles (i.e. tank trucks or railroad tank cars); and tanks covered by OSHA 29 CFR 1910.119 and EPA 40 CFR 68, or similar regulations.

Pages: 47

4th Edition | May 2012 | Product Number: K235004 | Price: $123.00

Groundwater Protection Programs for Petroleum Refining and Storage Facilities: A Guidance Document

Reflects continuing industry action and commitment to positively address groundwater protection by developing and implementing individual groundwater protection plans. Provides additional guidance to help petroleum facilities identify the types of issues that may need to be addressed in a groundwater protection plan. Intended to help refineries, terminals associated with transportation pipelines, product distribution terminals, and other downstream petroleum storage units develop groundwater protection plans that are tailored to their individual circumstances.

Pages: 9

1st Edition | October 1994 | Product Number: C42201 | Price: $71.00

Literature Survey: Subsurface and Groundwater Protection Related to Petroleum Refinery Operations

This report is the principal product of an API-sponsored project to prepare a background basis for the development of further information on subsurface and groundwater protection at refineries. It contains an explanation of how the literature survey was conducted; annotations for pertinent articles; a discussion of applicable federal statutes and regulations; and annotations for pertinent regulatory programs under the 5 principal statutes that apply to refinery operations.

Pages: 145

1st Edition | September 1988 | Product Number: C80000 | Price: $100.00
SECURITY

Std 780
Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries

Prepared by a Security Risk Assessment (SRA) Committee of the American Petroleum Institute (API) to assist the petroleum and petrochemical industries in understanding security risk assessment and in conducting SRAs. The standard describes the recommended approach for assessing security risk widely applicable to the types of facilities operated by the industry and the security issues the industry faces. The standard is intended for those responsible for conducting security risk assessments and managing security at these facilities. The method described in this standard is widely applicable to a full spectrum of security issues from theft to insider sabotage to terrorism. The API SRA Methodology was developed for the petroleum and petrochemical industry, for a broad variety of both fixed and mobile applications. This recommended practice describes a single methodology, rather than a general framework for SRAs, but the methodology is flexible and adaptable to the needs of the user. This methodology constitutes one approach for assessing security vulnerabilities at petroleum and petrochemical industry facilities. However, there are other risk assessment techniques and methods available to industry, all of which share common risk assessment elements. Pages: 113

1st Edition | May 2013 | Product Number: K78001 | Price: $206.00

RP 781
Facility Security Plan Methodology for the Oil and Natural Gas Industries

Provides the framework to establish a secure workplace. The plan provides an overview of the threats facing the facility and describes the security measures and procedures designed to mitigate risk and protect people, assets, operations, and company reputation. This API standard was prepared with guidance and direction from the API Security Committee, to assist the petroleum and petrochemical industries in the preparation of a Facility Security Plan (FSP). This standard specifies the requirements for preparing an FSP as well as a discussion of the typical elements included in an FSP. This standard is intended to be flexible and adaptable to the needs of the user. It is noted that the content of an FSP can vary depending on circumstances such as facility size, location, and operations. This methodology is one approach for preparing an FSP at petroleum and petrochemical facilities. There are other security plan formats available for the industry. It is the responsibility of the user to choose the format and content of the FSP that best meets the needs of a specific facility. The format and content of some FSPs should be dictated by government regulations for covered facilities. This standard is not intended to supersede the requirements of any regulated facility but may be used as a reference document. Pages: 82

1st Edition | September 2016 | Product Number: K78101 | Price: $157.00
RP 49
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide
Provides recommendations that apply to oil and gas well drilling and servicing operations involving hydrogen sulfide. These operations include well drilling, completion, servicing, workover, downhole maintenance, and plug and abandonment procedures conducted with hydrogen sulfide present in the fluids being handled. Coverage of this publication is applicable to operations confined to the original wellbore or original total depth and applies to the selection of materials for installation or use in the well and in the well drilling or servicing operation(s). The presence of hydrogen sulfide in these operations also presents the possibility of exposure to sulfur dioxide from the combustion of hydrogen sulfide. Pages: 29
3rd Edition | May 2001 | Reaffirmed: January 2013
Product Number: G49003 | Price: $96.00

RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Kazakh
Kazakh translation of RP 49.
3rd Edition | May 2001 | Product Number: G4903K | Price: $77.00

RP 49 *
Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian
Russian translation of RP 49.
3rd Edition | May 2001 | Product Number: G04903R | Price: $77.00

RP 51R
Environmental Protection for Onshore Oil and Gas Production Operations and Leases
Provides environmentally sound practices, including reclamation guidelines, for domestic onshore oil and gas production operations. It is intended to be applicable to contractors as well as operators. Facilities within the scope of this document include all production facilities, including produced water handling facilities. Offshore and arctic areas are beyond the scope of this document. Operational coverage begins with the design and construction of access roads and well locations and includes reclamation, abandonment, and restoration operations. Gas compression for transmission purposes or production operations, such as gas lift, pressure maintenance, or enhanced oil recovery (EOR), is included. Annex A provides guidance for a company to consider as a "good neighbor." Pages: 35
Product Number: G51R01 | Price: $82.00
You may download a PDF of this document from https://www.api.org/oil-and-natural-gas/wells-to-consumer/exploration-and-production/hydraulic-fracturing/rp-51r-environmental-protection

RP 54
Occupational Safety and Health for Oil and Gas Well Drilling and Servicing Operations
Recommends practices and procedures for promoting and maintaining safe and healthy working conditions for personnel in drilling and well servicing operations. These recommendations apply to rotary drilling rigs, well servicing rigs, and special services as they relate to operations on location. It is intended that the applicable requirements and recommendations of some sections of the standard be applied, as appropriate, to other sections. The recommendations are not intended to cover seismic drilling or water well drilling operations. These recommendations do not apply to site preparation and site remediation operations. Pages: 62
4th Edition | February 2019 | Product Number: G54004 | Price: $140.00

RP 55
Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide
Covers recommendations for protection of employees and the public, as well as conducting oil and gas producing and gas processing plant operations where hydrogen sulfide is present in the fluids being produced. Pages: 40
Product Number: G55002 | Price: $124.00

Std 65-2
Isolating Potential Flow Zones During Well Construction
Contains best practices for zone isolation in wells to prevent annular pressure and/or flow through or past pressure-containment barriers that are installed and verified during well construction. Well construction practices that may affect barrier sealing performance are mentioned along with methods to help ensure positive effects or to minimize any negative ones. The objectives of this guideline are two-fold. The first is to help prevent and/or control flows just prior to, during, and after primary cementing operations to install or “set” casing and liner pipe strings in wells. The second objective is to help prevent sustained casing pressure (SCP). The guidance from this document covers recommendations for pressure-containment barrier design and installation and well construction practices that affect the zone isolation process to prevent or mitigate annular fluid flow or pressure. Pages: 83
Product Number: G65202 | Price: $141.00

RP 67
Recommended Practice for Oilfield Explosives Safety
Applicable to chemical explosives used as an energy source to do work in oil- and gas-producing operations, and more specifically to explosives intended for use inside a wellbores. The purpose of this recommended practice (RP) is primarily to prevent the inadvertent initiation of these explosives at the wellsite but also includes some recommendations for safe and secure storage and transportation and handling, as well as requirements for design and manufacture of selected equipment.
While some chemicals intended for various nonexplosive applications can prove explosive when misused (such as lithium batteries), it is not the intent of this RP to address these materials. Pages: 85
3rd Edition | October 2019 | Product Number: G06703 | Price: $121.00
Safety and Fire Protection

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

RP 74
Recommended Practice for Occupational Safety onshore Oil and Gas Production Operation

Recommended practices and procedures for promoting and maintaining safe working conditions for personnel engaged in onshore oil and gas production operations, including special services. Pages: 23
1st Edition | October 2001 | Reaffirmed: January 2013
Product Number: G74001 | Price: $67.00

RP 75
Safety and Environmental Management System for Offshore Operations and Assets

Provides companies engaged in offshore operations with a framework for the establishment, implementation, and maintenance of a Safety and Environmental Management System (SEMS) to manage and reduce risks associated with safety and the environment to prevent incidents and events. This recommended practice applies, in part or whole, to companies engaged in offshore operations, from lease evaluation through decommissioning. This document is not intended to be prescriptive or limiting on the expectations of each SEMS element; rather, it allows flexibility appropriate to the size, scope, and risk of a Company’s assets and operations. It is advised that users of this document review and comply with applicable legal and regulatory requirements, and conform with applicable industry codes and standards.
Consideration may be given to using this document to help systematically manage other aspects of operations, such as security and health. Pages: 34

Bull 75L
Guidance Document for the Development of a Safety and Environmental Management System for Onshore Oil and Natural Gas Production Operations and Associated Activities

Provides general information and guidance for the development of a safety and environmental management system (SEMS) for onshore oil and natural gas operations, including drilling, production, and well servicing activities. Although there is an extensive amount of information that has been developed on the topic of safety and environmental management systems, this document focuses on this industry sector to help foster continuous improvement in our industry’s safety and environmental performance. It is recognized that many onshore oil and natural gas companies have effective SEMS in place; however, the intent of this document is to provide an additional tool that can assist these and especially other operators in taking the next step toward implementing a complete system at a pace that complements their business plan. For those who already have a mature SEMS in place, this document can be used for continuous improvement of the system. Pages: 12
1st Edition | November 2007 | Product Number: G75L01 | Price: $37.00

RP 76
Contractor Safety Management for Oil and Gas Drilling and Production Operations

Intended to assist operators, contractors, and subcontractors (third parties) in the implementation of a contractor safety program and improve the overall safety performance while preserving the independent contractor relationship. It is intended for the Upstream Segment of the petroleum industry; however, since the operator requirements and the contracted work are diverse, this publication may not be applicable to all operations at each company or to all contract work performed in those operations. Many oil and gas exploration and production companies contract for equipment and personnel services for a wide range of activities, including drilling production, well servicing, equipment repair, maintenance, and construction. Certain activities of contractors have the potential to take place either contractor and/or operator personnel and/or equipment at risk. It is important that operators are carried out in a safe manner. Operators and contractors need to provide safe work places and to protect the safety of their work places and to protect the safety of their workforces and the general public. When they work together to improve safety, both benefit. Pages: 60
2nd Edition | November 2007 | Reaffirmed: January 2013
Product Number: G07602 | Price: $62.00

MULTI-SEGMENT PUBLICATIONS

Human Factors in New Facility Design Tool

Describes a human factors tool that may be used by operating plants as an aid to incorporate human factors principles in the design of equipment that will be operated and maintained by people.
The human factors principles described in this document are intended for new equipment designs; however, many ideas provided in this tool may be used to improve the operating of existing plants where feasible.
This document focuses only on equipment design. Items such as human error, behavior-based safety, and operating procedure issues are not in the scope.
The tool covers equipment that is common to both upstream producing and downstream manufacturing operations. Equipment associated with specific activities such as drilling rigs is not specifically addressed. Pages: 71
2nd Edition | October 2005 | Product Number: I0HF02 | Price: $160.00

Human Factors Tool for Existing Operations

Objectives of this tool include the following:
· provide a tool for operating crews to identify opportunities for latent conditions and human error, and
· improve how process hazards analysis/hazard evaluation/revalidation process address human factors.
The scope of this tool includes existing operations and equipment and human tasks.
This tool is intended for use without specific training on human factors. This is a simple process for gathering a few operators and mechanics who are familiar with the equipment/process and who are qualified to identify where traps (latent conditions) in the equipment and tasks (error likely scenarios) exist that make it easy for people to do something wrong. Pages: 14
1st Edition | February 2006 | Product Number: I0HF03 | Price: $67.00
RP 752
Management of Hazards Associated with Location of Process Plant Portable Buildings

Provides guidance for managing the risk from explosions, fires and toxic material releases to on-site personnel located in new and existing buildings intended for occupancy. This RP was developed for use at refineries, petrochemical and chemical operations, natural gas liquids extraction plants, natural gas liquefaction plants, and other onshore facilities covered by the OSHA Process Safety Management of Highly Hazardous Chemicals, 29 CFR 1910.119.

Buildings covered by this RP are rigid structures intended for permanent use in fixed locations. Tent, fabric enclosures and other soft-sided structures are outside the scope of this document. This 3rd Edition of RP 752:2009 supersedes all previous editions, including the technical data provided in those documents.

Significant research and development of technology pertinent to building siting evaluations has been performed since the publication of the previous editions of RP 752. Examples of updated technology include prediction of blast damage to buildings, determination of occupant vulnerabilities, and estimates of event frequencies. Prior versions of RP 752 and the technical data included in them should not be used for building siting evaluations. The 2nd Edition of RP 752 covered all building types both permanent and portable. This 3rd Edition of RP 752 does not cover portable buildings. Portable buildings are now covered by RP 753. It is recognized, however, that portable buildings specifically designed for significant blast load represent a potential area of overlap between RP 753 and RP 752. In accordance with 1.3 of this document:

“Buildings described in API RP 753, Management of Hazards Associated with Location of Process Plant Portable Buildings, First Edition, June 2007, as ‘portable buildings specifically designed to resist significant blast loads’ and intended for permanent use in a fixed location are covered in this document (API RP 752). All other portable buildings are covered by API RP 753.” Pages: 27

3rd Edition | December 2009 | Product Number: K75203 | Price: $153.00

RP 753
Management of Hazards Associated with Location of Process Plant Portable Buildings

Provides guidance for reducing the risk to personnel located in portable buildings from potential explosion, fire and toxic release hazards. While occupied permanent buildings (e.g. control rooms, operator shelters) located near covered process area are typically constructed to be blast and fire resistant, conventional portable buildings (i.e. light wood trailers) are typically not constructed to be blast and fire resistant. Past explosion accidents have demonstrated that occupants of conventional portable buildings are susceptible to injuries from structural failures, building collapse, and building debris and projectiles.

Guidance is provided based on the following principles.

- Locate personnel away from covered process areas consistent with safe and effective operations.
- Minimize the use of occupied portable buildings in close proximity to covered process areas.
- Manage the occupancy of portable building especially during periods of increased risk including unit start up or planned shut-down operations.
- Design, construct, install, and maintain occupied portable buildings to protect occupants against potential hazards.
- Manage the use of portable buildings as an integral part of the design, construction, and maintenance operation of a facility. Pages: 22

1st Edition | June 2007 | Reaffirmed: January 2012
Product Number: K75301 | Price: $153.00

RP 754
Process Safety Performance Indicators for the Refining and Petrochemical Industries (ANSI/API RP 754)

Identifies leading and lagging process safety indicators useful for driving performance improvement. As a framework for measuring activity, status, or performance, this document classifies process safety indicators into four tiers of leading and lagging indicators. Tiers 1 and 2 are suitable for nationwide public reporting, and Tiers 3 and 4 are intended for internal use at individual facilities. Guidance on methods for development and use of performance indicators is also provided. This recommended practice (RP) was developed for the refining and petrochemical industries, but may also be applicable to other industries with operating systems and processes where loss of containment has the potential to cause harm. Applicability is not limited to those facilities covered by the OSHA Process Safety Management Standard, 29 CFR 1910.119, or similar national and international regulations. To enable consistent application of this RP to other refining and petrochemical industry sub segments, informative annexes have been created to define the Applicability and Process definition for those subsegments. The user would substitute the content of those annexes for the referenced sections of this RP: Annex A—Petroleum Pipeline and Terminal Operation, Annex B—Retail Service Stations, and Annex C—Oil and Gas Drilling and Production Operations. Performance indicators identified in this recommended practice are based on the following guiding principles.

- Indicators should drive process safety performance improvement and learning.
- Indicators should be relatively easy to implement and easily understood by all stakeholders (e.g. workers and the public).
- Indicators should be statistically valid at one or more of the following levels: industry, company, and facility. Statistical validity requires a consistent definition, a minimum data set size, a normalization factor, and a relatively consistent reporting pool.
- Indicators should be appropriate for industry, company, or facility level benchmarking.

Pages: 118

2nd Edition | April 2016 | Product Number: K75402 | Price: $163.00

RP 755

Provides guidance to all stakeholders (e.g. employees, managers, supervisors) on understanding, recognizing, and managing employee fatigue in the workplace. Should sites decide to use this document, the owners/operators shall establish policies and procedures to meet the purpose of this recommended practice.

This document was developed for refineries, petrochemical and chemical operations, natural gas liquefaction plants, and other facilities such as those covered by the OSHA Process Safety Management Standard, 29 CFR 1910.119. This document is intended to apply to a workforce that is commuting daily to a job location.

ANSI/API RP 755 applies to all employees working night shifts, rotating shifts, extended hours/days, or call outs who are involved in process safety-sensitive actions. It should also be considered for others making process safety-sensitive decisions. On-site contractors involved in process safety-sensitive actions shall have fatigue risk management systems equivalent to the criteria outlined in this document.

Pages: 17

2nd Edition | May 2019 | Product Number: K75502 | Price: $145.00
accidents have demonstrated that tent occupants are susceptible to injuries due to weather, and from falling objects. Some of these hazards are addressed by regulations. Pages: 25

This method represents a significant step change from the traditional approaches of either relying on maximum limits to hours of work or minimum limits to hours of rest (variously called Hours of Service, Work-Rest Rules, Working Time Directives), or adopting intermittent or piece-meal solutions (e.g. a fatigue training program or a shift schedule redesign), depending on the interests and initiative of local site managers.

One essential feature of FRMS is that it is a system meant to be improved upon on a regular and continuous basis. It is not a set of guidelines designed for one-time compliance but instead provides a framework that will evolve over time, driven by the collection of data on fatigue risk and fatigue outcomes (e.g. fatigue-related incidents). Pages: 49

Provides guidance for managing the risk from explosions, fires and toxic material releases to on-site personnel located in tents. The term "tent" is used to describe a wide range of structures and is defined in §3.15. This RP was developed for use at refineries, petrochemical and chemical operations, natural gas liquids extraction plants, natural gas liquefaction plants, and other onshore facilities covered by OSHA 29 CFR 1910.119. The focus of this RP is primarily on process related hazards. However, non-process related hazards may exist that could present risks to tent occupants. Previous accidents have demonstrated that tent occupants are susceptible to injuries from fires originating inside the tent, from tent collapse due to extreme weather, and from falling objects. Some of these hazards are addressed by tent design standards, manufacturer's recommendations, and local regulations. Pages: 25

TR 755-1
Identifies and explains the scientific and operational issues considered during the preparation of RP 755. By providing the reasoning behind the specific wording in the RP 755 document, this document supports each key statement in RP 755 in sequence so that it can be used in parallel with the RP 755 text. To make this document accessible and manageable, key scientific sources and references are provided to help readers gain access to the scientific literature.

Fatigue Risk Management Systems (FRMS) have emerged and been widely recognized as a more effective approach to managing and mitigating employee fatigue risk in the 24/7 workplace. The core feature of the FRMS is that it is a data-driven, risk-informed, safety performance-based system. The FRMS implementation process first identifies all sources of fatigue risk in the business operation, then introduces mitigating policies, technologies, and procedures to reduce the risk, and most importantly then maintains them in a proactively managed continuous improvement system. The history of FRMS was recently summarized.

This publication is related to an API licensing, certification, or accreditation program.

PUBL 770
Intended for an audience of middle managers to senior executives who have different levels of knowledge about human factors engineering. It is designed to equip them with a basic understanding of the causes of human errors and to suggest ways for reducing human errors at individual facilities. It also describes how to incorporate human reliability analysis (HRA) into process safety management activities. Pages: 85

1st Edition | March 2001 | Product Number: K77001 | Price: $82.00

STD 780
Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries
Prepared by a Security Risk Assessment (SRA) Committee of the American Petroleum Institute (API) to assist the petroleum and petrochemical industries in understanding security risk assessment and in conducting SRAs. The standard describes the recommended approach for assessing security risk widely applicable to the types of facilities operated by the industry and the security issues the industry faces. The standard is intended for those responsible for conducting security risk assessments and managing security at these facilities. The method described in this standard is widely applicable to a full spectrum of security issues from theft to insider sabotage to terrorism. The API SRA Methodology was developed for the petroleum and petrochemical industry, for a broad variety of both fixed and mobile applications. This recommended practice describes a single methodology, rather than a general framework for SRAs, but the methodology is flexible and adaptable to the needs of the user. This methodology constitutes one approach for assessing security vulnerabilities at petroleum and petrochemical industry facilities. However, there are other risk assessment techniques and methods available to industry, all of which share common risk assessment elements. Pages: 113

1st Edition | May 2013 | Product Number: K78001 | Price: $206.00

RP 2001
Fire Protection in Refineries
Provides a better understanding of refinery fire protection and the steps needed to promote the safe storage, handling, and processing of petroleum and petroleum products in refineries. A basic premise of this standard is that fire prevention provides the fundamental foundation for fire protection. This publication covers basic concepts of refinery fire protection. It reviews the chemistry and physics of refinery fires; discusses how the design of refinery systems and infrastructure impact the probability and consequences of potential fires; describes fire control and extinguishing systems typically used in refineries; examines fire protection concepts that should be covered in operating and maintenance practices and procedures; and provides information on organization and training for refinery emergency responders.

Many of the concepts, systems, and equipment discussed in this document are covered in detail in referenced publications, standards, or governmental requirements. Pages: 90

10th Edition | July 2019 | Product Number: C200110 | Price: $180.00

RP 2003
Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents
Presents the current state of knowledge and technology in the fields of static electricity, and stray currents applicable to the prevention of hydrocarbon ignition in the petroleum industry and is based on both scientific research and practical experience. The principles discussed in this recommended practice are applicable to other operations where ignitable liquids and gases are handled. Their use should lead to improved safety practices and evaluations of existing installations and procedures. Pages: 76

8th Edition | September 2015 | Product Number: K20038 | Price: $206.00
Electricity, internal combustion engines, electric motors, friction sparks, hot atmospheric pressure. The ignition sources covered in this RP include static blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. This RP also covers recognition and control of shell (that portion of the shell above the roof level) on open-top tanks in liquid hydrocarbon service. It also applies to safe work practices for abrasive blasting of hydrocarbon storage tanks in service that may contain or have the potential to develop a flammable atmosphere in the vapor space. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting conducted on the roofs and inner portions of the exposed surfaces of shells (that portion of the shell above the roof level) on open-top (external) floating roof tanks. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static electricity, internal combustion engines, electric motors, friction sparks, hot metal surfaces, and external-to-the-work ignition sources.

This publication is a new entry in this catalog.

Safety and Fire Protection

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

RP 2009
Safe Welding, Cutting, and Hot Work Practices in the Petroleum and Petrochemical Industries
Provides guidelines for safely conducting welding, cutting or other hot work activities in refineries, gas plants, petrochemical plants, and other facilities in the petroleum and petrochemical industries. It provides specific guidance for evaluating procedures for certain types of work on equipment in service. It does not include guidance for compliance with regulations or codes; hot tapping; welding techniques, normal, “safe work” practices; or entry or work in inert environments. Pages: 23

Product Number: K20097 | Price: $86.00

RP 2027
Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service
Provides safe work practices for the prevention and control of vapor, ignition, and other potential hazards during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. It also provides assistance to employers in developing operating procedures that provide for hazard recognition to significantly reduce ignition risks during abrasive blasting of hydrocarbon storage tanks in service that may contain or have the potential to develop a flammable atmosphere in the vapor space. This RP applies to safe work practices required for abrasive blasting of external shells and exterior roofs of all aboveground atmospheric storage tanks in liquid hydrocarbon service. It also applies to safe work practices for abrasive blasting conducted on the roofs and inner portions of the exposed surfaces of shells (that portion of the shell above the roof level) on open-top (external) floating roof tanks. This RP also covers recognition and control of ignition hazards that are specific to and may be present during abrasive blasting of aboveground storage tanks in liquid hydrocarbon service at atmospheric pressure. The ignition sources covered in this RP include static electricity, internal combustion engines, electric motors, friction sparks, hot metal surfaces, and external-to-the-work ignition sources. Pages: 27

4th Edition | November 2018 | Product Number: C20274 | Price: $132.00

RP 2028
Flame Arresters in Piping Systems
Covers the use and limitations of flame arresters installed in piping systems in the petroleum and petrochemical industries. It provides a general overview of flame arresters currently in use and some potential concerns or limitations. Applicable combustion and flame propagation parameters are discussed including the distinction between arresting flames versus arresting detonations. Pages: 12

3rd Edition | February 2002 | Reaffirmed: December 2010
2-Year Extension: February 2015 | Product Number: K20283 | Price: $65.00

RP 2030
Provides guidance for the petroleum industry and some petrochemical industry applications (for non-water-reactive petrochemicals with physical and combustion characteristics comparable to hydrocarbons) in determining where water spray systems might be used to provide protection from fire damage for equipment and structures. Pages: 21

4th Edition | September 2014 | Product Number: K20304 | Price: $114.00

RP 2201
Safe Hot Tapping Practices in the Petroleum and Petrochemical Industries
Provides information to assist in safely conducting hot tapping operations on equipment in service in the petroleum and petrochemical industries. No document can address all situations nor answer all potential questions; however, the understanding of potential hazards, and application of this knowledge, can help reduce the probability and severity of incidents. Pages: 27

2-Year Extension: February 2015 | Product Number: K22015 | Price: $94.00

RP 2210
Flame Arresters for Vents of Tanks Storing Petroleum Products
Discusses the benefits and detriments associated with the use of flame arresters on vents utilized on atmospheric fixed-roof tanks. Pages: 4

Product Number: K22103 | Price: $71.00

RP 2216
Ignition Risk of Hydrocarbon Vapors by Hot Surfaces in the Open Air
Provides information concerning the potential for ignition of hydrocarbons that are exposed to hot surfaces in the open air. Hydrocarbon liquids, when heated sufficiently, can ignite without the application of a flame or spark. The ignition of hydrocarbons by hot surfaces may occur when oil is released under pressure and sprays upon a hot surface or is spilled and lies upon a hot surface for a period of time. Understanding the mechanism and dynamics of auto-ignition is an important step in preventing or controlling the ignition of hydrocarbons by hot surfaces in the open air. In addition to the information provided herein, appropriate industry standards and other information may assist users to understand the potential hazards of hydrocarbon auto-ignition (such as spontaneous combustion) not specifically covered by this publication and implement appropriate prevention and control measures. Pages: 5

Product Number: K22163 | Price: $65.00

RP 2217A
Safe Work in Inert Confined Spaces in the Petroleum and Petrochemical Industries
Covers design, materials, face-to-face dimensions, pressure-temperature ratings, and examination, inspection, and test requirements for two types of check valves:

- Type ‘A’ check valves are short face-to-face and can be: wafer, lug, or double flanged; single plate or dual plate; gray iron, ductile iron, steel, nickel alloy, or other alloy designed for installation between Classes 125 and 250 cast iron flanges as specified in ASME B16.1 between Classes 150 and 300 ductile iron flanges as specified in ASME B16.42 between Classes 150 and 2500 steel flanges as specified in ASME B16.5, and between Classes 150 and 600 steel pipeline flanges as specified in MSS SP-44 or steel flanges as specified in ASME B16.47.

- Type ‘B’ bolted cover swing check valves are long face-to-face as defined in 5.1.2 and can be: flanged or butt-welding ends of steel, nickel alloy, or other alloy material. End flanges shall be as specified in ASME B16.5 or ends shall be butt-welding as specified in ASME B16.25. Pages: 34

Safety and Fire Protection

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

RP 2218
Fireproofing Practices in Petroleum and Petrochemical Processing Plants

Intended to provide guidance for selecting, applying, and maintaining fireproofing systems designed to limit the extent of fire-related property loss from pool fires in the petroleum and petrochemical industries. Where comparable hazards exist, and to the extent appropriate, it may be applied to other facilities that could experience similar severe fire exposure and potential losses.

This RP identifies fireproofing needs for petroleum and petrochemical plants specifically focusing on property loss protection for pool fires scenarios in on-shore processing plants. Pages: 60

3rd Edition | July 2013 | Product Number: K22183 | Price: $174.00

RP 2219
Safe Operation of Vacuum Trucks Handling Flammable and Combustible Liquids in Petroleum Service

Provides information concerning the safe operation of vacuum trucks engaged in all aspects of handling flammable and combustible liquids, associated waste water, produced water, sour water, basic sediment and water (BS&W), caustics, spent acids, or other fluids stemming from petroleum operations, products, powders, and the hazard of dust explosions.

This publication discusses the types of vacuum pumps and cargo tanks associated with vacuum truck operations, the common hazards associated with those vacuum truck operations, and representative safe work practices and precautions to help prevent accidents and injuries. Appendix G provides brief descriptions of a variety of incidents involving vacuum trucks, including offloading into open areas. These may be useful in reviewing specific operating procedures or developing materials for safety meetings or pre-job briefings. Pages: 60

4th Edition | June 2016 | Product Number: K22194 | Price: $179.00

Std 2220
Contractor Safety Performance Process

Assists owners and contractors in developing, improving, and maintaining their mutual safety programs. Widely diverse contractor functions and uses may include resident, non-resident, long-term, and short-term contractors. These have in common the need for effective safety programs to protect both owner and contractor personnel from workplace injury and illness, as well as from losses associated with incidents arising out of contractor work. This standard aims to help both owners and contractors improve the contractor’s safety performance while preserving the independent contractor relationship.

It was developed for the petroleum and petrochemical industries and the firms that perform contract work for them.

Contractors perform greatly varied work within the petroleum and petrochemical industries. Some perform construction and turnaround activities or drilling and well servicing; specialty contractors provide skills and services that are not typically found within an owner’s work force. Contractors may even provide services that augment the peak loads and skills of owners’ work forces, such as in the maintenance and operation of facilities. Since owner sites and contracted work are diverse, this standard may not be applicable to all operations at each company or to all contract work performed in those operations. As such, this publication may not apply to incidental contractors that generally do not affect facility safety, such as those that provide janitorial, laundry, and delivery services.

This document addresses “conventional” safety and health. It does not address safety concerns associated with security or terrorism issues. Pages: 26

3rd Edition | October 2011 | Product Number: K222003 | Price: $99.00

Pub 2375

This annual summary reports on cases recordable in 1996 under the U.S. Bureau of Labor Statistics’ recordkeeping guidelines. The survey is based on data submitted to the American Petroleum Institute by 176 oil and gas companies, employing 285,885 persons. The report includes information regarding injuries, illnesses, fatalities, lost workday cases, and incidence rates by function.

June 1997 | Product Number: K23751 | Price: $104.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall not replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

126

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Safety and Fire Protection

Fax Orders: +1 303 397 2740

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Year</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publ 2389</td>
<td>1989 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</td>
<td>January 1989</td>
<td>K19996</td>
<td>$64.00</td>
</tr>
<tr>
<td>Publ 2390</td>
<td>1990 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</td>
<td>July 1991</td>
<td>K19988</td>
<td>$89.00</td>
</tr>
<tr>
<td>Publ 2391</td>
<td>1991 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</td>
<td>September 1992</td>
<td>K19987</td>
<td>$89.00</td>
</tr>
<tr>
<td>Publ 2392</td>
<td>1992 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</td>
<td>August 1993</td>
<td>K19986</td>
<td>$89.00</td>
</tr>
<tr>
<td>Publ 2393</td>
<td>1993 Summary of Occupational Injuries, Illnesses and Fatalities in the Petroleum Industry</td>
<td>June 1994</td>
<td>K19985</td>
<td>$104.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Year</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publ 2389A</td>
<td>Fire Protection Considerations for the Design and Operation of Liquefied Petroleum Gas (LPG) Storage Facilities</td>
<td>2nd Edition</td>
<td>K2510A</td>
<td>$110.00</td>
</tr>
</tbody>
</table>

Online Orders: global.ihs.com
STORAGE TANK SAFETY STANDARDS

Std 2015
Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks
Applicable to stationary atmospheric and low-pressure (up to and including 15 psig) aboveground petroleum storage tanks used in all sectors of the petroleum and petrochemical industry, including crude oil and gas production; refining; petrochemicals; pipelines and terminals; bulk storage; and ethanol facilities. This standard provides requirements for safety planning, coordinating, and conducting tank entry and cleaning operations, from removal from service through return to service. Pages: 146
8th Edition | January 2018 | Product Number: K20158 | Price: $215.00

RP 2021
Management of Atmospheric Storage Tank Fires
Provides experience-based information to enhance the understanding of fires in atmospheric storage tanks containing flammable and combustible materials. It presents a systematic management approach that can assist tank fire prevention. If fires do occur, this information can help responders optimize fire suppression techniques to reduce the severity of an incident and reduce the potential for escalation. Pages: 83
Product Number: K20214 | Price: $145.00

RP 2023
Guide for Safe Storage and Handling of Heated Petroleum Derived Asphalt Products and Crude Oil Residua
Describes phenomena that can occur and precautions to be taken in the storage and handling of asphalt products and residua derived from crude petroleum. It applies when these materials are stored in heated tanks at refineries and bulk storage facilities and transported in tank vehicles. Pages: 44
Product Number: K20233 | Price: $119.00

RP 2026
Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service
Provides information to enable safe access/egress involving floating roofs of storage tanks used in petroleum service and identifies common hazards and potentially hazardous conditions associated with these activities. The objective of this recommended practice (RP) is to establish general precautionary measures appropriate for individual situations. It provides the appropriate precautions for preventing accidents and injuries. This RP is intended primarily for those persons who are required to perform inspections, service, maintenance, and/or repair activities that involve descent onto floating roofs of in-service petroleum tanks. This RP does not cover general considerations that apply to climbing onto petroleum storage tanks and other structures. Pages: 28
3rd Edition | June 2017 | Product Number: K20263 | Price: $99.00

RP 2207
Preparing Tank Bottoms for Hot Work
Provides information to assist safe performance of hot work on the bottoms of storage tanks that have been in service to store flammable products. This work activity has specific precautions and work practices. It also addresses the safety aspects of hot work performed on petroleum storage tank bottoms. It discusses safety precautions for preventing fires, explosions, and associated injuries. The term “hot work,” as used in this publication, is defined as an operation that can produce a spark or flame hot enough to ignite flammable vapors. This recommended practice does not contain all safety precautions and procedures that may be required prior to, during, or after a specific hot work activity. All hot work should be performed in compliance with applicable federal, state, and local regulatory requirements and recognized industry practices. Work practices of concern for working on tank bottoms include, but are not limited to, confined space entry, lockout/tagout, atmospheric testing, ventilation, and requirements for use of personal protective equipment (PPE). Pages: 27
7th Edition | June 2017 | Product Number: K22077 | Price: $110.00

Std 2350
Overfill Protection for Storage Tanks in Petroleum Facilities (ANSI/API Std 2350)
Applies to storage tanks associated with marketing, refining, pipeline, and terminals operations and with tanks containing Class I or Class II petroleum liquids. Overfill protection for petroleum storage tanks. It recognizes that prevention provides the most basic level of protection, thus while using both terms “protection” and “prevention,” the document emphasizes prevention. The standard’s scope covers overfill (and damage) prevention practices for aboveground storage tanks in petroleum facilities, including refineries, marketing terminals, bulk plants, and pipeline terminals that receive flammable and combustible liquids. The fourth edition continues to build on experience and new technology through the use of management systems. Since operations are the primary overfill prevention safeguard, new definitions and requirements are established for alarms. Risk reduction is also addressed by current and generally accepted industry practices. The essential elements of this document are based on current industry safe operating practices and existing consensus standards. Federal, state, and local regulations or laws may contain additional requirements for tank overfill protection programs. For existing facilities, the results of a risk-based analysis of aboveground atmospheric petroleum storage tanks may indicate the need for more protection against overfilling. In such cases, some provisions from this standard may be suitable. The purpose of this standard is to assist owner/operators and operating personnel in the prevention of tank overfills by implementation of a comprehensive overfill prevention process (OPP). The goal is to receive product into the intended storage tank without overfill or loss of containment. This standard does not apply to: underground storage tanks; aboveground tanks of 1320 U.S. gallons (5000 liters) or less; aboveground tanks that comply with PEI 600; pressure vessels; tanks containing non-petroleum liquids; tanks storing LPG and LNG; tanks at service stations; tanks filled exclusively from wheeled vehicles (i.e. tank trucks or railroad tank cars); and tanks covered by OSHA 29 CFR 1910.119 and EPA 40 CFR 68, or similar regulations. Pages: 47
4th Edition | May 2012 | Product Number: K235004 | Price: $123.00
NOTE: Free publications with an asterisk are subject to a $10.00 handling charge for each total order, plus actual shipping charges.

Air Research

EMISSIONS: GENERAL

Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry

API Tools for Estimating GHG Emissions

Accurate estimation of greenhouse gas emissions is indispensable to responsibly addressing climate change. Through API, the U.S. oil and natural gas industry has provided a suite of tools for estimating emissions. It includes API's updated 2009 compendium of emissions estimation methodologies, software for emissions estimation and inventorying, and guidelines (created by the International Petroleum Industry Environmental Conservation Association) to assist in the accounting and reporting of emissions. Pages: 807

August 2009 | Available for download at https://www.api.org/~/

DR 76

Determination of Emissions from Retail Gasoline Outlets Using Optical Remote Sensing: Pilot Field Study at a Non-Vapor Recovery Site, Project Summary Report, Volume I

Results of this study are presented in a three-volume report. Volume I presents the results of a pilot study to evaluate the use of optical remote sensing (ORS) technology for determining emission factors as well as the dispersion of the emissions at an uncontrolled retail gasoline outlet (RGO). ORS techniques may be able to provide a direct method of determining the total emissions from an RGO under varied conditions and to provide this information with little interference with the operation of RGO. Pages: 50

November 1999 | Product Number: I00076 | Price: $133.00

DR 141

Global Emissions of Carbon Dioxide from Petroleum Sources

Describes carbon dioxide emission estimates developed for a broadly defined petroleum industry whose five segments include (1) exploration and extraction; (2) crude petroleum transportation to refineries; (3) refining operations; (4) refinery products transportation; and (5) end uses. Emission estimates for carbon dioxide have been developed for each industry segment and for each country. Activity factors describe the activity level for a particular industrial activity. Corresponding emission factors for each activity factor were developed from U.S. Environmental Protection Agency and industry documents. Pages: 91

July 1991 | Product Number: I00141 | Price: $65.00

Publ 326

The Cost Effectiveness of VOC and NOx Emission Control Measures

Provides air pollution control planners and other interested parties in ozone nonattainment areas with a “menu” of possible control options using the most up-to-date information and accurate analyses for significant sources of volatile organic compounds (VOCs) and NOx. The menu provides a preliminary demonstration of how cost-effective packages of attainment strategies and control measures can be developed to reduce VOC emissions by 15 % by 1996. Appendices provide a detailed analysis of costs, effectiveness, and application limitations. Pages: 354

September 1994 | Product Number: J32600 | Price: $160.00

Publ 332

Comparison of Screening Values from Selected Hydrocarbon Screening Instruments

Describes a study carried out at two refineries to compare differences in equipment leak screening values obtained from four instruments commonly used to measure fugitive emissions. The effect of screening distance was also evaluated, and the results from the study were compared to those of an earlier study conducted in 1979. Adjustment factors to relate screening values from one instrument are presented, which are applicable to marketing, transportation, and exploration and production facilities as well as refineries. Pages: 128

August 1995 | Product Number: J33200 | Price: $98.00

Publ 342 and Publ 343

A number of federal, state, and local regulations are designed to control fugitive emissions of volatile organic compounds and hazardous air pollutants. API sponsored this project to present options and recommendations on procedures for obtaining inspection and maintenance data from certain process equipment with the potential to leak fugitive emissions. The two resulting manuals focus on the recommended fugitive emission practices in the petroleum industry, specifically for refineries, marketing terminals, and the oil and gas production industries. Pages: 204

June 1998

Product Number for Publ 342: J34200 | Price: $69.00

Product Number for Publ 343: J34300 | Price: $69.00

Publ 344

Critical Review of Source Sampling and Analysis Methodologies for Characterizing Organic Aerosol and Fine Particulate Source Emission Profiles

Intended for use in designing future measurement programs for characterizing emissions from stationary sources that contribute to fine particle concentrations in the atmosphere. The benefits and drawbacks of various measurement approaches are discussed, and a recommended approach for combustion sources is presented. Pages: 128

June 1998 | Product Number: J34400 | Price: $80.00

Publ 347

Hazardous Air Pollutant Emissions from Gasoline Loading Operations at Bulk Gasoline Terminals

Hazardous air pollutant (HAP) emission testing was conducted at 33 bulk gasoline terminals across the United States. Emissions were measured from the loading of gasoline cargo tanks at facilities with a vapor control system. Emission tests from 23 carbon adsorption units, 8 thermal oxidizers, and 2 refrigeration units were included. Control efficiencies for eight HAP compounds were derived for the carbon adsorption units and thermal oxidizers; no control efficiencies were reported from the refrigeration units due to the limited data collected. The HAP control efficiencies presented in this report have been used to develop HAP emission factors that can be used to determine HAP emissions based on the volume of gasoline loaded at a facility. Pages: 138

October 1998 | Product Number: J34700 | Price: $90.00
This project was performed with the cooperation of the California Air Resources Board (CARB) and Western States Petroleum Association to develop updated air toxic emission factors for combustion sources using petroleum-based fuels. The emission factors developed using the best available source testing information in this project will help the U.S. Environmental Protection Agency to revise AP-42. In addition, the emission factors will be integrated into CARB’s California Air Toxics Emission Factor database. Environmental, health, and safety engineers can use these emission factors to develop more accurate and complete emission inventories without additional source testing, which could help facilities in the permitting process. Pages: 88

April 2001 | Product Number: I47040 | Price: $96.00

Publ 4704

In 1997, the U.S. Environmental Protection Agency (EPA) promulgated new ambient air standards for particulate matter (PM) smaller than 2.5 micrometers in diameter (PM2.5). Source emissions data are needed to assess the contribution of petroleum industry combustion sources to ambient PM2.5 concentrations. This report presents particulate measurement results from a 114 million British thermal unit (MMBtu) per hour gas-fired refinery process heater. The particulate stack measurements were made using both a dilution tunnel research test method and traditional EPA sampling methods. Pages: 118

August 2001 | Product Number: I47120 | Price: $90.00

Publ 4712
Gas-Fired Steam Generator—Test Report Site C: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources

In 1997, the U.S. Environmental Protection Agency (EPA) promulgated new ambient air standards for particulate matter (PM) smaller than 2.5 micrometers in diameter (PM2.5). Source emissions data are needed to assess the contribution of petroleum industry combustion sources to ambient PM2.5 concentrations. This report presents that the gas fired steam generator has a maximum heat input of 62.5 MMBtu/hr with an average rate of approximately 50 MMBtu/hr. Pages: 100

July 2001 | Product Number: I47200 | Price: $100.00

Publ 4772
Measuring Particulate Emissions from Combustion Sources

Since the inception of the Clean Air Act, the petroleum refining industry has been faced with the need to determine criteria pollutant emissions from combustion sources. While some of these species, such as NOx, SO2, and CO remain in the vapor phase during and after combustion and are relatively simple to measure, particulate matter (PM) measurements are much more challenging. This is because while some PM such as fly ash or catalytic cracking catalyst fines is clearly solid material that is readily collected and measured on a sampling filter, other species that may exist in the vapor phase during combustion can later condense into aerosols downstream from the combustion zone. This can occur before or after any control devices, depending upon the temperature and composition of the combustion gases. Consequently, it has been customary to refer to PM as being composed of two PM components, filterable and condensable, the relative amounts of each depending on the stack gas composition and temperature, control devices in use at the unit, and the method for measuring PM. While measuring filterable PM is relatively straightforward (i.e. PM collected on a filter), condensable PM is a more esoteric quantity and its contribution to total PM emissions is very much dependent upon the choice of the measurement method. The U.S. Environmental Protection Agency apparently recognized this issue, and until the interest in measuring and controlling PM2.5 emissions emerged in the 1990s, their PM sampling methods were centered on measuring only filterable PM. At the time that these methods were originally instituted, the best available pollution control devices were mainly limited to filterable PM and could not control the condensable portion of PM emissions. As interest in the health effects associated with PM emissions increased, efforts were centered on determining the contribution of the PM2.5 fraction that was believed to most responsible for these effects and principally composed of condensable matter. This report will review the
conditions leading to the formation of condensable particulate matter from stack gas components along with the methods used to measure PM emissions from refinery combustion sources. Pages: 27

Pubb 4775

Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings—Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plumes

Aerobic biodegradation can contribute significantly to the attenuation of petroleum hydrocarbon vapors in the unsaturated zone; however, most regulatory guidance for assessing potential human health risks via vapor intrusion to indoor air either neglect biodegradation or only allow for one order of magnitude additional attenuation for aerobically degradable compounds, which may be overly conservative in many cases. This paper describes results from three-dimensional numerical model simulations of vapor intrusion for petroleum hydrocarbons to assess the influence of aerobic biodegradation on the attenuation factor for a variety of source concentrations and depths for buildings with basements and slab-on-grade construction. Provided that oxygen is present in the vadose zone, aerobic biodegradation of petroleum hydrocarbon vapors in the unsaturated zone will reduce the soil gas concentrations and the potential risks from vapor intrusion to indoor air compared to nonbiodegrading compounds. At lower source concentrations and/or deeper source depths, aerobic biodegradation may result in a reduction in vapor intrusion attenuation factors by many orders of magnitude. The magnitude of the reduction depends on site-specific conditions, which should be considered in the development of a conceptual site model for each site. However, oxygen supply and degradation rates are likely to be sufficient at many sites to mitigate potential risks from vapor intrusion for low vapor concentration sources (less than about 2 mg/L-vapor total hydrocarbons). The simulations conducted in this study provide a framework for understanding the degree to which bio-attenuation will occur under a variety of scenarios and provide insight into site conditions that will result in significant biodegradation. This improved understanding may be used to select site-specific attenuation factors for degradable compounds and develop soil vapor screening levels appropriate for particular combinations of source concentrations, source depth, and building characteristics, which should be defined as part of a site conceptual model. Pages: 53

Pubb 4776

A Guide to Understanding, Assessment and the Regulation of PAHs in the Aquatic Environment

Designed to be an introductory guide to understanding and assessing polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment (water and sediments). API prepared this guide primarily for refinery personnel and home office environmental staff who may have to address PAH issues. In addition, this guide may be useful to staff in regulatory agencies that work with PAHs in wastewater discharge permits, waste load allocations (total maximum daily loadings), and sediment investigation and remediation.

The guide provides an overview on the chemistry, fate, and sources of PAHs in the environment and the regulatory implications. The guide also includes descriptions of the different sources of PAHs (petrogenic, pyrogenic, diagenic, biogenic) and techniques for differentiating these sources through their characteristic fingerprints, including straightforward ways to help identify or rule out potential sources. Pages: 60

Pubb 4777

EMISSIONS: EXPLORATION AND PRODUCTION

Pubb 4589

Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations

The emission factors derived in this report indicate that fugitive emissions from production facilities are considerably lower than they were in the late 1970s. Investigators use portable detectors to screen more than 180,000 components at 20 offshore and onshore facilities. Mass emission rates from "bagged" emitters, valves, connectors, and other components, such as seals and vents, are used to develop emission factors for individual components and groups of components. A workbook included in the report provides site operators with three different options to calculate emissions from their facilities. See also Pubb 4615. Pages: 263

Pubb 4615

Emission Factors for Oil and Gas Production Operation

Supplements the information found in Pubb 4589 and contains revised emission factors developed from 1993 API data using correlation equations established by the U.S. Environmental Protection Agency in 1994. The report contains emissions factors for five types of production operations—light crude production, heavy crude production, gas production, gas processing plants, and offshore production. It also contains profiles of specified emissions including air toxics and assesses regional differences in fugitive emissions and control efficiency of inspection and maintenance programs. Component inventory data, screening data, and leak emission data are also included. See also Pubb 4589. Pages: 56

Pubb 4638

Calculation Workbook for Oil and Gas Production Equipment Fugitive Emissions

This workbook, which is the result of five years of field testing of equipment components at production facilities across the United States, is a valuable tool for petroleum producers who are interested in estimating fugitive emissions from their oil and gas production sites. Four methods of calculating fugitive emissions are presented: EPA average emission factor method, EPA screening value range emission method, EPA correlation method, and leak quantification method. Pages: 62

Pubb 4644

A Methodology for Estimating Incremental Benzene Exposures and Risks Associated with Glycol Dehydrators

The U.S. Environmental Protection Agency and API collaborated to develop a methodology to estimate benzene exposures and associated risks under representative emission conditions applicable to glycol dehydrators. The result (spreadsheet program and Monte Carlo routine) was a PC-based model called SIMRISK. A simplified version was developed that could be incorporated into control applicability criteria for glycol dehydrator vent emissions. Pages: 84

Pubb 4661

Exploration and Production Emission Calculator II (EPEC II) User’s Guide

The Exploration and Production Emission Calculator Version 2.0 (EPEC II) is a software tool that can be used to estimate emissions for exploration and production facilities. EPEC II integrates user inputs, emission calculations, and data summaries for many equipment types common to exploration and production facilities. The calculation techniques and emission factors utilized by the EPEC II software were, in most cases, established by the U.S. Environmental Protection Agency API, and the Gas Research Institute. Published references that provide background information for the calculation methods used in EPEC II are given for each equipment type in both the software and in each section of this user’s guide. Pages: 96

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
AMINECalc Version 1.0 was developed. This with field data collected from operating gas plants. It also recommends more, and Windows® 95/98/NT. Approximately 2 MB of hard disk space are AMINECalc Version 1.0 are IBM PC 486 compatible or higher, 8 MB RAM or pressure, vented flash gas molecular weight, vented working and standing gas molecular weight, hydrocarbon speciation (including hazardous air emissions from amine-based sour gas and natural gas liquid sweetening units. The output generated by the software can be used for regulatory reporting by unit operators according to the requirements of the Clean Air Act Amendments of 1990. AMINECalc performs three types of calculation options: (1) mass balance calculation, (2) gas process (gas feed) simulation, and (3) NGL process (liquid feed) simulation. Mass emission rates of hazardous air pollutants, including benzene, toluene, ethylbenzene, and xylene (BTX), and volatile organic compounds can be estimated with the use of AMINECalc. System requirements for running AMINECalc Version 1.0 are IBM PC/486 compatible or higher, 8 MB RAM or more, and Windows® 95/98/NT. 2 MB of hard disk space are required to hold the program and its supporting run-time libraries. For better interface viewing, it is recommended that the user set the monitor to a high color 16 bit (or higher) resolution. See also Pub 4680. Pages: 76

Pub 4679
Amine Unit Air Emissions Model and User’s Guide, AMINECalc Version 1.0

The implementation of the 1990 Clean Air Act Amendments in the United States has created the need for a reliable method to estimate and report hydrocarbon emissions from amine units. A simulation package, called Amine Unit Air Emission Model (AMINECalc) Version 1.0 was developed. This report evaluates the AMINECalc model by comparing the simulation results with field data collected from operating gas plants. It also recommends improvements and modifications to refine the predictions. See also Pub 4679. Pages: 96

December 1998 | Product Number: I46790 | Price: $535.00

Pub 4680
Amine Unit Air Emissions Model Evaluation

Establishes simple techniques for exploration and production (E&P) operators of petroleum storage tank facilities to use for the preparation of site-specific emission inventories to meet environmental regulations. Analyses were performed of oil and gas sampling results and emissions modeling results for more than 100 crude oil E&P storage tanks. Correlation equations or statistical averages were recommended to estimate Reid Vapor Pressure, vented flash gas molecular weight, vented working and standing gas molecular weight, hydrocarbon speciation (including hazardous air pollutants), and separator gas specific gravity. Pages: 82

December 1998 | Product Number: I46800 | Price: $131.00

Pub 4683
Correlation Equations to Predict Reid Vapor Pressure and Properties of Gaseous Emissions for Exploration and Production Facilities

PETROPAK (API Pub 4697) is a computer-based software designed to use site-specific information to predict emission from petroleum production storage tanks, now compatible with 32-bit and 64-bit Windows 7 as well as Windows 2000/XP/Vista. It estimates flashing, working, and standing losses and calculates losses using specific operations for each user’s tank. Cited by the Environmental Protection Agency (EPA), it allows the user to enter specific tank condition information to generate air emission reports.

December 1998 | Product Number: I46830 | Price: $86.00

Pub 4697
Production Tank Emissions Model (E&P TANK, Version 3.0)

API has discontinued the sale of E&P Tanks v3.0; no new licenses for the software will be issued.

Existing customers should contact support@eptanks.com for assistance in transferring an existing E&P Tanks v3.0 license from one user to another user. API will continue to offer support for existing customers who encounter errors inputting data into software in accordance with E&P Tanks user guide (Publication 4697).

(Note that API provides no support for earlier versions of E&P Tanks.)

EMISSIONS: MARKETING

Pub 4588
Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 1

To evaluate the accuracy of fugitive emission estimates for petroleum marketing terminals, a study was designed to determine average emission factors and fugitive emission correlation equations for components in light liquid and gas vapor services. Four marketing terminals were tested, and the results of the study are presented in this report. See also appendices to this document, Pub 45881. Pages: 146

May 1993 | Product Number: I45880 | Price: $134.00

Pub 45881
Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 2

This volume is the appendix to Pub 4588. Appendices include statistical analyses of data, field inventory sheet data, emitter data, nonaromatic speciation data, and aromatic speciation data. See also Pub 4588. Pages: 217

May 1993 | Product Number: I45881 | Price: $124.00

EMISSIONS: REFINING

Pub 310
Analysis of Refinery Screening Data

Validation of Heavy Gas Dispersion Models with Experimental Results of the Thorney Island Trials

Volumes I & II

June 1986

Pub 337
Development of Emission Factors for Leaks in Refinery Components in Heavy Liquid Service

Estimating air pollutants from stationary sources is necessary for compiling emission inventories, determining emission fees, and meeting the conditions of various permits and compliances. This report provides revised emission factors applicable to refinery components in heavy liquid service, which were based on extensive field measurements. It also provides data analyses to determine whether the type of distillate or residual hydrocarbon in the stream would influence the emission factors. Pages: 68

August 1996 | Product Number: J33700 | Price: $80.00
Remote Sensing Feasibility Study of Refinery Fenceline Emissions

Reviews the state of the art of optical remote sensing (ORS) technology and examines the potential use of ORS systems combined with ancillary measurements, such as meteorological and tracer gas release data to determine fugitive emission rates. The report also highlights some issues to consider in planning an ORS field study and clarifies the attendant tradeoffs for issues such as selection of appropriate ORS systems, consideration of detection limits and beam placement, choice of dispersion models, use of tracer gas releases, time scale and timing of field studies, and the requisite meteorological measurements. Pages: 105

April 1994 | Product Number: I45870 | Price: $76.00

Volume two of a three-part study initiated by API to update the AP-42 emission factor for refinery process drains, which may overestimate refinery process drain fugitive emissions. This volume describes theoretical concepts and equations that may be used in a model (APIDRAIN) to estimate speciated volatile organic compound emissions. The model can provide insight on how to change process drain variables (flow rate, temperature, etc.) to reduce emissions. See also Publ 4639, Publ 4677, and Publ 4681. Pages: 104

April 1999 | Product Number: I46780 | Price: $105.00

Volume three of a three-part study—the computer model with user's guide to estimate emissions from refinery process drains. APIDRAIN is a user-friendly Windows®-based software program operating under the Microsoft Excel® for Windows® environment. The model allows the user to sum up the emissions from a refinery process unit area or from the entire refinery. The model user can quickly and easily predict the contribution of process drain emissions to the total emission inventory of a refinery. Unit operators can use the output generated by the software for regulatory reporting according to the requirements of the Clean Air Act Amendments of 1990. The minimum system requirements for running APIDRAIN Version 1.0 are PC 486 DX2 Windows® 3.11 platform, 8 MB RAM, and Windows 95®/Windows NT®. The user must have Windows® and Excel® installed on a personal computer to begin using the software. The APIDRAIN model is enhanced with automatic functions that enable the user to easily summarize important reporting information and to generate tabular emissions totals for both specific refinery process units and for the entire refinery. It is not necessary for the user to possess a rigorous understanding of Excel® to use APIDRAIN; only a few common principles of the Windows® operating environment are needed (such as point-and-click and navigation of tab and arrow keys). See also Publ 4639, Publ 4677, and Publ 4678. Pages: 92

April 1999 | Product Number: I46810 | Price: $446.00

Test Report: Fluidized Catalytic Cracking Unit at a Refinery (Site A), Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources

There are few existing data on emissions and characteristics of fine aerosols from petroleum industry combustion sources, and the limited information that is available is incomplete and outdated. API developed a test protocol to address this data gap, specifically to:

- develop emission factors and speciation profiles for emissions of primary fine particulate matter (i.e. particulate present in the stack flue gas including condensable aerosols), especially organic aerosols from gas-fired combustion devices, and
- identify and characterize secondary particulate (i.e. particulate formed via reaction of stack emissions in the atmosphere) precursor emissions.

This report presents the results of a pilot project to evaluate the test protocol on a refinery fluid catalytic cracking unit. Pages: 113

March 2002 | Product Number: I47130 | Price: $157.00

Refinery Stream Speciation

Contains the results of a study to determine the range of compositions for a number of compounds in typical refinery process streams. Data representing 31 refineries, over 20 processes, and over 50 process streams was contributed by the project participants. The results of this project will be of use in estimating the emissions of specific compounds, in preparing permit applications and in other environmental control activities. Neither the Petroleum Environmental Research Forum or the project participants make any claims as to the suitability or acceptability of the stream composition data reported for specific reporting or regulatory purposes. Pages: 325

November 2002 | Product Number: I47230 | Price: $178.00
Health and Environmental Issues

Publ 4723-A
Refinery Stream Composition Data—Update to Speciation Data in API 4723

Since the publication of API 4723 in 2002, new regulatory requirements have resulted in many changes in refinery processes that may have altered stream compositions. Changing feedstocks, new process additives, and new catalysts may also have affected the concentrations of chemical species present in specific process streams.

Based on an assessment of the range and depth of more recent stream speciation data, the Petroleum Environmental Research Forum (PERF) elected to update the stream speciation profiles in API 4723 using more recent composition sampling. The updated profiles are provided in this report. PERF members believe that the newer data are more representative due to improved sampling and analytical techniques and that these newer analyses better reflect changes in refinery operations over recent years.

A large database of records was collated for the current study, representing information from 25 refineries. The original study reported on 24 chemical species and the current study provides data on 89 species. The original study reported on 65 refinery process streams and the current project provides data on 68 process streams.

The material contained in this report will be of use in estimating the emissions of specific chemical species, preparing permit applications, and performing other environmental assessments, API, PERF; and the project participants make no claims as to the suitability or acceptability of the stream composition data reported herein for specific reporting or regulatory purposes. Pages: 278

Dec 2018 | Product Number: I4723A | Price: $158.00

EMISSIONS: VEHICLES

Publ 4605
Investigation of MOBILE5a Emission Factors: Evaluation of IM240-to-FTP Correlation and Base Emission Rate Equations

A detailed investigation and critique of the methodology used by the U.S. Environmental Protection Agency to construct the exhaust emission rate equations in MOBILE5a developed from data collected from an operating inspection and maintenance (I/M) program. It includes an extensive critique of the adjustments used to correct I/M program data for variations in fuel characteristics and temperature conditions and an assessment of the correlations developed to relate emissions data measured in an I/M program to that measured on the Federal Test Procedure. Pages: 45

June 1994 | Product Number: I46050 | Price: $67.00

Publ 4637
Analysis of Causes of Failure in High Emitting Cars

Describes an investigation to evaluate the primary causes of high exhaust emissions from light-duty vehicles on the road. It is an analysis of emissions data from tests previously conducted by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board, and one joint EPA-industry program. The analysis involves a comparison of emissions test data collected both before and after the performance of repairs on 1981 and newer cars and trucks. Emission control defects, their prevalence and overall contribution to fleet emissions are described. Pages: 104

February 1996 | Product Number: I46370 | Price: $76.00

Publ 4642
A Study to Quantify On-Road Emissions of Dioxins and Furans from Mobile Sources: Phase 2

Presents the results of a study to assess on-road emissions of dioxins and furans from light- and heavy-duty vehicles in the United States. This study was conducted in response to the U.S. Environmental Protection Agency’s (EPA) draft dioxin reassessment document, which was based on data developed from studies conducted outside of the United States. Emissions were measured in the Fort McHenry Tunnel in Baltimore, MD, based on techniques tested and proven in Phase 1 of this study. The emission factor determined for heavy-duty diesel vehicles in this work was less than the EPA estimate. Pages: 96

December 1996 | Product Number: I46420 | Price: $141.00

Publ 4646
Evaluation of Fuel Tank Flammability of Low RVP Gasolines

Twenty-two test fuels were varied with respect to Reid vapor pressure (RVP), pentane-to-butane ratio, and addition of ethanol and methyl tert-butyl ether (MTBE), to evaluate the conditions under which vapors from reformulated gasoline contained in automobile fuel tanks become flammable. The results show that temperature limits of flammability correlate with RVP; the addition of ethanol or MTBE or both affects the upper flammability limits; and the ratio of pentane to butane has no consistent effect at similar RVP levels. Pages: 144

December 1996 | Product Number: I46460 | Price: $105.00

Publ 4650
Analysis of High-Mileage-Vehicle Emissions Data from Late-Model, Fuel-Injected Vehicles

Seventy-five light-duty vehicles were procured and tested over the Federal Test Procedure to assess whether the U.S. Environmental Protection Agency’s (EPA) MOBILE5a on-road emission factors model overpredicted the exhaust emissions of newer-model, fuel-injected vehicles with high mileage. A comparison of the results from vehicles tested in this program to estimates from the EPA MOBILE5a model suggested that the latter may be over-predicting exhaust emissions. This report presents an analysis of the data collected during this project. Pages: 62

February 1997 | Product Number: I46500 | Price: $75.00

EXPOSURE: ASSESSMENT AND MONITORING

Publ 4617
A Monte Carlo Approach to Generating Equivalent Ventilation Rates in Population Exposure Assessments

Describes a study to improve breathing rate simulations in computer-based models used to estimate the exposures of urban populations to ozone and carbon monoxide. Algorithms producing equivalent ventilation rate values according to age, gender, activity, activity duration, and breathing rate category were developed from measured rates in primary-school children, high-school children, outdoor adult workers, and construction workers. Seven additional time/activity databases not used in the current pNEM methodology are described as well as models simulating maximum sustainable ventilation rates as a function of exercise duration, age, and gender. Pages: 168

March 1995 | Product Number: I46170 | Price: $86.00

Publ 4619
A Study to Characterize Air Concentrations of Methyl Tertiary Butyl Ether (MTBE) at Service Stations in the Northeast

Describes a study to measure air concentrations of MTBE; total hydrocarbons; carbon monoxide; formaldehyde; and benzene, toluene, ethylbenzene, and xylenes at 10 service stations in the New York area. Researchers assessed concentrations of MTBE in the areas around gas pumps, at the station perimeters, and in the breathing zones of motorists and attendants. Meteorological parameters, gasoline composition, sales, and deliveries were also monitored. Pages: 144

February 1995 | Product Number: I46190 | Price: $86.00

Describes the results of a survey of API member companies to acquire data relating to occupational exposure to MTBE for various activities associated with petroleum facilities. It provides a detailed description of the survey questionnaire as well as a statistical analysis of some 1,833 workplace concentration measurements associated with potential occupational exposures. Pages: 105
August 1995 | Product Number: I46220 | Price: $67.00

Service Station Personnel Exposures to Oxygenated Fuel Components

Describes a study in four ozone nonattainment areas to measured exposures of refueling attendants and mechanics to fuel oxygenate species—methyl tertiary butyl ether, tertiary amyl methyl ether, tertiary butyl alcohol, ethanol, and butyl alcohol—at service stations. The aromatics—benzene, toluene, xylene, para-xylene, and ethylbenzene—were also measured. Full shift (approximately 8-hour time-weighted average) and short-term (15–20 minutes) samples were collected at each station. Volatility and meteorological measurements were also taken. Pages: 144
August 1995 | Product Number: I46250 | Price: $71.00

Hexavalent Chromium Exposures During Hot Work

Details the findings from an air sampling survey contracted by API to evaluate inhalation exposures to hexavalent chromium [chromium (VI)] during seven types of hot work: carbon arc cutting (CAC), flux cored arc welding (FCAW), gas metal arc welding (GMAW or MIG), grinding, gas tungsten arc welding (GTAW or TIG), oxyfuel gas cutting (OFC or torch cutting), and shielded metal arc welding (SMAW or stick). After the First Edition of this report was published, it was determined that 15 samples from one of the projects were listed as carbon steel base metal and should have been listed as stainless steel. While the original report was careful to point out the use of electrodes typical for stainless work, it felt that a complete update was needed. Eighty-three samples were collected April–June 2006 at three different petroleum company sites by ICU Environmental Health and Safety. Of the 271 total samples, 63 were collected in October and November 2005 at two petroleum sites during maintenance turnarounds by API member companies. An additional 188 samples were collected April–June 2006 at three different petroleum company sites by ICU Environmental Health and Safety. Of the 271 total samples, 63 were collected in October and November 2005 at two petroleum sites during maintenance turnarounds by API member companies. An additional 188 samples were collected from April to June 2006 at three different petroleum company sites by ICU Environmental Health and Safety. Pages: 12
June 2007 | Product Number: I46290 | Price: $93.00

Contains an evaluation of a group of 14 hazardous gas dispersion models. All available measurement programs were considered for the evaluation, covering both the releases of dense gases and nondense tracer gases; eight data sets are used in the evaluation. The models are reviewed for their scientific validity. Statistical procedures and residual plots are used to characterize performance. A number of the models give predictions that reasonably match field data. Pages: 351
October 1992 | Product Number: I45460 | Price: $154.00

A Guidance Manual for Modeling Hypothetical Accidental Releases to the Atmosphere

Presents methods for modeling hypothetical accidental releases of fluids and gases into the atmosphere from process operations. Given a particular type of release and the chemicals or petroleum fractions involved, methods for modeling the release and subsequent dispersion phenomena are treated in a step-wise, comprehensive manner. Detailed simulation of eight hypothetical release scenarios are presented to demonstrate how the modeling procedures can be implemented. Pages: 212
November 1996 | Product Number: I46280 | Price: $154.00

Review of Air Quality Models for Particulate Matter

API has published a review of existing source and receptor models available for analyzing particulate matter (PM) concentrations. This report critically reviews existing air modeling tools for PM, recommends models for State Implementation Plan applications, and identifies areas where the models need improvement. If you would like API to provide you with a hard copy of this publication for a cost of $45.00, please contact the Intellectual Property Department at API, 1200 Massachusetts Avenue NW, Suite 1100, Washington, DC 20001-5571; e-mail: apiipubs@api.org; phone: 202-682-8156. Pages: 311
March 1998
Environment and Safety Data

The following summaries report on cases that are recorded under the U.S. Bureau of Labor Statistics' recordkeeping guidelines. The surveys are based on data submitted to API by oil and gas companies. The reports include information regarding injuries, illness, fatalities, lost workday cases, and incidence rates by function.

<table>
<thead>
<tr>
<th>Year</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>K19996</td>
<td>$64.00</td>
</tr>
<tr>
<td>1990</td>
<td>K19988</td>
<td>$89.00</td>
</tr>
<tr>
<td>1991</td>
<td>K19987</td>
<td>$89.00</td>
</tr>
<tr>
<td>1992</td>
<td>K19986</td>
<td>$89.00</td>
</tr>
<tr>
<td>1993</td>
<td>K19985</td>
<td>$104.00</td>
</tr>
<tr>
<td>1994</td>
<td>K19984</td>
<td>$104.00</td>
</tr>
<tr>
<td>1995</td>
<td>K19983</td>
<td>$104.00</td>
</tr>
<tr>
<td>1996</td>
<td>K23751</td>
<td>$104.00</td>
</tr>
<tr>
<td>1997</td>
<td>K23761</td>
<td>$104.00</td>
</tr>
<tr>
<td>1998</td>
<td>K23771</td>
<td>$112.00</td>
</tr>
<tr>
<td>1999</td>
<td>K23781</td>
<td>$112.00</td>
</tr>
<tr>
<td>2000</td>
<td>K23790</td>
<td>$112.00</td>
</tr>
<tr>
<td>2001</td>
<td>K23801</td>
<td>$112.00</td>
</tr>
<tr>
<td>2002</td>
<td>K23811</td>
<td>$112.00</td>
</tr>
<tr>
<td>2003</td>
<td>K23821</td>
<td>$112.00</td>
</tr>
<tr>
<td>2004</td>
<td>K23831</td>
<td>$112.00</td>
</tr>
<tr>
<td>2005</td>
<td>K23841</td>
<td>$112.00</td>
</tr>
<tr>
<td>2006</td>
<td>K23851</td>
<td>$112.00</td>
</tr>
<tr>
<td>2007</td>
<td>K23861</td>
<td>$112.00</td>
</tr>
<tr>
<td>2008</td>
<td>K23871</td>
<td>$112.00</td>
</tr>
<tr>
<td>2009</td>
<td>K23881</td>
<td>$112.00</td>
</tr>
<tr>
<td>2010</td>
<td>K23891</td>
<td>$112.00</td>
</tr>
</tbody>
</table>

Publ 2375
March 1997 | Product Number: K23751 | Price: $104.00

Publ 2376
June 1998 | Product Number: K23761 | Price: $104.00

Publ 2377
March 1999 | Product Number: K23771 | Price: $112.00

Publ 2378
June 2000 | Product Number: K23781 | Price: $112.00

Publ 2379
March 2001 | Product Number: K23790 | Price: $112.00

Publ 2380
March 2002 | Product Number: K23801 | Price: $112.00

Publ 2381
June 2003 | Product Number: K23811 | Price: $112.00

Publ 2382
May 2005 | Product Number: K23821 | Price: $112.00

Publ 2383
March 2005 | Product Number: K23831 | Price: $112.00

Publ 2384
May 2006 | Product Number: K23841 | Price: $112.00

Publ 2385
June 2007 | Product Number: K23851 | Price: $112.00

Publ 2386
May 2008 | Product Number: K23861 | Price: $112.00

Publ 2387
March 2009 | Product Number: K23871 | Price: $112.00

Publ 2388
April 2010 | Product Number: K23881 | Price: $112.00

Publ 4714
A Guide to Polycyclic Aromatic Hydrocarbons for the Non-Specialist
Provides an introduction to polycyclic aromatic hydrocarbons (PAHs) for persons working in the petroleum industry. It describes in general terms what PAHs are and how they are formed; PAH environmental transport, fate, and health effects; regulatory requirements related to PAHs; and analytical methods for measuring PAH concentrations in the environment. This information is of particular relevance to the petroleum industry due to the natural presence of PAHs in crude oil, the formation of PAHs during some refining processes, and the potential for production of PAHs during the combustion of petroleum products. The intended audience for this report includes environmental professionals who must address PAH regulatory issues and field personnel who are responsible for the sampling and analyses of PAHs. Pages: 36
February 2002 | Product Number: I47141 | Price: $86.00
Human Health Related Research

Human Health Related Research

Human Factors in New Facility Design Tool

Describes a human factors tool that may be used by operating plants as an aid to incorporate human factors principles in the design of equipment that will be operated and maintained by people.

The human factors principles described in this document are intended for new equipment design; however, many ideas provided in this tool may be used to improve the operating of existing plants where feasible.

This document focuses only on equipment design. Items such as human error, behavior-based safety, and operating procedure issues are not in the scope.

The tool covers equipment that is common to both upstream producing and downstream manufacturing operations. Equipment associated with specific activities such as drilling rigs is not specifically addressed. Pages: 71

Human Factors Tool for Existing Operations

Objectives of this tool include the following:

- provide a tool for operating crews to identify opportunities for latent conditions and human error, and
- improve how process hazards analysis/hazard evaluation/revalidation process address human factors.

The scope of this tool includes existing operations and equipment and human tasks.

This tool is intended for use without specific training on human factors. This is a simple process for gathering a few operators and mechanics who are familiar with the equipment/process and who are qualified to identify where traps (latent conditions) in the equipment and tasks (error likely scenarios) exist that make it easy for people to do something wrong. Pages: 14

TR 400

Toluene: A Preliminary Study of the Effect of Toluene on Pregnancy of the Rat

Describes a preliminary experiment performed on the pregnant rat to determine appropriate exposure levels of toluene, for future investigation of embryofetal toxicity in the rat when administered via the inhalation route from days 5 to 15 of pregnancy inclusive. The inhalation route of administration was chosen as the most likely route of exposure in humans.

The exposure levels were chosen following a review of currently available information. See related document TR 401. Pages: 113

June 1993 | Product Number: 100400 | Price: $67.00

TR 401

Toluene: The Effect on Pregnancy of the Rat

Describes a study to assess the toxicity of toluene on the pregnant rat as well as on the developing fetus. Pregnant rats were exposed to 250, 750, 1500, and 3000 ppm toluene via inhalation for 6 hours a day from days 6 to 15 of pregnancy. Control rats were exposed to filtered air for the same length of time. Throughout the exposure period, animals were observed for clinical signs of toxicity. On day 20, the females were sacrificed and examined for abnormalities. The number and distribution of live young as well as the number of fetal deaths and abnormalities were also recorded. See related document TR 400. Pages: 215

June 1993 | Product Number: 100401 | Price: $95.00

TR 403

Closed-Patch Repeated Insult Dermal Sensitization Study of TAME in Guinea Pigs

Describes a study to evaluate the allergic contact sensitization potential of tert-amyl methyl ether (TAME) in guinea pigs. Observations for mortality were made daily. Body weights were obtained and general health monitored weekly. Dermal evaluations were made approximately 24 and 48 hours after exposure. Pages: 32

February 1995 | Product Number: 100403 | Price: $67.00

TR 404

An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part I—Rats

This abridged report, the first part of a two-part set, evaluates the oncogenic potential of commercial hexane administered to four groups of 50 Fischer 344 rats at concentrations of 0, 900, 3000 and 9000 ppm in air. Summary text as well as pertinent data on changes in body weight, pathology, and individual and overall tumor incidence including differences in survivorship between control and exposed groups are provided. The amendment and table of contents to the unabridged final report are included. Pages: 152

January 1995 | Product Number: 100404 | Price: $86.00

TR 405

An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part II—Mice

This abridged report, the second part of a two-part set, evaluates the oncogenic potential of commercial hexane administered to four groups of 50 B6C3F1 mice at concentrations of 0, 900, 3000 and 9000 ppm in air. Summary text and pertinent data on differences in survivorship between control and exposed groups, changes in body weight, and pathology are provided. The table of contents to the unabridged final report is included. Pages: 106

January 1995 | Product Number: 100405 | Price: $67.00

TR 409

Primary Skin Irritation Study in Rabbits of API 91-01 and PS-6 Unleaded Test Gasolines

Describes a study conducted to assess primary dermal irritation data for two motor fuels according to Toxic Substances Control Act and Federal Hazardous Substances Act guidelines. Test rabbits were exposed dermally to unleaded gasoline according to a specified protocol and observed daily for signs of skin irritation. Such information is valuable for accurate hazard assessment and first aid treatment. Pages: 58

March 1995 | Product Number: 100409 | Price: $67.00

TR 410

Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells Exposed to Tertiary Amyl Methyl Ether (TAME)

Evaluates the clastogenic potential of TAME using CHO cells compared to the solvent control group. Based on the findings of this study, TAME was concluded to be positive for the induction of structural chromosome aberrations in CHO cells. Pages: 56

December 1996 | Product Number: 100410 | Price: $95.00

TR 411

Chinese Hamster Ovary (CHO) HGPRT Mutation Assay of Tertiary Amyl Methyl Ether (TAME)

Describes a study conducted to evaluate the mutagenic potential of the test article, TAME based on quantitation of forward mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus of CHO cells. Under the conditions of this study, TAME was concluded to be negative in the CHO/HGPRT mutation assay. Pages: 46

December 1996 | Product Number: 100411 | Price: $95.00
Health and Environmental Issues

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

TR 412 and TR 414
A Range-Finding Developmental Inhalation Toxicity Study of Unleaded Gasoline Vapor Condensate in Rats and Mice via Whole-Body Exposure and an Inhalation Developmental Toxicity Study of Unleaded Gasoline Vapor Condensate in the Rat via Whole-Body Exposure

This two-part inhalation study sought to specifically evaluate the potential of unleaded gasoline for developmental toxicity in rodents. The composition of the unleaded gasoline vapor condensate and the treatment pattern used are representative of real-world exposure conditions encountered at service stations and in other occupational settings. The results show that developmentally there were no differences between treated and control groups in malformations, total variations, resorptions, fetal body weight, or viability. Under the conditions of the study, unleaded gasoline vapors did not produce evidence of developmental toxicity. (This volume includes publications TR 412 and TR 414.)

Pages: 300
April 1998
Product Number: I00412
Price: $105.00

Publ 4592
Odor Threshold Studies Performed with Gasoline and Gasoline Combined with MTBE, ETBE and TAME

Examines the effects on odor detection and recognition of adding oxygenates such as methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl ether (TAME), to gasoline. Commercial grade MTBE is also evaluated for its taste threshold in water. The odor detection threshold is the minimum concentration at which 50 % of a given population can differentiate between a sample containing the odorant and a sample of odor-free air. The recognition threshold is the minimum concentration at which 50 % of a given population can recognize the odorant. The addition of 11 % to 15 % by volume MTBE or 15 % by volume TAME or ETBE reduce the odor detection and recognition thresholds of gasoline.

Pages: 76
January 1994
Product Number: I45920
Price: $86.00

Publ 4623
Anecdotal Health-Related Complaint Data Pertaining to Possible Exposures to Methyl Tertiary Butyl Ether (MTBE): 1993 and 1994 Follow-Up Surveys

Describes the development and administration of an informal survey of API member companies and state agencies to acquire anecdotal complaint data relating to MTBE exposure. Data associated with 71 occupational and 13 nonoccupational health-related complaints including reported symptoms are presented.

Pages: 33
September 1995
Product Number: I46230
Price: $67.00

Publ 4634
Index and Abstracts of API Health-Related Research

This compendium of health-related research provides author, organization, and subject indices for research investigations and scientific reviews conducted for API between 1959 and 1994. It covers industrial hygiene and exposure assessment, toxicology, environmental biology, product safety, and community and occupational health research areas. Informative abstracts provide useful background on each study and give information on publication availability.

Pages: 160
September 1995
Product Number: I46340
Price: $86.00

Publ 4647
Brain Glial Fibrillary Acidic Protein (GFAP) as a Marker of Neurotoxicity During Inhalation Exposure to Toluene

Evaluates the concentration of GFAP in the rat's brain as a practical biomarker of toluene-induced neurotoxicity. Adult male rats received inhalation exposure to toluene scheduled to approximate occupational exposure for up to 42 days. During and after exposure, the concentration of GFAP was determined in four brain regions and compared with standard criteria of neurotoxicity: behavioral or neuropathological changes.

Pages: 44
June 1997
Product Number: I46470
Price: $86.00

This publication is a new entry in this catalog. This publication is related to an API licensing, certification, or accreditation program.
Natural Resource Damage Assessment

Publ 304
Evaluation of Restoration Alternatives for Natural Resources Injured by Oil Spills

Builds upon previous work in the field of oil spill impact assessment and habitat restoration to assess the technical feasibility and practicality of proactive restoration following oil spills and presents an approach for evaluating tradeoffs between natural recovery and active restoration. The scenarios developed to represent a broad spectrum of possible oil spills were based on selected case studies. The report concludes that in general, available restoration techniques are not very effective for enhancing natural recovery and may, in certain cases, cause more severe impacts than the oil spill alone. Pages: 171

1st Edition | October 1991 | Product Number: J30400 | Price: $90.00

Pollution Prevention

Publ 300
The Generation and Management of Waste and Secondary Materials in the Petroleum Refining Industry

In 1989, API initiated a census survey of domestic refineries to document the management of waste and secondary materials in 1987 and 1988. Outstanding responses by the refineries (115 out of the total U.S. population of 176 refineries participated) aided in making confident estimates of the amount of waste managed by the U.S. refining industry. Pages: 184

February 1991 | Product Number: J30000 | Price: $80.00

Publ 302

In early 1988, API undertook a project to develop a compendium of the waste minimization practices for several different segments of the petroleum industry. The compendium discusses a large variety of practices that can and are being utilized by the industry to reduce both the volume and toxicity of wastes. Pages: 152

November 1991 | Product Number: J30200 | Price: $98.00

Environmental Design Considerations for Petroleum Refining Processing Units

Publ 311
Environmental Design Considerations for Petroleum Refining Processing Units

Demonstrates the application of pollution prevention concepts in the design of a refinery crude processing unit. Included are realistic waste and emission reduction changes that would be economically and technically attractive to refineries. The document is intended to serve as a reference for refinery designers during the preliminary design phase of building a new crude unit or revamping an existing crude unit. Pages: 93

June 1992 | Product Number: J30300 | Price: $98.00

Executive Summary: Environmental Design Considerations for Petroleum Refining Crude Processing Units

Executive summary to Publ 311. Pages: 13

February 1993 | Product Number: J31100 | Price: $160.00

Responding to Environmental Challenge: The Petroleum Industry and Pollution Prevention

Informal proceedings of a pollution prevention plenary session held at API’s 1990 Health and Environment Annual Meeting. Speakers representing federal and state government, public interest groups, and various petroleum industry segments presented their views on pollution prevention. This document also describes API’s initiatives for pollution prevention research. Pages: 16

1990 | Product Number: J31200 | Price: Free*
The API Pollution Prevention Task Force has been actively involved in promoting pollution prevention within the industry since 1990. Members of the Task Force have accumulated a comprehensive body of knowledge on the subject of pollution prevention and have compiled a resource brochure on the key elements that make pollution prevention programs successful.

Pages: 4
June 1993 | Product Number: J31700 | Price: Free*

This document is third in a series that presents the results of API's annual survey of the types and amounts of wastes and residuals generated and managed by the petroleum refining industry. For 1990, source reduction activities doubled over the previous year. The quantity of residuals generated increased to 18.2 million wet tons as compared to 16.3 million wet tons in 1989. Much of the increased quantity reflects generation peaks associated with construction and remediation activities. Two long-term trends are worth noting: (1) the amount of total residuals being recycled continues to rise, and (2) the amount of hazardous wastes going to land treatment and disposal continues to fall. Pages: 123
August 1993 | Product Number: J32400 | Price: $97.00

This document is the fourth in a series that describes the 1991 data from API's annual survey of the types and amounts of residuals generated and managed by the refining industry. In 1991, the industry generated 14.8 million wet tons of residual materials—the smallest quantity generated since API began this collection effort in 1987. The industry also reported that pollution prevention activities accounted for a reduction in 715,000 wet tons of materials. A trend analysis was performed on the last five years. Oil companies can use the data in this report to compare their residual generation and management practices with the rest of the industry. Pages: 172
June 1994 | Product Number: J32900 | Price: $109.00

Environmental Performance Indicators: Methods for Measuring Pollution Prevention

Presents methods that can be used to measure progress toward pollution prevention. It investigates a series of measurement parameters presented in five categories: program-based, activity-based, mass-based, normalized efficiency, and concentration-based. Within each category of measures, the benefits and limitations are discussed and illustrated with industry examples. Pages: 30
September 1994 | Product Number: J33100 | Price: $69.00

This report is the fifth in a series of reports detailing waste and residual and management practices in the refining sector. It presents the results of the 1992–1993 survey and includes information on how the industry has achieved compliance with the land disposal restrictions on Resource Conservation and Recovery Act (RCRA) listed hazardous K-wastes (40CFR403.52). It also documents the influence of the primary sludge rule and new toxicity characteristic under RCRA. Pages: 170
February 1995 | Product Number: J33300 | Price: $109.00

This report is the sixth in a series of reports presenting the results of the API Annual Refining Residual Survey. It provides a detailed assessment of the size of refinery throughput, the types of crude oil utilized, the regions in which the refineries are located, the types of wastewater treatment processes used, the amounts of different residual streams produced and how they are managed, and the average cost of residual stream management. Pages: 98
August 1996 | Product Number: J33600 | Price: $109.00

This report is the seventh in a series of reports presenting the results of the API Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 individual and 2 combined residual streams, trends in management practices, average costs for selected residual stream management, types of wastewater treatment systems employed at refineries, pollution prevention activities, refinery capacities, and regions in which refineries are located. The data in this report indicate a decrease of greater than 25 % in the quantity of residuals generated by the refining industry from 1994 to 1995. Further, the industry trend towards increased recycling of residuals has continued. In 1995, over half of the refinery residuals generated were recycled rather than being treated or disposed. Pages: 106
July 1997 | Product Number: J33900 | Price: $109.00

This report is the eighth in a series of reports presenting the results of the API Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 residual streams representing approximately 80 % of all residuals managed at U.S. refineries. Industry trend towards increased recycling of residuals has continued. In 1996, well over half of the refinery residuals generated were recycled rather than being treated or disposed. Pages: 106
June 1998 | Product Number: J34500 | Price: $109.00

API and the California MTBE Research Partnership have produced a new software utility to help site managers, water purveyors, and regulators evaluate the sensitivity of a groundwater resource to a potential release of compounds of concern [e.g. a methyl tertiary-butyl ether (MTBE)-oxygenated fuel]. The toolkit examines three aspects of sensitivity: resource value, receptor vulnerability, and natural sensitivity. The user supplies site-specific information, and the toolkit returns a “scorecard” addressing the three aspects of sensitivity. Although this utility was designed with petroleum hydrocarbon releases in mind, it can be used when dissolved chlorinated and inorganic compounds are the chemicals of concern. The toolkit runs on Microsoft Excel” and comes with a user's guide. Pages: 51
August 2002 | Product Number: I47220 | Price: $65.00

Groundwater Sensitivity Toolkit—Utility, Version 1.0

The Groundwater Sensitivity Toolkit—Utility is a software utility to help site managers, water purveyors, and regulators evaluate the sensitivity of a groundwater resource to a potential release of compounds of concern [e.g. a methyl tertiary-butyl ether (MTBE)-oxygenated fuel]. The toolkit examines three aspects of sensitivity: resource value, receptor vulnerability, and natural sensitivity. The user supplies site-specific information, and the toolkit returns a “scorecard” addressing the three aspects of sensitivity. Although this utility was designed with petroleum hydrocarbon releases in mind, it can be used when dissolved chlorinated and inorganic compounds are the chemicals of concern. The toolkit runs on Microsoft Excel” and comes with a user's guide. Pages: 51
August 2002 | Product Number: I47220 | Price: $65.00
API Soil and Groundwater Research Bulletins

API Soil and Groundwater Research bulletins summarize research results from project overseen by API’s Soil and Groundwater Technical Task Force. The Task Force disseminates information and research results through publications, presentations, and interaction with industry clients and regulatory agencies.

The bulletins listed below can be downloaded at https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/bulletins

Bulletin No. 1
Summary of Processes, Human Exposures and Remediation Technologies Applicable to Low Permeability Soils
September 1996

Bulletin No. 3
Ten Frequently Asked Questions About MTBE in Water
March 1998

Bulletin No. 5
Evaluation of Sampling and Analytical Methods for Measuring Indicators of Intrinsic Bioremediation
March 1998

Bulletin No. 8
Characteristics of Dissolved Petroleum Hydrocarbon Plumes: Results from Four Studies
December 1998

Bulletin No. 9
Non-Aqueous Phase Liquid (NAPL) Mobility Limits in Soil
June 2000

Bulletin No. 10
Simulation of Transport of Methyl Tert-Butyl Ether (MTBE) to Ground-Water from Small-Volume Releases of Gasoline in the Vadose Zone
June 2000

Bulletin No. 11
Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE
August 2000

Bulletin No. 12
No-Purge Sampling: An Approach for Long-Term Monitoring
October 2000

Bulletin No. 13
Dissolution of MTBE from a Residually Trapped Gasoline Source
September 2001

Bulletin No. 14
Predicting the Effect of Hydrocarbon and Hydrocarbon-Impacted Soil on Groundwater
September 2001

Bulletin No. 15
Vadose Zone Natural Attenuation of Hydrocarbon Vapors: An Empirical Assessment of Soil Gas Vertical Profile Data
December 2001

Bulletin No. 16
Migration of Soil Gas Vapors to Indoor Air: Determining Vapor Attenuation Factors Using a Screening-Level Model and Field Data from the CDOT-MTL
April 2002

Bulletin No. 17
Identification of Critical Parameters for the Johnson and Ettinger (1991) Vapor Intrusion Model
May 2002

Bulletin No. 18
Answers to Frequently Asked Questions About Managing Risk at LNAPL Sites
June 2018

Bulletin No. 19
Evaluation of Small-Volume Releases of Ethanol-Blended Gasoline at UST Sites
October 2003

Bulletin No. 20
Answers to Frequently Asked Questions About Ethanol Impacts to Groundwater
December 2003

Bulletin No. 21
Evaluation of Potential Vapor Transport to Indoor Air Associated with Small-Volume Releases of Oxygenated Gasoline in the Vadose Zone
January 2005

Bulletin No. 22
Maximum Potential Impacts of Tertiary Butyl Alcohol (TBA) on Groundwater from Small-Volume Releases of Ethanol-Blended Gasoline in the Vadose Zone
January 2005

Bulletin No. 23
The Impact of Gasohol and Fuel-Grade Ethanol on BTX and Other Hydrocarbons in Ground Water: Effect on Concentrations Near a Source
December 2005

Bulletin No. 24
Downward Solute Plume Migration: Assessment Significance and Implications for Characterization and Monitoring of “Diving Plumes”
April 2006

Bulletin No. 25
Remediation Progress at California LUFT Sites: Insights from the GeoTracker Database
February 2012

Bulletin No. 26
Tertiary Butyl Alcohol (TBA) Biodegradation: Some Frequently Asked Questions
March 2012
Health and Environmental Issues

CONTAMINANT FATE AND TRANSPORT

Pub 4531
Chemical Fate and Impact of Oxygenates in Groundwater: Solubility of BTEX from Gasoline-Oxygenate Mixtures
Oxygenated hydrocarbon compounds may be added to gasoline mixtures to improve emission quality and octane ratings or to conserve petroleum resources, which may alter the behavior of dissolved organic compounds in groundwater following a fuel spill. This study evaluates the effects of oxygenate additives such as methanol or methyl tertiary-butyl ether on the aqueous solubility of dissolved aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes) constituents of these products. The evaluation focuses on a representative group of 12 hydrocarbons and hetero-organic compounds based on their abundance in petroleum products and anticipated future interest from regulatory agencies. Pages: 110

August 1991 | Product Number: I45310 | Price: $67.00

Pub 4593
Transport and Fate of Non-BTEX Petroleum Chemicals in Soils and Groundwater
This literature survey documents available information on the chemical composition of petroleum products and the subsurface fate and transport of selected non-BTEX (benzene, toluene, ethylbenzene, and xylenes) constituents of these products. The sensitivity analysis performed in this study provides an overview of the likelihood of groundwater impairment for large release volumes (100 bbls and barite. The toxicity of barium to marine and freshwater organisms and humans is discussed in relation to the concentrations and forms in which it occurs in aquatic environments. Pages: 68

September 1995 | Product Number: I46330 | Price: $65.00

Pub 4643
Estimation of Infiltration and Recharge for Environmental Site Assessment
A risk-based corrective action analysis of a site suspected of chemical contamination requires site-specific knowledge of the rate water infiltrates through the soil to the water table. A comprehensive discussion of the current physical/chemical methods and mathematical models available to quantify those rates along with suggestions for selecting an appropriate technique, depending on site conditions, are provided in this report. Pages: 204

July 1996 | Product Number: I46430 | Price: $105.00

Pub 4654
Field Studies of BTEX and MTBE Intrinsic Bioremediation
A gasoline release field site in the Coastal Plain of North Carolina was monitored for more than three years to allow calculation of in-situ biodegradation rates. Laboratory microcosm experiments were performed to further characterize the biodegradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) under ambient, in-situ conditions. Finally, groundwater modeling studies were conducted to facilitate the interpretation of field data and to evaluate various approaches for predicting the fate and effects of these gasoline constituents in the subsurface. Pages: 244

October 1997 | Product Number: I46540 | Price: $82.00

Pub 4674
Assessing the Significance of Subsurface Contaminant Vapor Migration to Enclosed Spaces—Site-Specific Alternative to Generic Estimates
Vapors in enclosed spaces pose two levels of concern. First, enclosed-space vapors may be found at concentrations near those that pose immediate flammability and/or health risks. These sites warrant immediate attention and response as required by most state and federal regulatory guidance. In the second class of sites, concentrations are lower and the concern is for longer term health risks. This report focuses exclusively on this second class of sites, where advection and diffusion occur through a soil layer and into an enclosed space, and time is available to adequately address the problem on a site-specific basis. The options considered in this document include the following:

- direct measurement through sampling of enclosed-space vapors,
- use of near-foundation or near-surface soil gas sampling results,
- use of site-specific homogeneous and layered soil diffusion coefficients in generic algorithms, and
- assessment of bioattenuation potential. Pages: 56

December 1998 | Product Number: I46740 | Price: $86.00

Pub 4734
Modeling Study of Produced Water Release Scenarios
Provides a scientific basis for operators, regulators, and landowners to determine if assessment or remediation of produced water releases will provide a meaningful environmental benefit. The two principal research objectives of this study are (1) the identification of produced water release scenarios that have a potential to cause groundwater quality impairment in homogeneous subsurface geologic profiles and (2) the prediction of chloride movement through the vadose zone for different release scenarios. Secondary objectives of the study include evaluation of the effect of heterogeneity on the migration of chloride through the vadose zone, the impact of repeat releases, and the effect on groundwater quality of surface soil restoration by revegetation and soil leaching. The sensitivity analysis performed in this study provides an overview of the likelihood of groundwater impairment for large release volumes (100 bbls and
mass balance data, a significant portion of the benzene, toluene, remained in the soil and almost no benzene or toluene remained. Based on the results of known mass, volume, and composition was released into a test cell. Flushing technologies, soil vapor extraction and in-situ air sparging, were able to remove at least 95% of the wastewater, which also contained benzene, toluene, ethylbenzene, and xylene isomers (BTEX) as well as the oxygenates methyl tert-butyl ether and isopropyl ether. Operating data were gathered from 57 field sites throughout the United States, and treatment system profiles were generated for each site. The data will be used to assist companies in planning pump-and-treat remediation systems for removal of BTEX and oxygenates from groundwater.

Publ 4758 Strategies for Addressing Salt Impacts of Produced Water Releases to Plants, Soil, and Groundwater

The exploration and production industry uses great care during the handling and disposal of the produced water that is generated as part of oil and gas production. However, unintentional releases can occur. Depending on the chemical composition of the produced water and the nature of the local environment, salts associated with such releases can impair soils, vegetation, and water resources. Provides a collection of simple rules of thumb, decision charts, models, and summary information from more detailed guidance manuals to help you address the following assessment and response issues:

- Will a produced water release cause an unacceptable impact on soils, plants, and/or groundwater?
- In the event of such an impact, what response actions are appropriate and effective? Pages: 29

1st Edition | September 2006 | Product Number: I47580 | Price: $76.00

Publ 4784 Quantification of Vapor Phase-Related Natural Source Zone Depletion Processes

Natural source zone depletion (NSZD) has emerged as an important concept within the realm of environmental remediation. NSZD is a term used to describe the collective, naturally occurring processes of dissolution, volatilization, and biodegradation that result in mass losses of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbon constituents from the subsurface. This document provides practical guidance on NSZD theory, application, measurement methods, and data interpretation. It is intended to be used by practitioners to help plan, design, and implement NSZD monitoring programs in support of petroleum hydrocarbon site remediation.

Pages: 124

1st Edition | May 2017 | Product Number: I47840 | Price: $131.00

REMEDIAL TECHNOLOGIES

DR 225 Remediation of a Fractured Clay Till Using Air Flushing: Field Experiments at Sarnia, Ontario

This study was conducted over a three-year period at a well-characterized test site located in Canada near Sarnia, Ontario. A synthetic gasoline blend of known mass, volume, and composition was released into a test cell. Samples were collected and analyzed for gasoline range organics to establish the three-dimensional distribution of the release. Conventional air flushing technologies, soil vapor extraction and in-situ air sparging, were able to remove ~40% of the spiked mass during the initial two months of operation. Following active remediation, primarily low-volatility compounds remained in the soil and almost no benzene or toluene remained. Based on mass balance data, a significant portion of the benzene, toluene, ethylbenzene, and xylene compounds was biodegraded. Pages: 220

October 1998 | Product Number: I00225 | Price: $105.00

Publ 4525 A Compilation of Field-Collected Cost and Treatment Effectiveness Data for the Removal of Dissolved Gasoline Components from Groundwater

Documents, summarizes, and evaluates cost and treatment effectiveness data for air stripping and carbon adsorption systems designed to remove dissolved petroleum hydrocarbons from groundwater. The compounds of primary interest were benzene, toluene, ethylbenzene, and xylene isomers (BTEx) as well as the oxygenates methyl tertiary-butyl ether and isopropyl ether. Operating data were gathered from 57 field sites throughout the United States, and treatment system profiles were generated for each site. The data will be used to assist companies in planning pump-and-treat remediation systems for removal of BTEX and oxygenates from groundwater.

Pages: 240

November 1990 | Product Number: I45250 | Price: $86.00

Publ 4609 In-Situ Air Sparging: Evaluation of Petroleum Industry Sites and Considerations for Applicability, Design and Operation

Describes the important literature findings as well as the hands-on experiences of the petroleum industry at 59 air sparging sites. Design and operational data are analyzed for relationships that can be used to optimize the technology or provide a better understanding of its fundamental processes. Topics covered include: site characterization; pilot testing; system design and installation; and system operation, monitoring, and performance.

Pages: 132

May 1995 | Product Number: I46090 | Price: $105.00

Publ 4631 Petroleum Contaminated Low Permeability Soil: Hydrocarbon Distribution Processes, Exposure Pathways and In-Situ Remediation Technologies

Presents a set of 10 papers on light nonaqueous phase liquids (LNAPLs) in low permeability soils. Collectively, the papers address four key areas: (1) processes affecting the migration and removal of LNAPLs; (2) exposure potential posed by clay soil and hydrocarbons via soil, groundwater, and air pathways; (3) models for predicting LNAPL removal; and (4) techniques of remediation. Pages: 298

September 1995 | Product Number: I46310 | Price: $95.00

Publ 4655 Field Evaluation of Biological and Non-Biological Treatment Technologies to Remove MTBE/Oxygenates from Petroleum Product Terminal Wastewaters

A pilot/demonstration study was conducted on three treatment technologies—the fluidized bed biological reactor process, the activated sludge process incorporated with iron flocculation, and the ultraviolet light/hydrogen peroxide process—to evaluate their effectiveness in the treatment of petroleum marketing terminal wastewater contaminated with methyl tert-butyl ether (MTBE). Contaminated groundwater, which also contained benzene, toluene, ethylbenzene, and xylenes (BTEX). All three technologies were able to remove at least 95% of the MTBE and BTEX in the feed waters.

Pages: 194

August 1997 | Product Number: I46550 | Price: $134.00

Publ 4671 Technical Bulletin on Oxygen Releasing Materials for In-Situ Groundwater Remediation

Oxygen releasing materials (ORMs) are commercially available materials that are being used to enhance bioremediation treatment of petroleum hydrocarbon contaminated groundwater aquifers. This technical bulletin provides a systematic approach for evaluating the utility of ORM treatment and for designing ORM installations. It summarizes the current state of understanding of this technology to provide guidance for site managers evaluating options for enhanced groundwater remediation.

Pages: 52

July 1998 | Product Number: I46710 | Price: $76.00
recovery (water and LNAPL) is measured and analyzed. Several analytical methods are available to analyze the data from baildown tests to estimate LNAPL transmissivity and described herein. Following a brief description of suggested well configuration, pre-test and test measurements and methods, application of the spreadsheet tool is discussed. Subsequent sections provide a more detailed discussion of significant parameters and basis for the various analysis procedures. A number of example applications are presented. Further details on the different methods are provided in the appendices. Pages: 40

April 2016 | Product Number: I47620 | For a free copy of this document, please visit https://www.api.org/~/media/4762%20LNAPL%20Tn%20wkbk%20Baildown%20userguide%20Apr2016%20%20(2).pdf

SITE CHARACTERIZATION

Publ 4599
Interlaboratory Study of Three Methods for Analyzing Petroleum Hydrocarbons in Soils
Presents the results of an interlaboratory study of three methods—diesel-range organics, gasoline-range organics, and petroleum hydrocarbons—used to analyze hydrocarbons in soils. Each method is validated, its performance judged from measurements of accuracy and precision, and practical qualification levels are estimated for each method. The full text of each method is included in the report. Pages: 166

July 1994 | Product Number: I47990 | Price: $105.00

Publ 4635
Compilation of Field Analytical Methods for Assessing Petroleum Product Releases
Presents a compilation of the most widely used field analytical methods available to perform on-site analyses of organic compounds in soil and groundwater. These methods include total organic vapor analyzers, field gas chromatography, immunoassay, infrared analyzers, and dissolved oxygen/oxidation-reduction potential electrodes. Practical applications and limitations of each method are discussed and an objective-oriented data quality classification scheme is presented to assist in selecting an appropriate method. Information is also presented on emerging technologies. Pages: 100

December 1996 | Product Number: I46350 | Price: $95.00

Publ 4657
Effects of Sampling and Analytical Procedures on the Measurement of Geochemical Indicators of Intrinsic Bioremediation: Laboratory and Field Studies
Evaluates the effects of various sampling and analytical methods of collecting groundwater geochemical data for intrinsic bioremediation studies. Sampling and analytical methods were tested in the laboratory and in the field. Several groundwater sampling and analytical methods may be appropriate for measuring geochemical indicators of intrinsic bioremediation. The methods vary in accuracy, level of effort, and cost. Pages: 86

November 1997 | Product Number: I46570 | Price: $67.00

Publ 4658
Methods for Measuring Indicators of Intrinsic Bioremediation: Guidance Manual
Intended to be a resource for practitioners of intrinsic bioremediation in allowing selection of sampling and analytical methods that meet project-specific and site-specific needs in scoping field investigations, providing procedures that will improve the representational quality of the collected data, and considering potential biases introduced into data through the sampling and analytical techniques employed in the site investigation. Pages: 96

November 1997 | Product Number: I46580 | Price: $76.00
The DAF plays a key role in assessing potential impact from the soil-to-groundwater pathway at sites where groundwater quality is, or may be, affected by a leak, spill, or other accidental release of hydrocarbons or other chemicals of concern. A simplistic, graphically-based approach for determining generic and site-specific DAFs was developed, allowing for varying levels of site specificity. Currently, to develop a DAF, one must make complicated calculations by hand or use computer-based modeling software. This publication consists of two documents. The first document describes the technical basis for the graphical approach for determining site-specific dilution attenuation factors. The second document, the user’s guide, provides a concise set of instructions for use of the graphical approach. Pages: 233

February 1998 | Product Number: I46590 | Price: $128.00

Publ 4668 Delineation and Characterization of the Borden MTBE Plume: An Evaluation of Eight Years of Natural Attenuation Processes

In 1988, a natural gradient tracer test was performed in the shallow sand aquifer at Canada Forces Base Borden to investigate the fate of a methyl tertiary-butyl-ether (MTBE) plume introduced into the aquifer. Solutions of groundwater mixed with oxygenated gasoline were injected below the water table along with chloride (Cl⁻), a conservative tracer. The migration of benzene, toluene, ethylbenzene, and xylenes (BTEX); MTBE; and Cl⁻ was monitored in detail for about 16 months. The mass of BTEX in the plume diminished significantly with time due to intrinsic biodegradation. MTBE, however, was not measurably attenuated. In 1995–1996, a comprehensive groundwater sampling program was undertaken to define the mass of MTBE still present in the aquifer. Only about 3% of the initial MTBE mass was found, and it is hypothesized that biodegradation played an important role in its attenuation. Additional evidence is necessary to confirm this possibility. Pages: 88

June 1998 | Product Number: I46680 | Price: $67.00

Publ 4670 Selecting Field Analytical Methods—A Decision-Tree Approach

This publication is an invaluable reference for operators, consultants and regulators responsible for cleanup of subsurface petroleum releases. Important fluid and soil property parameters are explained. Methods to measure each parameter are presented in order of relevance for use in environmental free-product mobility/recovery assessments. Fluid property parameters covered include density, viscosity, surface tension, and interfacial tension. Laboratory-scale soil property parameters include: capillary pressure vs. saturation, relative permeability vs. saturation, water and nonaqueous phase liquid saturation, and Brooks-Corey and van Genuchten model parameters. Field-scale bail-down and production tests are explained and cited. Sample collection and handling procedures are summarized. A listing and abstract of relevant ASTM methods are provided in the appendix. Pages: 72

July 2001 | Product Number: I47110 | Price: $121.00

Publ 4731 Light Non-Aqueous Phase Liquid (LNAPL) Parameters Database—Version 2.0—Users Guide

A collection of information about samples that have had their capillary parameters determined, as well as other physical parameters measured. Capillary properties are critical in multiphase calculations, and those results have very high sensitivity to these properties. The primary purpose of this database is to provide information to users who are trying to characterize the movement and distribution of LNAPL within a site that has a limited set of direct observations of the capillary properties of the site. Other databases of related parameters have typically been derived from measurements in the agricultural or the petroleum extraction industries; neither being necessarily representative of near-surface environmental conditions. This database gives the user the opportunity to understand the range of capillary characteristics observed at sites that are geologically similar, but where there are more direct and laboratory observations available. December 2003 | Product Number: I47310 | Price: $138.00

The database is available from API’s website: https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/LNAPL/parameter-database
Health and Environmental Issues

Publ 4739
API Interactive LNAPL Guide—Version 2.0.4
A comprehensive and easy-to-use electronic information system and screening utility. The guide is designed to provide an overall approach for evaluating light nonaqueous phase liquid (LNAPL) at a site, assessing its potential risk, quantitatively defining mobility and recoverability, developing remedial strategies, and examining methods to enhance site closure opportunities.

The guide includes the following:
- 11 primers covering all aspects of LNAPL from LNAPL basics to remediation;
- 14 assessment tools, including API-LNAST Version 2.0, “Charbeneau” spreadsheets for LNAPL recovery (August 2003), the API LNAPL Parameter Database;
- LNAPL decision-making frameworks;
- videos and animated figures; and
- an extensive reference list.

Publ 4761
Technical Protocol for Evaluating the Natural Attenuation of MtBE
Addresses data collection, evaluation, and interpretation procedures that consider the physical, chemical, and biological properties of methyl tert-butyl ether (MtBE) and other oxygenates and degradation byproducts. A tiered approach is provided that can be used by stakeholders to interpret several lines of evidence to evaluate natural attenuation on a site-specific basis. Several resources are provided to support an MNA evaluation, including the following:
- a review of basic scientific principles relevant to the evaluation of MtBE natural attenuation, including biodegradation and physicochemical attenuation mechanisms;
- a discussion of data that can be used to assess MtBE (and other oxygenates or degradation byproducts) natural attenuation;
- technical references for relevant chemical properties, analytical methods, and field sampling techniques;
- guidance for data quality assurance and interpretation, including statistical analysis; and
- guidance on the presentation of natural attenuation data/information to facilitate regulatory and other stakeholder review and acceptance of MNA remedies.

Environmental Stewardship Program Publications

RP 75
Safety and Environmental Management System for Offshore Operations and Assets
Provides companies engaged in offshore operations with a framework for the establishment, implementation, and maintenance of a Safety and Environmental Management System (SEMS) to manage and reduce risks associated with safety and the environment to prevent incidents and events.

This recommended practice applies, in part or whole, to companies engaged in offshore operations, from lease evaluation through decommissioning.

This document is not intended to be prescriptive or limiting on the expectations of each SEMS element; rather, it allows flexibility appropriate to the size, scope, and risk of a Company’s assets and operations. It is advised that users of this document review and comply with applicable legal and regulatory requirements, and conform with applicable industry codes and standards.

Consideration may be given to using this document to help systematically manage other aspects of operations, such as security and health.

Pages: 34

Publ 9100
Model Environmental, Health and Safety (EHS) Management System and Guidance Document
Comes with a binder complete with both Publ 9100A and Publ 9100B—see descriptions listed below. Pages: 65

October 1998 | Product Number: R9100S | Price: $171.00

Publ 9100A
Model Environmental, Health and Safety (EHS) Management System
Intended to be used as a voluntary tool to assist companies interested in developing an EHS management system or enhancing an existing system. The model, which applies a quality systems approach to managing EHS activities, focuses on people and procedures by pulling together company EHS policies, legal requirements, and business strategies into a set of company or facility expectations or requirements.

Please refer to the companion document Publ 9100B for additional information. Publ 9100A and Publ 9100B are intended to be companion documents and can be purchased as a set or individually.

Pages: 20
October 1998 | Product Number: R9100A | Price: $82.00

Publ 9100B
Guidance Document for Model EHS Management System
Provides assistance to corporate and operating organization employees who are developing, implementing, and assessing environmental, health and safety management systems. It intends to serve as self-study source material that enhances efficiency of interchange among employees by use of common terminology, clarifies relationships between operating and other systems, describes how to evaluate effectiveness of an EHS management system and its elements, and facilitates system continuity over time.

Those using this guidance document should be familiar with Publ 9100A. Publ 9100A, and Publ 9100B are intended to be companion documents and can be purchased as a set or individually.

Pages: 43
October 1998 | Product Number: R9100B | Price: $118.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740 Online Orders: global.ihs.com

Storage Tank Research

Publ 301
Aboveground Storage Tank Survey: 1989

Presents a survey of petroleum aboveground storage tanks. Estimates are made of the number, capacity, and age of the tanks in each sector of the petroleum industry. Survey forms and statistical extrapolations methodology are included in the report. Pages: 44

April 1989 | Product Number: J30100 | Price: $69.00

Publ 306
An Engineering Assessment of Volumetric Methods of Leak Detection in Aboveground Storage Tanks

Provides the results of a leak detection project in aboveground storage tanks that utilized volumetric methods to detect leaks. A series of field tests were conducted on a 114-ft diameter tank that contained a heavy naphtha petroleum product. The analytical and experimental results of this project suggest that volumetric leak detection methods can be used to detect small leaks in aboveground storage tanks. Pages: 43

October 1991 | Product Number: J30600 | Price: $80.00

Publ 307
An Engineering Assessment of Acoustic Methods of Leak Detection in Aboveground Storage Tanks

Provides the results of a leak detection project in aboveground storage tanks that utilized acoustic methods to detect leaks. A series of field tests were conducted on a 114-ft diameter tank that contained a heavy naphtha petroleum product. The analytical and experimental results of this project suggest that passive-acoustic leak detection methods can be used to detect small leaks in aboveground storage tanks. Pages: 76

January 1992 | Product Number: J30700 | Price: $80.00

Publ 315
Assessment of Tankfield Dike Lining Materials and Methods

To assess tankfield materials and methods of containment, API commissioned a review of environmental regulations as well as a survey of candidate liner materials and installation methods to explore the technology base. The study was limited to diked areas surrounding storage tanks. Liner installations for secondary containment underneath tanks were excluded. Pages: 50

July 1993 | Product Number: J31500 | Price: $80.00

Publ 322
An Engineering Evaluation of Acoustic Methods of Leak Detection in Aboveground Storage Tanks

Describes a set of controlled experiments conducted on a 40-ft diameter refinery tank to determine the nature of acoustic leak signals and ambient noise under a range of test conditions. The features of a leak detection test needed for high performance are explored. The report concludes that accurate and reliable leak detection of aboveground storage tanks can be achieved through the use of acoustic methods. Pages: 80

January 1994 | Product Number: J32200 | Price: $80.00

Publ 323
An Engineering Evaluation of Volumetric Methods of Leak Detection in Aboveground Storage Tanks

Two volumetric approaches to detecting leaks from aboveground storage tanks—precision temperature sensors and mass measurement approaches—are evaluated in this report. A set of controlled experiments on a 117-ft diameter refinery tank is used to examine the effects of differential pressure on conventional level and temperature measurement systems. The features of a leak detection test needed for high performance are also explored. Pages: 86

January 1994 | Product Number: J32300 | Price: $80.00

Publ 325
An Evaluation of a Methodology for the Detection of Leaks in Aboveground Storage Tanks

Describes the results of the fourth phase of a program to define and advance the state of the art of leak detection for aboveground storage tanks (ASTs). Three leak detection technologies are examined—passive-acoustic, soil-vapor monitoring, and volumetric—over a wide range of tank types, petroleum fuels, and operational conditions. This study also assesses the applicability of a general leak detection methodology involving multiple tests and product levels as well as determines the integrity of 14 ASTs using two or more test methods. Pages: 94

May 1994 | Product Number: J32500 | Price: $98.00

Publ 327
Aboveground Storage Tank Standards: A Tutorial

Presents procedures and examples to help designers, owners, and operators of aboveground storage tanks understand and comply with API's recommended practices, standards, and specifications concerning leak prevention. These API documents provide requirements designed to minimize environmental hazards associated with spills and leaks. The tutorial also shows how the API inspection and maintenance requirements influence the design of such tanks. It does not attempt to address additional rules and requirements imposed by individual jurisdictions or states. Pages: 70

September 1994 | Product Number: J32700 | Price: $80.00

Publ 328
Laboratory Evaluation of Candidate Liners for Secondary Containment of Petroleum Products

Provides comparative data on the physical properties of liner materials as a function of their controlled exposure to fuels and/or additives. Six membrane and two clay liners were tested. Project test results were used to rank the liners in terms of vapor permeation and relative changes in properties such as chemical resistance and liquid conductivity measured after immersion. Pages: 142

January 1995 | Product Number: J32800 | Price: $90.00

Publ 334
A Guide to Leak Detection for Aboveground Storage Tanks

Written for terminal managers, tank owners, operators, and engineers, this report provides useful background on leak detection technologies—volumetric, acoustic, soil-vapor monitoring, and inventory control—for aboveground storage tanks. Characteristics affecting the performance of each technology are discussed. Pages: 38

September 1992 | Product Number: J33400 | Price: $80.00

Publ 340
Liquid Release Prevention and Detection Measures for Aboveground Storage Facilities

Written for managers, facility operators, regulators, and engineers involved in the design and selection of facility components and prevention of liquid petroleum releases, this report presents an overview of available equipment and procedures to prevent, detect, or provide environmental protection from such releases. Also presented are the advantages, disadvantages, and relative costs, as well as maintenance and operating parameters of various control measures. Pages: 116

October 1997 | Product Number: J34000 | Price: $90.00

Publ 341
A Survey of Diked-Area Liner Use at Aboveground Storage Tank Facilities

In 1997, API conducted a survey designed to evaluate the effectiveness of diked-area liner systems and to document operational problems involved with their use. The survey data indicated that the effectiveness of liners in protecting the environment is limited because liner systems frequently fail. The data further showed that there are few releases from aboveground storage tanks in diked areas.
health and environmental issues

Publ 346
Results of Range-Finding Testing of Leak Detection and Leak Location Technologies for Underground Pipelines
This study reviewed the current leak detection and leak location methods for pressurized underground piping commonly found at airports, refineries, and fuel terminals. Four methods for testing underground pipes of 6 in. to 18 in. in diameter and 250 ft to 2 miles in length were selected for field demonstration. These technologies were constant-pressure volumetric testing, pressure-decay testing, chemical tracer testing, and acoustic emission testing. No single leak detection system was found to work in all situations; site-specific conditions may affect any method, and combinations of methods may provide the most effective approach. Pages: 252
November 1998 | Product Number: J34600 | Price: $90.00

Publ 353
Managing Systems Integrity of Terminal and Tank Facilities
Although the risk management principles and concepts in this document are universally applicable, this publication is specifically targeted at integrity management of aboveground liquid petroleum storage facilities. The applicable petroleum terminal and tank facilities covered in this document are associated with distribution, transportation, and refining facilities as described in Std 2610 and Publ 340. This document covers the issues of overall risk management, risk assessment, risk ranking, risk mitigation, and performance measures applicable to an overall integrity management program. The appendices include two possible methodologies for conducting a risk assessment and a workbook that can be used to perform the risk assessment method outlined in Appendix A. Pages: 316
1st Edition | October 2006 | Product Number: J35300 | Price: $158.00

Publ 4716
Buried Pressurized Piping Systems Leak Detection Guide
Analyzes of the performance of different types of leak detection technologies that were applied to buried pressurized piping systems used in airport hydrant fueling and petroleum product terminals. The study was conducted by Argus Consulting and Ken Wilcox Associates on behalf of the Air Transport Association of America and API. This report is intended to provide an overview of the study methodology and results. Pages: 47
April 2002 | Product Number: I47160 | Price: $102.00

Surface Water Research

DR 342
Toxicity Bioassays on Dispersed Oil in the North Sea: June 1996 Field Trials
The purpose of the study described in this report was to gain more information on water column impacts by taking advantage of the ongoing efficacy and monitoring studies done by the Norwegian Clean Seas Association for Operating Companies (NOFO) in order to conduct field toxicity tests. The goal of this study was to obtain field effects data using shipboard, real-time toxicity tests with field water. These data can then be used in the future to link field effects to laboratory toxicity data. Pages: 108
June 2002 | Product Number: I34200 | Price: $151.00

DR 343
Automated Validation System for the Offshore Operations Committee Mud and Produced Water Discharge Model
Describes the development of an automated validation system for the Offshore Operators Committee Mud and Produced Water Discharge Model (the “OOC Model”), a computer program that predicts the initial fate of drilling fluids, drill cuttings, and produced water discharged into the marine environment. The system automates the process of validating OOC Model predictive capabilities by comparing model predictions with the results of laboratory and field studies of plume behavior. The system was developed to automate the laborious process of confirming that model code enhancements do not degrade the predictive abilities of the OOC Model. The automated validation system approach described here also serves as a template for routine documentation of discharge model performance that could be applied to other models used by industry, consultants, or regulatory agencies. Two of relevant studies found in a literature search were incorporated into the suite of automated test cases for the OOC Model. Summaries of the data sets used for OOC Model validation were prepared in such a way that they could be used conveniently outside of the automated system to validate any relevant discharge model. Pages: 176
November 2002 | CD-ROM Only

Publ 4664
Mixing Zone Modeling and Dilution Analysis for Water-Quality-Based NPDES Permit Limits
This report is designed to provide an overview of the U.S. Environmental Protection Agency’s (EPA) policies and technical guidance on the role of mixing zones in the National Pollutant Discharge Elimination System (NPDES) permitting process; present state mixing zone regulations, policies, and guidance; introduce important concepts related to the hydrodynamics of effluent dilution in receiving waters and the design of outfall diffusers; review available mixing zone models; identify EPA sources for the models; discuss strategic issues for dischargers to consider when applying models; and describe the use of dye tracer studies as alternatives or supplements to mixing zone models. Pages: 176
April 1998 | Product Number: I46640 | Price: $105.00

Publ 4672
The Use of Treatment Wetlands for Petroleum Industry Effluents
Treatment wetlands are becoming widely used for cleansing some classes of wastewater effluents. Although the use of treatment wetlands is well established for wastewater categories such as municipal waste, stormwater, agricultural wastewater, and acid mine drainage water, their use in treating a variety of industrial wastewaters is less well developed. Constructed treatment wetlands hold considerable promise for managing some wastewaters generated by the petroleum industry. Several large-scale wetland projects currently exist at oil refineries, and numerous pilot studies of constructed treatment wetlands have been conducted at terminals, gas and oil extraction and pumping stations, and refineries. This report summarizes current information about the use of treatment wetlands for managing petroleum industry wastewaters and also presents background information on the general performance, design, and operation of treatment wetlands based on experience with a variety of wastewater types. Pages: 222
October 1998 | Product Number: I46720 | Price: $105.00
<table>
<thead>
<tr>
<th>Publ 4676</th>
<th>Arsenic: Chemistry, Fate, Toxicity, and Wastewater Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic is a naturally occurring element in rocks, soils, water, sediments, and biological tissues. It is also present in fossil fuels. Arsenic in the environment has both anthropogenic and natural sources, and certain anthropogenic sources have caused localized adverse effects on ecological systems and human health. Based on extensive review of the literature, this monograph is intended to serve as a reference volume on the sources of arsenic in the environment, the chemistry and fate of arsenic compounds, biomedical effects, the toxicity of arsenic to aquatic and terrestrial species, wastewater treatment options, and regulatory standards for arsenic in the environment. Pages: 196</td>
<td></td>
</tr>
<tr>
<td>October 1998</td>
<td>Product Number: I46760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4688</th>
<th>Temporary Treatment Options for Petroleum Distribution Terminal Wastewaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides guidance to terminal operators and engineers in evaluating mobile treatment systems for wastewater generated at petroleum distribution terminals. Some of the variables that must be considered include the characteristics of the wastewater, the permitting process, and contractor experience. This document provides sufficient information to guide an operator/engineer through evaluation of mobile treatment systems, including problem definition, treatment technology selection, contractor selection, and implementation. Pages: 73</td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td>Product Number: I46880</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4694</th>
<th>Laboratory Analysis of Petroleum Industry Wastewaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assists in arranging for and understanding laboratory analysis of petroleum industry wastewaters. Designed for environmental coordinators, managers, corporate staff, and others who must address environmental compliance reporting and regulatory issues. It is also useful for field personnel responsible for obtaining wastewater sample analyses to fulfill environmental regulatory requirements. Guidance and information are provided for setting data quality objectives; planning analyses; selecting a laboratory; and reviewing laboratory reports, detection and quantification limits, quality assurance/quality control practices, method references, method-defined analytes, and statistical calculations. Examples of case studies, laboratory reports, and data calculations are given throughout the manual. Checklists are provided to help users understand, plan, and review laboratory data. Pages: 175</td>
<td></td>
</tr>
<tr>
<td>December 1999</td>
<td>Product Number: I46940</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4695</th>
<th>Understanding and Preparing Applications for Petroleum Facility NPDES Discharge Permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assists member companies and others in preparing applications and negotiating with permit authorities for National Pollutant Discharge Elimination System (NPDES) permits for wastewater discharges. The manual is intended to help permittees and permit applicants to understand the permit process from application to final permit and to provide tools and strategies for assuring that the permit is fair and properly implements the applicable regulations. Much of the information in this manual is based on practical experience with many NPDES permits and applications. Examples and case histories are provided to help the user understand the permit application process. Pages: 220</td>
<td></td>
</tr>
<tr>
<td>December 1999</td>
<td>Product Number: I46950</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4698</th>
<th>A Review of Technologies to Measure the Oil and Grease Content of Produced Water from Offshore Oil and Gas Production Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifies and evaluates practical alternative methods for routine monitoring of oil and grease in produced waters. Traditional monitoring methods relied on Freon-113r extraction of oil and grease; however, owing to the phase-out of Freon-113r these methods can no longer be used, and new methods must be sought. This study evaluates two infrared detection methods and one fluorescence detection method for identifying and measuring oil and grease in produced waters. Performance information and the correlation of analytical results with the U.S. Environmental Protection Agency's hexane extraction method, Method 1664, are provided. Pages: 138</td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td>Product Number: I46980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4717</th>
<th>Predictors of Water-Soluble Organics (WSOs) in Produced Water—A Literature Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviews the scientific literature on the identity and physical/chemical characteristics of the WSOs in produced water in relation to characteristics of fossil fuels and their reservoirs. Pages: 24</td>
<td></td>
</tr>
<tr>
<td>March 2002</td>
<td>Product Number: I47170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4721</th>
<th>Analytical Detection and Quantification Limits: Survey of State and Federal Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>The purpose of this review was to determine the analytical detection and quantification limit policies of various state agencies. Of particular interest were policies for setting wastewater discharge permit limits at or below detection or quantification limits, for determining compliance with such limits, and for using alternative approaches to determining detection or quantification limits. Although the main focus of this review was on state policies involving water quality issues, included in the review were the policies of programs in other environmental areas as well as federal regulations and statutes. Pages: 129</td>
<td></td>
</tr>
<tr>
<td>June 2002</td>
<td>Product Number: I47210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4736</th>
<th>Identification of Key Assumptions and Models for the Development of Total Maximum Daily Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides the reader with an understanding of the use of models in the development and implementation of total maximum daily loading (TMDL) studies. The report focuses on the types of models used for TMDLs, the key assumptions underlying the models, how models are selected for specific surface waters and impairments, the data required to apply the models to a specific surface water and impairment, and how the predictive capability of the models is assessed. Pages: 64</td>
<td></td>
</tr>
<tr>
<td>November 2006</td>
<td>Product Number: I47360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4750</th>
<th>Cyanide Discharges in the Petroleum Industry: Sources and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Because both industrial and municipal dischargers have been issued National Pollutant Discharge Elimination System permits with low (5–20 μg/L) effluent limits for cyanide, there has been considerable interest in the reliability of the available test methods at these low concentrations. This report provides guidance on the measurement, as well as the presence and environmental fate, of cyanide compounds and related chemical species in petroleum industry wastewater effluents. Pages: 42</td>
<td></td>
</tr>
<tr>
<td>November 2008</td>
<td>Product Number: I47500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publ 4751</th>
<th>Evaluation of Water Quality Translators for Mercury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discusses the technical issues and constraints associated with translation of a mercury fish tissue concentration into a water quality criterion, in the use and implementation of the U.S. Environmental Protection Agency's fish-tissue-based criterion for methylmercury. The report focuses on available analytical methods for translating mercury in fish and water; proposed methods for translating a fish tissue concentration for mercury into a concentration in water; and implementation of the mercury criterion in the development of total maximum daily loads and water quality-based effluent limits. Pages: 37</td>
<td></td>
</tr>
<tr>
<td>1st Edition</td>
<td>December 2005</td>
</tr>
</tbody>
</table>
This publication is included in a catalog of related publications.

Publ 4756
Interim Permitting Manual—Navigating NPDES Permit Issues on Impaired Waters

Addresses many water quality standards issues that facilities may encounter, including existing uses, use attainability analyses to revise designated uses, fish consumption advisories, whole effluent toxicity criteria, and sediment criteria. The manual will provide guidance on a number of listing issues, including listings due to violations of narrative criteria and fish consumption advisories, delisting, listing waters that are impaired but do not need a total maximum daily loading (TMDL) because they are expected to meet standards through other means, and challenging an erroneous listing determination.

The second part of this manual will discuss permitting discharges to impaired waters during the interim period before TMDLs are developed. The manual will describe the development of water quality-based effluent limitations on impaired waters and will also discuss a number of issues for affected facilities to consider during the permitting process, including timing (when the permit should be issued), watershed permitting, verifying the impairment determination before the permit is issued, other controls available to bring the water into attainment, reasonable potential calculations, voluntary reduction measures, nonnumeric effluent limitations, and calculating numeric effluent limitations.

November 2006 | Product Number: I47560 | Price: $82.00

Publ 4782
Petroleum Refining Industry Contribution to Nationwide Surface Water Nutrient Loadings

This analysis was commissioned by API to provide member companies and the public with a better understanding of the water quality problems associated with nutrient discharges to the nation’s surface waters, the current federal and state regulatory responses to nutrient-related water quality problems, the scientific and implementation challenges of nutrient controls, and the petroleum refining industry’s relative contribution to nationwide nutrient discharges to surface waters. This study is based on using available published data on nutrient enrichment of U.S. surface waters; the U.S. Environmental Protection Agency (EPA) and state nutrient control guidance, policy, and water quality standards; prior analysis performed for API by a third-party consultant; petroleum refinery effluent quality data from the EPA Integrated Compliance Information System/National Pollutant Discharge Elimination System (ICIS-NPDES); and permit data collected from the files of the Texas Commission on Environmental Quality (TCEQ).

August 2016 | Product Number: I47820 | Price: $81.00

Publ 4783
Water Management and Stewardship in Midstream, Downstream, and Delivery Operations in the Oil and Gas Industry

This report uses the oil and gas (petroleum) life cycle as an organizing framework for explanation and discussion. The scope of this study is focused on the midstream, downstream, and delivery components of the oil and gas life cycle. Upstream components of the life cycle will be addressed in a future report. This study is intended to inform stakeholders about how the oil and gas industry uses water in the midstream, downstream, and delivery phases of the petroleum life cycle and the various industry-led and regulatory practices employed to conserve and protect water resources.

December 2016 | Product Number: D47830 | Price: $81.00

Publ 4610
Critical Review of Draft EPA Guidance on Assessment and Control of Bioconcentratable Contaminants in Surface Waters

Reviews the U.S. Environmental Protection Agency’s proposed methods and underlying assumptions for assessing bioconcentratable contaminants in petroleum industry effluents. It focuses on the effluent option and its application to National Pollutant Discharge Elimination System (NPDES)- permitted discharges from oil refineries, petroleum product marketing terminals, and oil/gas production platforms. The review also includes a general evaluation of the suitability of the tissue residue option for evaluating oil industry effluents.

January 1995 | Product Number: I46100 | Price: $76.00

TR 402
Toxicity to Freshwater Alga, Selenastrum capricornutum

Describes a study conducted to assess the effect of tert-amyl methyl ether (TAME) to daphnids under flow-through conditions. Nominal concentrations of TAME—690, 410, 250, 150, and 89 mg A.I./L—were maintained in exposure vessels and mean exposure concentrations calculated. Biological observations and physical characteristics were recorded at test initiation and at 3, 6, 24, and 48 hours. Pages: 41

February 1995 | Product Number: I00402 | Price: $67.00

TR 406
TAME—Acute Toxicity to Daphnids Under Flow-Through Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to daphnids under flow-through conditions. Nominal concentrations of TAME—690, 410, 250, 150, and 89 mg A.I./L—were maintained in exposure vessels and mean exposure concentrations calculated. Biological observations and physical characteristics were recorded at test initiation and at 3, 6, 24, and 48 hours. Pages: 76

February 1995 | Product Number: I00406 | Price: $67.00

TR 407
TAME—Acute Toxicity to Mysid Shrimp (Mysidopsis bahia) Under Static Renewal Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to mysid shrimp under static renewal conditions. Nominal concentrations of TAME—1.6, 4.0, 7.3, 15, 30, and 60 mg A.I./L—were maintained by renewing solutions at 3, 6, 24, and 48 hours of exposure. Observations were recorded at test initiation and every 24 hours until the test was terminated. Pages: 84

February 1995 | Product Number: I00407 | Price: $67.00

TR 408
TAME—Acute Toxicity to Rainbow Trout Under Flow-Through Conditions

Describes the measurement of acute toxicity of tertiary amyl methyl ether (TAME) to rainbow trout under flow-through conditions. During the test, nominal concentrations of TAME—950, 570, 340, 210, and 120 mg A.I./L—were maintained and mean exposure concentrations calculated. Biological observations and physical characteristics were recorded at test initiation and every 24 hours thereafter until test termination. Pages: 80

February 1995 | Product Number: I00408 | Price: $68.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740

Publ 4656
Bioaccumulation: How Chemicals Move from the Water into Fish and Other Aquatic Organisms

Provides an intermediate-level primer on the accumulation of chemicals by aquatic organisms with emphasis on polycyclic aromatic hydrocarbons. Key factors governing bioaccumulation are described to enhance understanding of this complex phenomenon. Approaches for assessing the bioaccumulation potential of chemicals are examined and an evaluation of each method's advantages and shortcomings is offered. Pages: 54
May 1997 | Product Number: I46560 | Price: $95.00

Publ 4666
The Toxicity of Common Ions to Freshwater and Marine Organisms

Whole effluent toxicity (WET) tests have become a common tool in the evaluation of effluent for discharge acceptability. Recent investigations have indicated that deficiencies or excesses of "common" ions (inorganic ions that are nearly always present in most aquatic systems at nontoxic concentrations) can cause significant acute or chronic toxicity in WET tests. This report presents the results of a review of toxicological and physiological data on inorganic ions that have been implicated in causing significant toxicity--bicarbonate, borate, bromide, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate. Pages: 114
April 1999 | Product Number: I46660 | Price: $105.00

Publ 4701
Bioaccumulation: An Evaluation of Federal and State Regulatory Initiatives

August 2000 | Product Number: I47010 | Price: $96.00

EFFLUENTS: EXPLORATION AND PRODUCTION

DR 351
Proceedings: Workshop to Identify Promising Technologies for the Treatment of Produced Water Toxicity

Presents the discussions, conclusions and recommendations of an API workshop held in October 1994 to identify technologies that could potentially be used for the treatment of produced water toxicity offshore. Background information on the candidate technologies; information on produced water toxicity limitations, characteristics, and composition; results of toxicity identification evaluations; and a discussion of the engineering restrictions imposed by offshore platforms are included. Pages: 122
June 1996 | Product Number: I00351 | Price: $79.00

Publ 4611
Interlaboratory Study of EPA Methods 1662, 1654A and 1663 for the Determination of Diesel, Mineral and Crude Oils in Drilling Muds from Offshore and Gas Industry Discharges

Describes an interlaboratory round-robin study to validate the tiered approach of the U.S. Environmental Protection Agency’s three methods—1662, 1654A, and 1663—for monitoring diesel oil in drilling muds. Various extraction methods were evaluated and analytical measurement techniques were tested for measuring diesel oil. Pages: 106
April 1995 | Product Number: I46110 | Price: $79.00

Publ 4633
Barium in Produced Water: Fate and Effects in the Marine Environment

Provides a summary of what is currently known about the physical and chemical behavior of barium in produced water and in the ocean. It discusses the factors that influence the rate of precipitation of barium as barite. The toxicity of barium to marine and freshwater organisms and humans is discussed in relation to the concentrations and forms in which it occurs in aquatic environments. Pages: 68
September 1995 | Product Number: I46330 | Price: $65.00

Publ 4641
Summary of Produced Water Toxicity Identification Evaluation Research

Summarizes the results of a three-part study to evaluate the ability of U.S. Environmental Protection Agency proposed toxicity identification evaluations (TIEs) to determine the potential toxicants in produced water from oil and gas production operations in various locations. Factors affecting the results of the TIEs were identified as well as potential toxicants. Suggestions for improving TIE procedures are included. Pages: 102
June 1996 | Product Number: I46410 | Price: $96.00

Publ 4702
Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal

Technologies to reduce oil and grease content of well treatment, well completion, and workover fluids for overboard disposal. Pages: 54
March 2001 | Product Number: I47020 | Price: $133.00

EFFLUENTS: MARKETING

Publ 4602
Minimization, Handling, Treatment and Disposal of Petroleum Products Terminal Wastewaters

Intended to be a basic guide and information resource for all wastewater operations at petroleum product terminals. It includes the regulatory framework for wastewater issues, a detailed description of the sources of terminal wastewater and associated contaminants as well as guidance on means for analyzing the wastewater situation at a terminal, for minimizing wastewater flow contamination, and for wastewater handling and disposal. Pages: 120
September 1994 | Product Number: I46020 | Price: $141.00

Publ 4665
Analysis and Reduction of Toxicity in Biologically Treated Petroleum Product Terminal Tank Bottoms Water

Objectives of this study were to measure toxicity in biologically treated petroleum product terminal tank bottoms waters, identify the chemical constituents causing that toxicity, identify treatment options, and measure the effectiveness of the treatment techniques in removing the constituents and reducing toxicity. Nine gasoline and two diesel tank bottoms water samples were collected from petroleum product terminals at various geographical locations. The samples were normalized to a fixed chemical oxygen demand, then subjected to biological treatment. Treated samples were tested for acute toxicity in 24-hour exposure tests using Mysidopsis bahia and for chronic toxicity in 7-day static renewal toxicity tests also using Mysidopsis bahia. Biological treatment was observed to effectively remove metals but produced highly variable degrees of chemical oxygen demand, biochemical oxygen demand, and total organic carbon. Pages: 84
April 1998 | Product Number: I46650 | Price: $86.00

Publ 4673
Impacts of Petroleum Product Marketing Terminals on the Aquatic Environment

Examines the potential impact of petroleum product marketing terminal (PPMT) wastewater discharges to aquatic environments to ascertain if there is a need for more stringent regulations. Wastewater discharges by PPMTs were evaluated, the constituents normally present in these waste streams were identified, and their possible aquatic impacts were investigated. It was determined that PPMT wastewater discharges pose little environmental risk; therefore, stricter regulations for PPMT discharges are unwarranted. Pages: 52
April 1999 | Product Number: I46730 | Price: $105.00

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com
A Guide for the Use of Semipermeable Membrane Devices (SPMDs) as Samplers of Waterborne Hydrophobic Organic Contaminants

Provides basic information and guidance on SPMD technology and its appropriate use in aquatic systems. Emphasis is given to methods, applications, and theoretical issues related to the use of SPMDs for monitoring priority pollutant polycyclic aromatic hydrocarbons, but other classes of hydrophobic organic contaminants are covered as well. This document includes key information on SPMD background, rationale, theory and modeling, technical considerations, supplier/source, chemical analysis and quality control, bioassay screening, comparability to biomonitors, examples of use, and sources of addition information. However, covering all potential environmental applications (e.g. vapor phase sampling) and relevant research results is beyond the scope of this work. Finally, use of this guide does not obviate the need for proper review and oversight procedures prior to the initiation of a project with SPMDs. Pages: 172
March 2002 | Product Number: I46900 | Price: $143.00

Primer for Evaluating Ecological Risk at Petroleum Release Sites

Designed to help site and facility managers acting as site investigators decide how and to what extent to address ecological risks that may result from a release of petroleum products. The focus is on “downstream” operations related to transportation, distribution, or marketing of petroleum products, but the general principles may be adapted to other parts of the industry as well. The ecological risk assessment process is briefly described, and guidance is given about the preliminary investigation to assess the possible nature and extent of risk. This information is an initial part of a tiered decision-making process used to determine the depth and breadth of the site investigation. Pages: 52
May 2001 | Product Number: I47000 | Price: $112.00

Identification of Organic Toxicants in Treated Refinery Effluents

Effluents from five oil refineries were examined for the presence of chronic toxicity caused by nonpolar, organic compounds. U.S. Environmental Protection Agency (EPA) guidelines for Phase I toxicity characterization procedures were used. The refinery effluent containing the most nonpolar toxicity was selected for more detailed analyses and identification of the nonpolar toxicants using Phase II procedures. Extraction and elution conditions were modified to increase chronic toxicity recovery and also reduce the complexity of the nonpolar organic effluent fraction containing toxicity. Results showed that simple modifications of EPA guidance for C18 solid phase extraction procedures, combined with proper toxicity testing optimization, successfully tracked and isolated toxicity in an effluent fraction. Findings also indicated that sources of refinery effluent toxicants were a phenol associated with a jet fuel additive, and two brominated organics believed to be reaction products of cooling tower water treatment chemicals, rather than from crude oil constituents. Pages: 64
December 1997 | Product Number: I00148 | Price: $67.00

This report is the ninth in a series of reports presenting the results of the API Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 residual streams representing approximately 80% of all residuals managed at U.S. refineries. Prior to the 1997 survey, the management techniques had included recycling to the cat cracker, which referred to routing a residual to a catalytic cracking unit. Further study revealed that the quantity for residuals actually recycled to a cracking unit was very small—perhaps nonexistent—and was therefore deleted from the 1997 survey. Data for prior years were adjusted. Industry trend toward increased recycling of residuals has continued. Pages: 108
September 1999 | Product Number: J35200 | Price: $133.00

Identification of Oils that Produce Non-Buoyant In-Situ Burning Residues and Methods for Their Recovery

This report is the ninth in a series of reports presenting the results of the API Annual Refining Residual Survey. Included in the report are detailed assessments of generated quantities and management practices for 14 residual streams representing approximately 80% of all residuals managed at U.S. refineries. Prior to the 1997 survey, the management techniques had included recycling to the cat cracker, which referred to routing a residual to a catalytic cracking unit. Further study revealed that the quantity for residuals actually recycled to a cracking unit was very small—perhaps nonexistent—and was therefore deleted from the 1997 survey. Data for prior years were adjusted. Industry trend toward increased recycling of residuals has continued. Pages: 108
September 1999 | Product Number: J35200 | Price: $133.00

e02161228t134857.pdf

Options for Minimizing Environmental Impacts of Inland Spill Response

The purpose of this guide is to support contingency planners and emergency responders in evaluating response techniques and selecting those techniques that will most effectively prevent or minimize adverse environmental impacts from inland spills. In this guide, inland spills are defined as those that affect terrestrial and freshwater habitats, whereas coastal and marine spills affect water bodies and habitats that are under the influence of tides and marine waters. Inland spills have unique characteristics and behavior, and may have the potential to pose greater risks to the public, and often necessitate more intensive removal methods, compared to coastal and marine spills. Therefore, choosing the best response options and implementing these in the most environmentally appropriate manner can minimize adverse impacts of a response. Pages: 102
October 2016 | Product Number: I42500 | For a free copy of this document, please visit http://www.oilspillprevention.org/~/media/Oil-Spill-Prevention/spillprevention/r-and-d/inland/options-for-minimizing-e20161228t134857.pdf

Canine Oil Detection: Field Trials Report

Field trials were undertaken in June 2015 to evaluate the applicability of canine oil detection teams (referred to as K9-SCAT) to support assessment surveys to locate and delineate the horizontal extent of subsurface oil for shoreline and inland spills response operations. The study is part of the American Petroleum Institute (API) Joint Industry Task Force (JITF) Shoreline Protection & Clean-Up Technical Working Group within the Oil Spill Preparedness and Response program. Pages: 59
June 2016 | Product Number: I114930 | For a free copy of this document, please visit http://www.oils spillprevention.org/~/media/Oil-Spill-Prevention/spillprevention/r-and-d/shoreline-protection/canine-oil-detection-field-trials-report.pdf

OIL SPILLS

Bull D16

Suggested Procedure for Development of a Spill Prevention Control and Countermeasure Plan

Assists the petroleum industry in understanding the SPCC regulation in light of the latest rule (40 CFR Part 112) and to offer guidance for developing SPCC Plans wherever they are needed. Included is a template for developing SPCC plans (i.e. onshore excluding production; onshore oil production, oil drilling or worker; offshore oil drilling, production, or worker) in accordance with the regulation and guidance, instruction, and clarification for completing each section of the template. The purpose of this rulemaking was to establish procedures, methods, and equipment to prevent and contain discharges of oil from non-transportation-related onshore and offshore facilities, thus preventing pollution of navigable waters of the United States. The development of this bulletin was commissioned by API and performed by O’Brien’s Response Management Inc. The purchase of D16 includes; Bulletin D16, the Plan Template, and a CD-ROM with the Microsoft® Word version of the Plan Template.
5th Edition | April 2011 | Product Number: GD1605 Price: $279.00 | Template Only: Price: $103.00

DR 145

Identification of Oils that Produce Non-Buoyant In-Situ Burning Residues and Methods for Their Recovery

There is an environmental concern about the possibility of sinking residues from in-situ burns (ISBs), leading to the potential for damage to the aquatic bottom zone. The objective of the study presented in this publication was to start the process of establishing operational tools and procedures for dealing with such nonbuoyant burn residues. There were two tasks: develop protocols for identifying ISB residues likely to sink, and evaluate options for dealing with those residues in the field. Pages: 62
February 2002 | Product Number: IDR1450 | Price: $102.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

TR 1149-4
Canine Oil Detection (K9-SCAT) Guidelines
The purpose of these Guidelines is to provide information on the potential for
detection canines to support a shoreline or inland oiled area assessment
(SCAT) program. This information includes how oil detection dogs use their
sense of smell and what they can do to locate and delineate surface and
subsurface oil, the current state of knowledge regarding situations and types
of support surveys that a K9-SCAT team can undertake as part of a SCAT
program, and how to plan and design a K9-SCAT survey and collect the
appropriate data to document that mission. Pages: 81

July 2016 | Product Number: I114940 | For a free copy of this
document, please visit http://www.oilspillprevention.org/~media/Oil-
Spill-Prevention/spillprevention/r-and-d/shoreline-protection/canine-
oil-detection-k9-scats-guidelines.pdf

TR 1151-4
Mechanical Treatment of Sand Beaches Historical Library Report
This report describes the Mechanical Treatment Library, which represents
part of a multiphase study conducted by the American Petroleum Institute to
improve the mechanized treatment of spilled oil on sand beaches. Pages: 5

June 2016 | Product Number: I115140 | For a free copy of this
document, please visit http://www.oilspillprevention.org/~media/Oil-
Spill-Prevention/spillprevention/r-and-d/shoreline-protection/
mechanical-treatment-of-sand-beaches-his.pdf

TR 1153-1
Tidal Inlet Protection Strategies (TIPS): Phase 1—Final Report
This report presents an approach for the development of Tidal Inlet Protective
Strategies (TIPS) that are based on knowledge of the physical systems
involved and feasibility of tactical options. Strategies and tactics identified
using the results of this study are subject to real-time conditions and pre-
spill planning strategies should be re-evaluated during a response. The report
considers potential tactics at a level appropriate for strategic planning, but is
not intended to provide instructions for the implementation of these tactics.
The guide is intended to be used by strategic planners and responders, and
may be appropriate for inclusion in an Area Contingency Plan (ACP) or a
Geographic Response Plan (GRP). Pages: 53

January 2014 | Product Number: I115310 | For a free copy of this
document, please http://www.oilspillprevention.org/~media/oil-spill-
prevention/spillprevention/r-and-d/shoreline-protection/tidal-inlet-
protection-strategies-final.pdf

TR 1153-2
Tidal Inlet Protection Strategies (TIPS) Field Guide
This field guide is intended to be used by strategic planners and responders
with the purposes of explaining the physical dynamics and characterization of
a tidal inlet, identifying oil transport and operational constraints and
opportunities for tidal inlet protection, identifying potential strategies for
protection, and providing considerations and checklists for tidal inlet
protection. Pages: 27

January 2016 | Product Number: I115320 | For a free copy of this
document, please visit http://www.oilspillprevention.org/~media/Oil-
Spill-Prevention/spillprevention/r-and-d/shoreline-protection/tips-
field-guide-final.pdf

TR 1154-1
Sunken Oil Detection and Recovery
The purpose of this report is to identify and document current best practices
and proven technologies possessing the potential to more effectively (1)
detect, delineate, and characterize, (2) contain, and (3) recover sunken oil,
deferred as the accumulation of bulk oil on the bottom of a water body; and
recommend research and development for the highest potential new
technologies. Pages: 116

February 2016 | Product Number: I115410 | For a free copy of this
document, please visit http://www.oilspillprevention.org/~media/Oil-

TR 1154-2
Sunken Oil Detection and Recovery Operational Guide
This operational guide is a companion document to the technical report,
Sunken Oil Detection and Recovery, which identifies and documents current
best practices and alternative technologies possessing the potential to more
effectively detect, contain, and recover sunken oil, defined as the
accumulation of bulk oil on the bottom of a water body. The technical report
includes summaries and lessons learned from 36 case studies of oil spills
where a significant amount of the oil sank. For each technology, it includes
a detailed description of the method, advantages and disadvantages, and
summary tables—the kinds of information needed to select the most effective
approaches to sunken oil detection and recovery. Please refer to the
technical report for supporting information not in this guide. Pages: 28

February 2016 | Product Number: I115420 | For a free copy of this
document, please visit http://www.oilspillprevention.org/~media/Oil-
Spill-Prevention/spillprevention/r-and-d/shoreline-protection/sunken-oil-ops-guide.pdf

TR 1155-1
Shoreline In Situ Treatment (Sediment Mixing and Relocation)
Library Report
The American Petroleum Institute (API) completed a study to improve the
knowledge and understanding of shoreline sediment mixing and relocation
techniques. The objective of the study is to provide the following tools: (1)
Shoreline In Situ Treatment Library: an online library containing academic,
scientific, technical, and operational literature, including links to electronic
documents, where available; (2) Shoreline In Situ Treatment Fact Sheet: a
non-academic educational guide, providing an overview of in situ treatment
and Oil Particle Aggregate (OPA) formation for training and planning (TR
1154-2); and (3) Shoreline In Situ Treatment Job Aid: a non-academic
operations tool for use during a response by Operations, the Environmental
Unit (EU), and Shoreline Cleanup Assessment Technique (SCAT) teams for in
situ treatment planning and operations, and to demonstrate to agencies how
effectiveness and effects would be monitored (TR 1154-3). This report
describes the first item of this program, the Shoreline In Situ Treatment
Library, which is intended to locate and make available documents relevant
to shoreline in situ (sediment mixing and relocation) treatment techniques.
The library is provided in simple MS Excel spreadsheet and MS Access
database formats, which are described in this report. Pages: 5

June 2016 | Product Number: I115510 | For a free copy of this
document, please visit www.oilspillprevention.org/~media/Oil-Spill-

TR 1155-2
Shoreline In Situ Treatment (Sediment Mixing and Relocation) Fact
Sheet
This fact sheet explains the use of shoreline in situ techniques, including wet
and dry mixing (also known as tilling or aeration) and sediment relocation
(also known as surf washing or berm relocation) for oil spill cleanup. Burning
is outside the scope of this fact sheet. Pages: 20

June 2016 | Product Number: I115520 | For a free copy of this
document, please visit www.oilspillprevention.org/~media/Oil-Spill-
Health and Environmental Issues

TR 1155-3
Shoreline In Situ Treatment (Sediment Mixing and Relocation) Job Aid

The purpose of this job aid is to provide:

- a non-technical tool for planning and conducting shoreline in situ treatment for use by Shoreline Cleanup Assessment Technique (SCAT) teams as they develop shoreline treatment recommendations (STRs);
- Environmental Unit personnel and planners during the decision process; and
- Shoreline Operations to implement the treatment tactics.

Decision guides and checklists to assist in understanding the advantages and consequences of shoreline in situ treatment options, and the decision, review, and approval process for shoreline in situ treatment.

This job aid provides guidance for the planning and implementation of in situ techniques on shorelines and rivers, including wet and dry mixing (also known as tillng or aeration) and sediment relocation (also known as surf washing or berm relocation) for oil spill cleanup. Burning on the shoreline is outside the scope of this job aid. Pages: 26

TR 1253
API Selection and Training Guidelines for In Situ Burning Personnel

This guidance is intended to be international in its scope with United States regulatory requirements used as exemplars that may be replaced by applicable jurisdictional requirements. References to the Hazardous Waste Operations and Emergency Response (HAZWOPER) regulation (29 CFR 1910.120) and the Incident Command System (ICS) may be replaced by local jurisdictional requirements outside of the United States. In the absence of applicable local requirements, HAZWOPER and ICS should be considered as a recognized standard of practice. This guidance is not intended to instruct the reader on how to conduct an in situ burn, or overlap with either of the in situ burn manuals (TR 1251 and TR 1252). The purpose of this guidance is to provide a systematic approach to assist users in the selection of responder qualifications and the training requirements for responders to in situ burning of spilled oil in the open water environment, ice conditions on water bodies, and the inland environment, including spills affecting freshwater, or in ice and snow. It was developed to serve as a reference for oil spill response policy makers and decision makers (government, industry, and other stakeholders). This report discusses requirements for ISB and includes a summary of oil chemistry, behavior, and weathering, which are important factors when making decisions to use ISB. Further, it allows decision makers to better understand the anticipated benefits and limitations to be considered when using this technology for an oil spill. Pages: 74

Publ 4558
Options for Minimizing Environmental Impacts of Freshwater Spill Responses

Developed for contingency planners and field responders, this guide provides information on 29 response methods and classifies their relative environmental impact for combinations of 4 oil types and 12 freshwater environments and habitats. Spill topics of concern in freshwater settings are discussed, including public health, conditions under which oil might sink in freshwater, oil behavior in ice conditions, permafrost, and firefighting foam use. Pages: 146

February 1995 | Product Number: I45580 | Price: $95.00

Publ 4640

The growing concern for petroleum contamination in freshwater ecosystems led API to generate an annotated bibliography to serve as a valuable resource of existing literature on petroleum and its impact on the freshwater environment. It cites literature from 1946 through 1993 on the impact of petroleum products and oil spill cleanup agents on the biota of freshwater ecosystems, on the chemistry and fate of petroleum and cleanup agents in freshwater, and on the review of cleanup methods in freshwater systems. The electronic companion infobase has been prepared in two versions to enhance the value of the annotations: (1) the VIP editable version of the infobase allows the user to add new references, make personal annotations (e.g. bookmarks, notes, highlights, and pop-ups), and delete unwanted references, and (2) the standard noneditable version is read-only. Both versions are completely searchable; each word in the bibliography is indexed. Pages: 224

March 1997
(noneditable) Product Number: I46400 | Price: $66.00
(VIP editable) Product Number: I46401 | Price: $81.00

Publ 4649
The Use of Chemical Countermeasures Product Data for Oil Spill Planning and Response, Volumes I and II

Addresses many of the issues related to potential uses of chemical countermeasure products in mitigating the environmental impacts of spilled oil. Volume I summarizes workshop deliberations and presents consensus recommendations from the sessions on environmental effects, effectiveness, and decision making. Volume II contains 13 background papers for workshop participants on various scientific and operational topics, e.g. aquatic toxicity, oil weathering, and decision making. Pages: 380

April 1995 | Product Number: I46490 | Price: $62.00
Health and Environmental Issues

Fax Orders: +1 303 397 2740 Online Orders: global.ihs.com

Publ 4675 Fate and Environmental Effects of Oil Spills in Freshwater Environments
Provides basic information necessary for the formulation of spill response strategies that are tailored to the specific chemical, physical, and ecological constraints of a given spill situation. It summarizes environmental effects from inland oil spills into fresh surface waters. It provides technical information for persons responsible for inland spill response and cleanup, for researchers, and for others dealing with protection of the environment from possible oil spill hazards. This research identifies, describes, and compares the behavior, fate, and ecological implications of crude oil and petroleum products in inland waters. Pages: 160
December 1999 | Product Number: I46750 | Price: $154.00

Publ 4684 Compilation and Review of Data on the Environmental Effects of In-Situ Burning of Inland and Upland Oil Spills
Burning of spilled oil provides a relatively easy, low-cost cleanup method by reducing removal, transportation, and disposal costs as well as reducing the time required for cleanup. This study was commissioned by API to identify those environmental conditions under which burning should be considered as a response option for oil spilled in inland and upland habitats. This report presents a summary of the case histories and lessons learned from previous uses of burning in inland environments, with and without oil. While some information on human health and safety is included, the focus of this report is on the environmental fate and effects of in-situ burning. Pages: 198
March 1999 | Product Number: I46840 | Price: $128.00

Publ 4689 Chemical Human Health Hazards Associated with Oil Spill Response
Contains an overview of human health hazards that could be encountered by personnel involved with spills or leaks of petroleum products. The discussion includes potential risks of basic components and products of concern. Environmental factors that may affect exposure and a brief summary of other exposure considerations are also included. Pages: 51
August 2001 | Product Number: I46890 | Price: $90.00

Publ 4691 Fate of Spilled Oil in Marine Waters: Where Does It Go? What Does It Do? How Do Dispersants Affect It?
This is the first of three short summary publications commissioned for preparation by API for oil spill response decision-makers to provide concise easy-to-use information on understanding the fate of spilled oil and dispersants, their use, effectiveness, and effects. When making decisions regarding dispersant use, or any other oil spill response countermeasure, it is important to have a clear understanding of the overall fate of the oil entering the environment. With this publication you will receive a complete yet concise review of oil chemistry and oil weathering. Also provided is information on how to interpret dispersant information more effectively and how dispersants alter or affect the weathering processes of oil. Pages: 30
March 1999 | Product Number: I46910 | Price: Free*

Publ 4692 A Decision-Maker's Guide to Dispersants: A Review of the Theory and Operational Requirements
This is the second of three short summary publications commissioned for preparation by the API for oil spill response decision-makers to provide concise easy-to-use information on understanding the fate of spilled oil and dispersants, their use, effectiveness, and effects. This publication provides a summary of dispersant technology. It focuses on chemical dispersant technology and the information needs of decision-makers regarding the use of chemical dispersants and their potential benefits and risks. A reference that every oil spill response decision-maker must have! Pages: 52
March 1999 | Product Number: I46920 | Price: Free*

Publ 4693 Effects of Oil and Chemically Dispersed Oil in the Environment
Crude oil is a complex, highly variable mixture of hydrocarbons and other trace compounds, and exposure may cause a variety of adverse effects. Dispersants are mixtures of chemicals, solvents, and surfactants used to reduce oil viscosity and help the oil break up and disperse into the water column. This booklet is intended to help bridge the gap in understanding information about exposure and effects of untreated oil and chemically dispersed oil in the marine environment. Pages: 50
May 2001 | Product Number: I46930 | Price: Free*

Publ 4706 Environmental Considerations for Marine Oil Spill Response
API is offering a new revision of Environmental Considerations for Marine Oil Spill Response, generally known as the “Marine Manual.” API, the National Oceanographic and Atmospheric Administration, the U.S. Coast Guard and the U.S. Environmental Protection Agency developed the Marine Manual for oil spill contingency planners and field responders. The information allows both planners and responders to identify techniques that minimize the ecological impact of both the response action and the spilled oil. Matrix tables allow comparison of 28 different methods for response, and classify their relative environmental impacts for combinations of 5 different oil types and 25 marine habitats. Pages: 322
July 2001 | Product Number: I47060 | Price: $82.00

Publ 4724 Recovery of Four Oiled Wetlands Subjected to In-Situ Burning
Four sites, including a diversity of oil types burned and habitats, were selected for follow-up review and evaluation of the effects of in-situ burning (ISB): Mosquito Bay spill in Louisiana, burned in April 2001; Lakehead Pipe Line spill in Ruffy Brook, Minnesota, burned in July 2000; Louisiana Point pipeline spill, burned in February 2000; and Chevron Pipe Line Milepost 68 near Corinne, Utah, burned twice, in March and April 2000. Site visits were conducted in July (Minnesota and Utah) and October (two sites in Louisiana). All available data on each site were collected from those involved in the burns and the post-burn monitoring. State and local monitoring data provided additional information. The site was photographed from the same position and perspective as photographs taken during and shortly after the spill and burn, creating time-series photography as a visual record of the use of in-situ burning and vegetative recovery. In combination with quantitative field measurements, photography provides an excellent understanding of the specific site conditions and how the results might apply to other sites. Because this report includes a large number of color photographs for the sites, which would make traditional printing of hardcopy reports very expensive, the report is being published in digital format on CD-ROM.
June 2003 | Product Number: I47240 | Price: $93.00

Publ 4735 In-Situ Burning: The Fate of Burned Oil
The in-situ burn (ISB) is an oil spill response option that has been used far less frequently than mechanical countermeasures (booms, skimmers, etc.), and consequently, familiarity with ISB operations is limited. Decision-makers need a comprehensive understanding of the oil, how it acts in the environment, and aspects of the burn process in order to understand the behavior of any ISB by-products and the potential impacts from an in-situ burn. This document was designed to capture that knowledge and present it clearly and concisely so you will have the necessary information to understand issues associated with fate and effects of oil to which ISB has been applied. It is not a set of instructions for carrying out a specific ISB. Pages: 54
April 2004 | Product Number: I47351 | Price: Free*
In-Situ Burning—A Decision-Maker’s Guide to In-Situ Burning

This scenario is fictitious, but the circumstances are possible. In-situ burning (ISB) is a response option that has been used less frequently than countermeasures like booms and skimmers or contaminated soil removal. Consequently, familiarity with the pros and cons of this option is limited. There are ISB “experts” in the United States and internationally, but the intentional practice of this response tool remains relatively limited for both on-water and on-land situations.

This booklet is the second in a series that were developed as reference documents for oil spill response decision-makers. It provides the reader with a comprehensive, concise, yet clear summary of the operational requirements and limitations for ISB and allows decision-makers to better understand the function of in-situ burning and the tradeoffs facing decision-makers in smitties technology when responding to an oil spill on land or on water.

Pages: 76

OIL SPILLS: MSRC REPORTS

Marine Spill Response Corporation (MSRC) Research & Development Technical Reports are available from the Linda Hall Library. To order, contact Document Services at 800-662-1545 or 816-363-4600; fax 816-926-8785; website: https://www.lindahall.org/.

TR 91-001
Priority Topics for Research and Development in Oil Spill Response

TR 92-001
An Analysis of Historical Oil Spills and Current Cleanup Requirements to Aid in Selecting New Technologies for Spill Cleanup Operations

TR 92-002
Airborne Surveillance Technology Options for Improving Oil Spill Cleanup and Response

TR 92-003
Tenyo Maru Oil Spill (Remote Sensing Data Analysis)

TR 92-004
Oil Spill Detection Using Satellite-Based SAR

TR 92-006
Incorporation of State of the Art Technologies to Oil Spill Modeling

TR 93-001
Evaluation of Marine Post-Spill Sites for Long-Term Recovery Studies

TR 93-002.1
ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 1)

TR 93-002.2
ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 2) (Hydrocarbon Chemistry Analytical Results for Year One)

TR 93-002.3
ROPME Sea Oil Spill Nearshore Geochemical Processes Study (Vol. 3) (Remote Sensing Derived Habitat Classification and Error Evaluation for Year One)

TR 93-003.1
Interlaboratory Calibration Testing of Dispersant Effectiveness: Phase 1

TR 93-003.2
Interlaboratory Calibration Testing of Dispersant Effectiveness: Phase 2

TR 93-004
Oil Spill Detection: Documentation of Historical Remote Sensing Projects and Status

TR 93-006
MSRC Oil Spill Response Vessel Recovered Oil Systems Tests

TR 93-007
Occupational Health Implications of Crude Oil Exposure: Literature Review and Research Needs

TR 93-009.1
Aerial Dispersant Application: Assessment of Sampling Methods and Operational Altitudes, Vol. 1

TR 93-012
MSRC Workshop Report: Research on Worker Health & Safety

TR 93-013
MSRC Workshop Report: Research on Bioremediation of Marine Oil Spills

TR 93-014
MSRC Workshop Report: Research on the Ecological Effects of Dispersants and Dispersed Oil

TR 93-018
Formation and Breaking of Water-in-Oil Emulsions: Workshop Proceedings

TR 93-019
Mesocosm Test Facility Strawman Design

TR 93-023
Seminar on Software for Oil Spill Response and Contingency Planning

TR 93-024
Summary Report MSRC/IKU Flume Design Workshop

TR 93-026
Demulsification by Use of Heat and Emulsion Breaker

TR 93-027
Transfer of Crude Oil Weathering Technology

TR 93-028
Evaluation of a Toxicity Test Method Used for Dispersant Screening in California

TR 93-029
Technical Evaluation of the Coastal Oil Spill Simulation System Prototype

TR 93-030
Determination of Oil and Emulsions Viscosity and Interfacial Tension

TR 93-031
Recovered Oil and Oily Debris Handling to Facilitate Disposal
Health and Environmental Issues

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

TR 93-032
Weathering Properties and Chemical Dispersibility of Crude Oils Transported in U.S. Waters

TR 94-001
In-Situ Burning of Water-in-Oil Emulsions

TR 94-003
Waterbird Deterrent Techniques

TR 94-004
A Review of the Methods and Ecological Consequences of Substrate Aeration for the Enhancement of Oil Bioremediation in Wetlands

TR 94-005
Coastal Oil Spill Simulation System Prototype Testing Program

TR 94-006
MSRC Workshop Report: Research on Waterbird Deterrents at Marine Oil Spills

TR 94-007
Phase 1: Oil Containment Boom at Sea Performance Test

TR 94-008
Rheological Correlation Studies on Water-in-Oil Emulsions

TR 94-010
Dispersed Oil and Dispersant Fate and Effects Research, California Program Results for 1993–94

TR 94-011
Toxicity Bioassays on Dispersed Oil in the North Sea: August 1994 Field Trials

TR 94-012
Demulsification by Use of Heat and Emulsion Breakers, Phase 2

TR 94-013
The Science, Technology and Effects of Controlled Burning of Oil Spills at Sea

TR 94-015
Comparison of Physically and Chemically Dispersed Crude Oil Toxicity Under Continuous and Spiked Exposure Scenarios

TR 94-018
Potential Use of the Microtox Assay as an Indicator of the Toxicity of Dispersed Oil

TR 94-019
Aerial Dispersant Application: Field Testing Research Program (Alpine, Texas)

TR 95-001
Phase 2: At Sea Towing Tests of Fire Resistant Oil Containment Booms

TR 95-002
Isolation and Identification of Compounds and Mixtures Which Promote and Stabilize Water-in-Oil Emulsions

TR 95-003
Phase 3: Oil Containment Boom at Sea Performance Tests

TR 95-004
Utility of Current Shoreline Cleaning Agent Tests in Field Testing

TR 95-005
An Analysis of Historical Opportunities for Dispersant and In-Situ Burning Use in the Coastal Waters of the United States Except Alaska

TR 95-007
Field Evaluation of Bioremediation in Fine Sediments

TR 95-010
Laboratory Studies of the Properties of In-Situ Burn Residues

TR 95-011
Formulation of New Fireproof Boom Designs

TR 95-012
Dispersed Oil and Dispersant Fate and Effects Research: California Program Results for 1994–1995

TR 95-014
The Effects of Oil and Chemically Dispersed Oil in Tropical Ecosystems: 10 Years of Monitoring Experimental Sites

TR 95-015
Reduction in the Toxicity of Crude Oil During Weathering on the Shore

TR 95-017
Mesoscale In-Situ Burn Aeration Test

TR 95-018
Proceedings of the Third Meeting of the Chemical Response to Oil Spills: Ecological Effects Research Forum

TR 95-019
A Mental Models Approach to Preparing Summary Reports on Ecological Issues Related to Dispersant Use

TR 95-020.1
Development of Protocols for Testing Cleaning Effectiveness and Toxicity of Shoreline Cleaning Agents (SCAs) in the Field

TR 95-020.2
Test Cleaning Effectiveness and Toxicity of Shoreline Cleaning Agents (SCAs): Data Report

TR 95-021
New Brunswick Bird Deterrent Study

TR 95-022
Proceedings of the Workshop on Technical Issues Related to Mesocosm Research in the Coastal Oil Spill Simulation System Facility

TR 95-024
Oil Weathering Study of the Morris J. Berman No. 6 Cargo Oil

TR 95-025
Oil Weathering Study of Arabian Light Crude Oil

TR 95-026
Oil Weathering Study of Maya Crude Oil

TR 95-027
Weathering Characterization of Heavy Fuels

TR 95-029
Dispersant Effectiveness: Phase 3
Health and Environmental Issues

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

TR 95-030
Standard Method for Viscosity Measurement of Water-in-Oil Emulsions

TR 95-031
Toxicity Assessment of Oiled and Treated Sediments from and Experimental Bioremediation Site in Delaware Bay, USA

TR 95-033
Large Scale Testing of the Effect of Demulsifier Addition to Improve Oil Recovery Efficiency

TR 95-034
Evaluation of Oil Spill Cleanup Techniques in Coastal Environments

TR 95-038
Key Factors that Control the Efficiency of Oil Spill Mechanical Recovery Methods

BIENNIAL OIL SPILL CONFERENCE PROCEEDINGS

These conferences are sponsored by API, the U.S. Environmental Protection Agency, the U.S. Coast Guard, the International Petroleum Industry Environmental Conservation Association, and the International Maritime Organization. They address oil-spill prevention, behavior, effects, control, and cleanup.

Publ 4452
1987 Oil Spill Conference Proceedings
Product Number: I44520 | Price: $62.00

Publ 4479
1989 Oil Spill Conference Proceedings
Product Number: I44790 | Price: $62.00

Publ 4529
1991 Oil Spill Conference Proceedings
Product Number: I45290 | Price: $62.00

Publ 4575
Proceedings of the 1991 Oil Spill Conference Infobase
The Proceedings of the 1991 Oil Spill Conference are available on 3.5-in. or 5.25 in. computer diskette. More than 700 pages of proceedings, including hundreds of illustrations, can be loaded onto IBM or IBM-compatible personal computers. The minimum requirements of 512 KB RAM, hard disk drive, VGA monitor, and DOS 3.0 or higher, are listed in the reference manual that gives complete instructions for operating the infobase. A tutorial and glossary are included.

January 1993 | Product Number: I45751 | Price: $71.00

Publ 4580
1993 Oil Spill Conference Proceedings
Product Number: I45800 | Price: $65.00

Publ 4620
1995 Oil Spill Conference Proceedings
Product Number: I46200 | Price: $65.00

Publ 46201
1995 Abstracts to Oil Spill Conference Proceedings
Product Number: I46201 | Price: $65.00

Publ 4621
1995 Oil Spill Conference White Papers
Three white papers—(1) “Implementing an Effective Response Management System,” (2) “The Use and Misuse of Science in Natural and Resource Damage Assessment,” and (3) “Perspectives on Establishing and Maintaining Oil Pollution Capabilities”—were prepared for the 1995 Oil Spill Conference to address issues of varying scientific and sociopolitical importance to the oil spill community. During the 1995 conference, each white paper was the topic of a special panel session. Pages: 199

Product Number: I46210 | Price: $65.00

Publ 4651
1997 Oil Spill Conference Proceedings
April 1997 | Product Number: I46510 | Price: $65.00

Publ 4652
1997 Oil Spill Conference Issue Papers
Three issue papers—(1) “Putting Dispersants to Work: Overcoming Obstacles,” (2) “International Responsibilities: Are We Our Brothers’ Keeper?,” and (3) “Differences in Risk Perception: How Clean is Clean?”—were prepared for the 1997 Oil Spill Conference to address issues of varying scientific and socio-political importance to the oil spill community. During the 1997 conference, each issue paper was the topic of a special panel session. Pages: 196

April 1997 | Product Number: I46520 | Price: $65.00

Publ 4675
Fate and Environmental Effects of Oil Spills in Freshwater Environments
Provides basic information necessary for the formulation of spill response strategies that are tailored to the specific chemical, physical, and ecological constraints of a given spill situation. It summarizes environmental effects from inland oil spills into fresh surface waters. It provides technical information for persons responsible for inland spill response and cleanup, for researchers, and for others dealing with protection of the environment from possible oil spill hazards. This research identifies, describes, and compares the behavior, fate, and ecological implications of crude oil and petroleum products in inland waters. Pages: 160

December 1999 | Product Number: I46750 | Price: $154.00

Publ 4684
Compilation and Review of Data on the Environmental Effects of In-Situ Burning of Inland and Upland Oil Spills
Burning of spilled oil provides a relatively easy, low-cost cleanup method by reducing removal, transportation, and disposal costs as well as reducing the time required for cleanup. This study was commissioned by API to identify those environmental conditions under which burning should be considered as a response option for oil spilled in inland and upland habitats. This report presents a summary of the case histories and lessons learned from previous uses of burning in inland environments, with and without oil. While some information on human health and safety is included, the focus of this report is on the environmental fate and effects of in-situ burning. Pages: 198

March 1999 | Product Number: I46840 | Price: $128.00

Publ 4686
1999 Oil Spill Conference Proceedings
1999 | CD-ROM Product Number: I4686A | Price: $63.00
Hard Copy Product Number: I4686B | Price: $63.00

This publication is related to an API licensing, certification, or accreditation program.
Health and Environmental Issues

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Pubi 4687
1999 International Oil Spill Conference Issue Papers

Two issue papers: (1) “Myths and Realities of Oil Spill Planning and Response: The Challenges of a Large Spill”—This paper reviews the myths and realities of spill preparedness and response—where improvements have occurred, which elements have been most or least effective, and where future investment should concentrate. Too many myths remain, and too few realities are understood; (2) “Judging Oil Spill Response Performance: The Challenge of Competing Perspectives”—This paper explores the roles of various participants and interested observers in a spill response and the criteria by which they judge it. Recommendations are offered to move toward a more systematic approach based on teamwork and guided by goals and performance criteria that have been accepted in advance by all stakeholders. These papers were prepared for the 1999 Oil Spill Conference to address issues of varying scientific and sociopolitical importance to the oil spill community. Pages: 106

January 1999 | Product Number: I46870 | Price: $65.00

Pubi 4710
2003 Oil Spill Conference Proceedings

CD-ROM Product Number: I4701A | Price: $333.00
Hard Copy Product Number: I4701B | Price: $333.00

Pubi 4718
2005 Oil Spill Conference Proceedings

CD-ROM Product Number: I47180A | Price: $333.00

SEDIMENTS

Pubi 4607

Serves as a comprehensive guide for the selection of sediment toxicity tests. It compares the types of tests available, specific test methods, and selection of species for their strengths and weaknesses for a particular kind of habitat. Descriptions are provided on test types, test species, and sediment preparations. This publication additionally includes a user’s guide for readers unfamiliar with sediment toxicity testing. See also Publ 4608. Pages: 236

November 1994 | Product Number: I46070 | Price: $118.00

Pubi 4608
User’s Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs

Provides an introduction to sediment toxicity testing and presents to those unfamiliar with such testing how the resource manual (Pubi 4607) can be used. The document contains descriptions of habitat type, sediment test systems, and biological endpoints. Site-specific concerns are identified to aid in test selection. Brief summaries of sampling and data analysis issues are also presented. Pages: 34

November 1994 | Product Number: I46080 | Price: $65.00

Pubi 4632
Reducing Uncertainty in Laboratory Sediment Toxicity Tests

Evaluates some of the critical components of laboratory experiments that need to be considered to obtain accurate sediment toxicity assessments. The report describes the formulation and evaluation of a reference sediment, it examines the tolerances of common testing species to sediment characteristics, evaluates copper sulfate as a reference toxicant by determining the relative sensitivities of freshwater testing organisms, and evaluates potential sublethal endpoints for sediment potency. Pages: 152

September 1995 | Product Number: I46320 | Price: $67.00

Waste Research

Guidelines for Commercial Exploration and Production Waste Management Facilities

Provides guidelines for the design and operations of commercial E&P waste management facilities to allow operators to identify areas where their facility could have impacts on the surrounding community and environment, and gives options for preventing/reducing those impacts. The guidelines are not meant to supersede any applicable local, state, or federal requirements. Pages: 80

March 2001 | Product Number: G00004 | For a free copy of this document, please visit https://www.api.org/~media/Files/EHS/Environmental_Performance/E_P_Waste_Guidelines.pdf

Overview of Exploration and Production Waste Volumes and Waste Management Practices in the United States

Presents the results of a survey of the industry covering 1995 that describes current volumes of wastes generated from the production of oil and gas, describes how those wastes are managed, and identifies changes in waste management practices over the past decade. The report includes numerous tables presenting the results from the survey.

May 2000

DR 53
Characterization of Exploration and Production Associated Wastes

Approximately 0.1 % of the total volume of exploration and production wastes generated annually by the oil and gas industry is classified as associated waste. This report presents the analytical characterization of 120 samples representing 12 different associated waste categories. Fate and transport modeling of the characterization data are also included. The modeling suggests that associated wastes do not pose a threat to groundwater when managed in accordance with API guidance on landspreading, roadspreading, and burial. Pages: 160

November 1996 | Product Number: I00053 | Price: $147.00

Pubi 351
Overview of Soil Permeability Test Methods

The determination of soil permeability is one of the most important items in assessing aboveground storage tank facilities’ secondary containment areas. This publication outlines various methods to test the permeability of soil and distinguishes between laboratory and field methods, though it does not supply an exhaustive list of all available permeability methods. These methods are identified according to their applicability to particular soil types. The methods presented in this report are applicable to fine-grained soils (silt and clay) and coarse-grained soils (sands and gravels), but may not be appropriate to organic soils, such as peat, or to materials such as construction and demolition debris. All methods should be fully investigated for appropriateness and to determine its suitability to a particular situation. Pages: 60

April 1999 | Product Number: J35100 | Price: $98.00

Pubi 4465
Evaluation of the Treatment Technologies for Listed Petroleum Refinery Wastes

Evaluated the efficacy of five treatment methods, alone and in combination, for listed petroleum refinery wastes: mechanical treatment (filtration), solvent extraction, thermal treatment (drying), chemical fixation, and pyrolysis. The use of all the methods resulted in wastes of substantially reduced hazard, as measured by total and leachable concentration of residues in the product solid. Pages: 200

December 1987 | Product Number: I44650 | Price: $76.00

This publication is a new entry in this catalog.

This publication is related to an API licensing, certification, or accreditation program.
Publ 4527
Evaluation of Limiting Constituents Suggested for Land Disposal of Exploration and Production Wastes
Describes a study to develop salinity and petroleum hydrocarbon threshold guidance values that typically should not be exceeded for one-time land application of exploration and production wastes. Definition, technical justification, and guidance for application of threshold values are provided. Measurable parameters that serve as indices for proper environmental management of salinity and petroleum hydrocarbons include: electrical conductivity, sodium adsorption ratio and exchangeable sodium percentage for salinity, and oil and grease for petroleum hydrocarbons. Pages: 66
August 1993 | Product Number: I45270 | Price: $67.00

Publ 4600
Provides scientifically defensible guidelines for land management of exploration and production wastes containing metals. It provides the technical support for recommended maximum concentrations of 12 metals. The guidance values for arsenic, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc were adopted directly from sewage sludge regulations promulgated by the U.S. Environmental Protection Agency in 1993. A risk-based approach was used to develop guidance values for barium and boron. The report also provides practical information on sample collection, analyses, and calculation of waste application rates. Pages: 56
January 1995 | Product Number: I46000 | Price: $65.00

Publ 4618
Characteristics and Performance of Supercritical Fluid Extraction (SFE) in the Analysis of Petroleum Hydrocarbons in Soils and Sludges
Summarizes the results of a study to evaluate and improve SFE methods and instrumentation for analytical-scale extractions of petroleum hydrocarbons from soils and sludges. The study determines which types of samples and waste are best suited for analysis by SFE and optimal conditions for complete extraction. Pages: 24
May 1995 | Product Number: I46180 | Price: $65.00

Publ 4663
Remediation of Salt-Affected Soils at Oil and Gas Production Facilities
Water separated from oil and gas during production contains dissolved solids, including salt. If improperly handled, produced water with sufficient salt concentrations can damage plants and soils. Therefore, this manual was designed to assist the oil and gas environmental professional and field personnel to (1) assess sites with salt-affected soils; (2) evaluate remedial alternatives; and (3) conduct remedial activities, if necessary. It provides forms for organizing assessment information and conducting sample collection and analysis. Remediation options are divided into three primary groupings: natural remediation, in-situ chemical amendment remediation, and mechanical remediation. A decision tree and worksheets are provided to aid in the selection of a remedial option(s). Technical approaches for applying each group of remedial options are discussed. A number of appendices provide supplementary information on various aspects of salt-affected soil remediation.
October 1997 | Product Number: I46630 | Price: $119.00

Publ 4733
Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons
The purpose of this study was to develop toxicity values and screening guidelines for evaluating risks to livestock from exposure to petroleum hydrocarbons. This report addresses how to determine whether livestock should be included in a risk evaluation, and estimate risks of petroleum hydrocarbon exposures to livestock. Pages: 50
July 2004 | Product Number: I47330 | Price: $100.00

Publ 4734
Modeling Study of Produced Water Release Scenarios
Provides a scientific basis for operators, regulators, and landowners to determine if assessment or remediation of produced water releases will provide a meaningful environmental benefit. The two principal research objectives of this study are (1) the identification of produced water release scenarios that have a potential to cause groundwater quality impairment in homogeneous subsurface geologic profiles and (2) the prediction of chloride movement through the vadose zone for different release scenarios. Secondary objectives of the study included evaluation of the effect of heterogeneity on the migration of chloride through the vadose zone, the impact of repeat releases, and the effect on groundwater quality of surface soil restoration by revegetation and soil leaching. The sensitivity analysis performed in this study provides an overview of the likelihood of groundwater impairment for large release volumes (100 bbls and 10,000 bbls). Assuming homogeneous unsaturated zone soil profiles, the results of over 1000 modeled release scenarios reveal that 49 % of single-event releases do not cause impairment of groundwater above drinking water standards for chloride (250 mg/L) in a monitoring well that is adjacent to the edge of the release. In 70 % of these scenarios, chloride concentrations in groundwater do not exceed 1000 mg/L. Although these numbers give no information about the fate of chloride from a specific produced water release, they do indicate that a release does not necessarily cause groundwater impairment. Pages: 124
January 2005 | Product Number: I47340 | Price: $134.00

Publ 4758
Strategies for Addressing Salt Impacts of Produced Water Releases to Plants, Soil, and Groundwater
The exploration and production industry uses great care during the handling and disposal of the produced water that is generated as part of oil and gas production. However, unintentional releases can occur. Depending on the chemical composition of the produced water and the nature of the local environment, salts associated with such releases can impair soils, vegetation, and water resources. Provides a collection of simple rules of thumb, decision charts, models, and summary information from more detailed guidance manuals to help you address the following assessment and response issues:
- Will a produced water release cause an unacceptable impact on soils, plants, and/or groundwater?
- In the event of such an impact, what response actions are appropriate and effective? Pages: 29
1st Edition | September 2006 | Product Number: I47580 | Price: $76.00
Data Products

API DATA

Your Portal for Petroleum Statistics and Information
www.api.org/data

Nowadays, the oil and natural gas industry moves, quite literally, at the speed of light. Information races around the globe in the blink of an eye. Facts and figures fly back and forth, and if you are in the right place at the right time, you get the information you need.

API is the premier source for petroleum industry data and information. API's data and statistics are accurate, comprehensive, timely, and quoted widely.

API Data is a service that provides industry statistics to its data subscribers.

For more information, visit
https://www.api.org/products-and-services/statistics

For technical inquiries, contact apidata@api.org

Weekly Statistical Bulletin (WSB)

Where Traders Around the World Get Their Data

API's weekly data bulletin reports total U.S. and regional data relating to refinery operations and the production of the four major petroleum products: motor gasoline; kerosene jet fuel; distillate (by sulfur content); and residual fuel oil. These products represent more than 85% of total petroleum products' production, imports, refinery operations, and utilization data are also included in the weekly report. Refinery inputs and utilization data are also included in the weekly report.

Published weekly every Tuesday afternoon (or every Wednesday afternoon in the event of a Monday U.S. Federal holiday).

API's WSB Data is timely and accurate information currently available for futures commodities trading and analysis through authorized API redistributors. Contact apidata@api.org for more information.

To obtain information on subscribing to the Weekly Statistical Bulletin, please visit https://www.api.org/products-and-services/statistics/api-weekly-statistical-bulletin#tab-contact

Monthly Statistical Report

Contains timely interpretation and analysis of recent developments on major products' production, imports, refinery operations, and inventories. This report includes API’s estimates of these data for the most recent month and graphs of major series, including product deliveries, crude oil production, imports, refinery activity, and inventories for the past 24 months.

In addition, the December issue, published in mid-January, presents year-end supply/demand estimates and summarizes developments of the year.

API’s Monthly Statistical Report is published 2 to 3 weeks following the end of the month.

To obtain a copy of this report, please visit https://www.api.org/products-and-services/statistics/api-monthly-statistical-report

Imports and Exports of Crude Oil and Petroleum Products

(12 Issues)

Published monthly by the API, the imports report contains detailed company level data on the imports of crude oil and petroleum products. Details include: record on importer, port of entry, country of origin, recipient, destination, quantity and API gravity (except residual fuel oil), and sulfur content (for crude oil and residual fuel oil).

The exports report is based on reports published by the U.S. Department of Energy’s Energy Information Administration; however, it is presented in a more user-friendly and easier reporting layout. The report is available by the second week of each month, containing data from 2 months earlier (e.g. August imports report is published around the second week of November).

Historical data are also available in electronic format.

Single Subscriber
Product Number: T00050 | Price: $12,772.00

Inventories of Natural Gas Liquids and Liquefied Refinery Gases

Presents data on the inventory levels of ethane, propane, isobutane, normal butane, and pentanes plus. These inventories, located at natural gas plants, at refineries, at bulk terminals, and in underground storage, are grouped into eight regional areas. The report is issued at the end of each month, containing data from the prior month (e.g. August report is published at the end of September).

Single Subscriber
Product Number: T00004 | Price: $4,326.00

Quarterly Well Completion Report (QWCR)

The QWCR provides detailed information on reported drilling activity and estimates the total number of wells and footage drilled. The estimates of quarterly completions and footage are displayed by well type, well class, and quarter for the 10 years prior. More detailed estimates of quarterly completions and footage are disaggregated by well type, depth interval, and quarter for the current year and 2 years prior. In addition, wells reported to API (not estimates) are listed on a state and regional level, disaggregated by well class, well type, and quarter, for the current year and 2 years prior.

The report is available within 2 weeks following the end of a quarter.

Single Subscriber
Product Number: T00006 | Price: $3,193.00

Sales of Natural Gas Liquids and Liquefied Refinery Gases

This report presents the results of the annual survey, published in December, jointly sponsored by the American Petroleum Institute (API), Gas Processors Association (GPA), National Propane Gas Association (NPGA), and Propane Education & Research Council (PERC). This publication reports estimated sales of gasoline gas broken down by end use on a state and PADD basis. The Summary section presents the sales of butane, ethane, pentanes plus, and propane broken down by product type and PADD.

As of 2017, API no longer publishes this report. Historical editions are available for years 2016 and prior.

Joint Association Survey on Drilling Costs (JAS)

The JAS is an annual survey, published in December, that contains the only long-term source of information for detailed U.S. drilling expenditures on wells, and footage. An Analysis & Trends section provides detailed information and graphs about offshore and onshore wells, shale wells, coalbed methane wells, and sidetrack wells. The data presented in the U.S. Summary Tables section are broken down by well type (oil wells, gas wells, and dry holes) and by depth interval. Additionally, the data in these tables are disaggregated by well class (exploratory wells and development wells) and well location (offshore and onshore).

Single Subscriber
(2018 Data) Product Number: T00007 | Price: Call for quote

Basic Petroleum Data Book (2 Issues)

It provides valuable domestic and world statistical background information, beginning in most instances with 1947. Included are data on energy, reserves, exploration and drilling, production, finance, prices, demand, refining, imports, exports, offshore transportation, natural gas, Organization of Petroleum Exporting Countries, and environment.

The printed Data Book is updated and published twice a year, in June and December. Each report is issued in a self-contained, bound volume and is no longer needed once the next issue is published.

Both the electronic and printed versions also include a glossary of definitions and a source list (names, telephone numbers) for references in the Data Book.

Single Subscriber
Electronic Product Number: T00008 | Price: $5,047.00
Hard Copy (2 Issues Only) Product Number: 05400 | Price: $1,751.00
government to address the non-problem of resource exhaustion will resources for development. However, there is a danger that attempts by dismissed. Nature continues to be quite generous in providing oil imminent exhaustion of world oil resources—is actually the most easily assessed. The analysis shows that the obvious concern—that of both the historical record and the most prominent recent geological permitted process, how they assure mitigation is successful, and how they achieve no overall net loss of wetlands.

February 1995

DP 081
Are We Running Out of Oil?
Since the dawn of the petroleum industry in the mid-19th century, there have been recurrent waves of concern that exhaustion of the world’s petroleum resource base was imminent. This study examines carefully both the historical record and the most prominent recent geological assessments. The analysis shows that the obvious concern—that of imminent exhaustion of world oil resources—is actually the most easily dismissed. Nature continues to be quite generous in providing oil resources for development. However, there is a danger that attempts by government to address the non-problem of resource exhaustion will distract from or even aggravate the challenge of removing institutional barriers to supply development.

December 1995

DP 084R
Analysis of the Costs and Benefits of Regulations: Review of Historical Experience
Recent legislative proposals to reform the regulatory process have included the use of benefit cost analysis to decide whether or not a regulation should be implemented. The purpose of this paper is to assess the current practices of benefit cost analysis, primarily through examination of the series of regulatory impact analyses mandated by presidential executive orders. While the record is mixed, it shows that in many, but perhaps not all, cases it is possible to develop a reasonable estimate of the benefits and costs of proposed regulations and to decide among regulatory alternatives on the basis of these analyses.

December 1996

DP 086
Opposition to OCS Development, Historical Context and Economic Considerations
This paper reviews the history of offshore leasing, focusing on the long conflict between the federal government and the states over control of the leasing process. The paper then examines economic aspects of leasing and relates these to the controversy surrounding leasing. The conclusions of the analysis suggest that consideration should be given to sharing a portion of federal offshore revenues with affected coastal communities. This sharing has the potential to reduce opposition to offshore leasing and allow the nation to realize more of the net benefits from tapping offshore oil and natural gas resources.

November 1996

DP 088
Restoring Natural Resources: Legal Background and Economic Analysis
This paper reviews the legislative and legal history behind the resource damage restoration regulations under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Oil Pollution Act (OPA). The damage restoration debate is whether the objective is to restore a natural resource’s lost services or whether to restore the exact chemical, biological, and physical characteristics. This paper reviews the debate over these approaches to restoration and the economic implications of adopting one approach over another. This paper supports a services approach and suggests modifications to the current interpretation of restoration requirements.

October 1997

RESEARCH STUDIES

RS 032
An Empirical Analysis of the Determinants of Petroleum Drilling
December 1983

RS 051
The Use of Economic Incentive Mechanisms in Environmental Management
June 1990

RS 053
Reducing Emissions from Older Vehicles
August 1990

RS 056
Economics of Alternative Fuel Use: Compressed Natural Gas as a Vehicle Fuel
December 1990

RS 064
U.S. Petroleum Supply: History, Prospects, and Policy Implications
September 1992
RS 067
The Cost Effectiveness of Vehicle Inspection and Maintenance Programs
Several states began automobile inspection and maintenance (I/M) programs during the 1970s as part of their effort to reduce carbon monoxide and ozone precursor emissions. The Clean Air Act Amendments of 1990 further increased the scope of I/M programs. This paper offers an evaluation of inspection and maintenance from the perspective of cost-effectiveness: program costs divided by program effectiveness. Effectiveness is measured in tons of pollutants removed: volatile organic compounds, carbon monoxide, and nitrogen oxides. Where possible, individual program components are evaluated with respect to cost-effectiveness that should be included in assessments of I/M: a formal decision tree model of the I/M process; cost-effectiveness estimates of current and enhanced I/M programs; and alternatives for making I/M more cost-effective.

December 1993

RS 074
Air Emissions Banking and Trading: Analysis and Implications for Wetland Mitigation Banking
Examines the history of the air emissions banking and trading policy initiated by EPA in the early 1970s and identifies the factors that hindered its success. The lessons learned from the air emissions program are applied to wetland mitigation banking. It is hoped that wetlands banking and trading mechanisms will increase the ability to proceed with economic activity and still preserve wetlands. Potential solutions for avoiding the problems encountered in the air emissions trading program are also discussed.

February 1994

RS 075
Improving Cost-Effectiveness Estimation: A Reassessment of Control Options to Reduce Ozone Precursor Emissions
Regulators and industry use cost-effectiveness techniques as a decision tool to rank the desirability of emission control strategies. This paper examines the conceptual basis for cost-effectiveness estimates for the control of stationary mobile source emissions focusing on volatile organic compounds that are precursors of ozone. The paper also provides an independent set of cost-effectiveness estimates for enhanced inspection/maintenance programs, vehicle scrapage, the low emission vehicle standard, and reformulated gasoline.

August 1994

RS 076
Paying for Automobile Insurance at the Pump: A Critical Review
Proponents of pay-at-the-pump (PAP) auto insurance advocate replacing the current system of driver-purchased motor vehicle insurance with a new one where a major portion of the cost of insurance would be paid for by new taxes at the gasoline pump. Some groups and states have given some consideration to a form of PAP insurance. This paper examines efficiency and equity effects of such proposals. It finds the PAP proposals (a) are based on false assumptions of accident causes; (b) are not needed to solve the uninsured motorist problem; (c) incorrectly link promises of large savings to paying for insurance at the pump; and (d) are both inequitable and inefficient.

December 1994

RS 082
Superfund Liability and Taxes: Petroleum Industry Shares in Their Historical Context
Summarizes historic and current information about petroleum industry Superfund cleanup liability and taxes. It estimates the amount of Superfund taxes paid from 1982 through the early 1990s and then calculates the petroleum industry’s share of those taxes. This paper documents the large disparity that exists between the share of Superfund taxes paid by the petroleum industry and the share of contamination that can be attributed to the petroleum industry; the results show that the petroleum industry’s share of general Superfund taxes far exceeds its share of cleanup costs.

July 1996

RS 094
How Unilateral Economic Sanctions Affect the U.S. Economy: An Inter-Industry Analysis
The National Association of Manufacturers (1997) estimates that a total of 61 U.S. laws and executive actions targeting 35 countries and billions of dollars of goods and services have been unilaterally enacted over the 1993-1996 period. Hubauer et al. (1997) have estimated that U.S. unilateral sanctions in force in 1995 reduced exports by $15 billion to $19 billion in that year, putting at risk 200,000 to 250,000 high-wage export supported jobs. This report provides sector and industry specific breakdowns of such aggregate impacts. Also, the initial impact in a given industry is traced to supporting industries, e.g. to input suppliers, and transport and marketing industries. Thus, while the direct burden of sanctions may fall on a narrow set of industries, the analysis reveals the extent to which the impacts spill over into other sectors of the economy, an area to date that has not received adequate attention. It follows that foregone exports are too narrow a measure of the costs of unilateral economic sanctions. The report also notes that capital goods, energy, chemicals, and agricultural products have been disproportionately impacted by U.S. unilateral sanctions.

November 1998

OTHER PUBLICATIONS

The Economics of Energy Security
Prepared by Douglas R. Bohi and Michael A. Toman Thisan. This book examines energy security as a basis for designing energy policy. Energy security refers to the loss of economic welfare that may occur as a result of change in price or availability of energy. (ISBN 0-7923-9664-2)

January 1996

To order, please visit https://www.springer.com/us/book/9780792396857

PAPERS ON SPECIFIC ISSUES

For specific information on Policy Analysis Department publications, call (202) 682-8166, fax 202-682-8408, or write to the following address:

API
Policy Analysis Department
200 Massachusetts Avenue NW
Suite 1100
Washington, DC 20001-5571
DVD

Fuel-Less, You Can't Be Cool Without Fuel

A 17-minute educational and entertaining DVD film for teen students that uses pop music and dance to illustrate the often invisible role petroleum products play in our lives. It shows how oil is transformed into products such as gasoline, jet fuel, cosmetics, clothing, CDs, and even aspirin. The film, designed for a middle-school audience, was produced by Emmy award-winning journalist Ellen Kingsley with a cast that includes a real science teacher and several teens.

September 1996 | Price: No charge for first five single copies
To order, contact the API Communications Department: (202) 682-8062
Translated Publications

**CHINESE * **

Spec Q1
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Chinese
Chinese translation of Spec Q1.
9th Edition | June 2013 | Product Number: G0Q109C | Price: $92.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese
Chinese translation of Spec Q2.
1st Edition | December 2011 | Product Number: G0Q201C | Price: $61.00

Spec 2B
Specification for the Fabrication of Structural Steel Pipe—Chinese
Chinese translation of Spec 2B.

Spec 2C
Offshore Pedestal-Mounted Cranes—Chinese
Chinese translation of Spec 2C.
7th Edition | March 2012 | Product Number: G02C07C | Price: $110.00

Spec 2F
Specification for Mooring Chain—Chinese
Chinese translation of Spec 2F.
6th Edition | June 1997 | Product Number: G02F06C | Price: $69.00

Spec 4F
Specification for Drilling and Well Servicing Structures—Chinese
Chinese translation of Spec 4F.

RP 5A5/ISO 15463:2003
Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe—Chinese
Chinese translation of RP 5A5.
7th Edition | June 2005 | Product Number: GX5A507C | Price: $119.00

RP 5C1
Recommended Practice for Care and Use of Casing and Tubing—Chinese
Chinese translation of RP 5C1.
18th Edition | May 1999 | Product Number: G05C18C | Price: $88.00

Spec 5CT
Casing and Tubing—Chinese
Chinese translation of Spec 5CT.
10th Edition | June 2018 | Product Number: G5CT010C | Price: $197.00

Spec 5DP/ISO 11961:2008
Specification for Drill Pipe—Chinese
Chinese translation of Spec 5DP.
1st Edition | August 2009 | Product Number: GX5DP01C | Price: $138.00

Spec 5L
Line Pipe—Chinese
Chinese translation of Spec 5L.
46th Edition | April 2018 | Product Number: G05L46C | Price: $209.00

Spec 5LCP
Specification on Coiled Line Pipe—Chinese
Chinese translation of Spec 5LCP.
2nd Edition | October 2006 | Product Number: G5LCP2C | Price: $112.00

RP 5LT
Recommended Practice for Truck Transportation of Line Pipe—Chinese
Chinese translation of RP 5LT.
1st Edition | March 2012 | Product Number: G5LT01C | Price: $46.00

Spec 5ST
Specification for Coiled Tubing—U.S. Customary and SI Units—Chinese
Chinese translation of Spec 5ST.
1st Edition | April 2010 | Product Number: G5ST01C | Price: $102.00

Spec 6D
Specification for Pipeline and Piping Valves—Chinese
Chinese translation of Spec 6D.
24th Edition | August 2014 | Product Number: G6D024C | Price: $114.00

Spec 7-1/ISO 10424-1:2004
Specification for Rotary Drill Stem Elements—Chinese
Chinese translation of Spec 7-1.
1st Edition | February 2006 | Product Number: GX7101C | Price: $123.00

Spec 7F
Oil Field Chain and Sprockets—Chinese
Chinese translation of Spec 7F.
8th Edition | November 2010 | Product Number: G7F008C | Price: $89.00

Spec 7NRV
Specification for Drill String Non-Return Valves—Chinese
Chinese translation of Spec 7NRV.
1st Edition | July 2006 | Product Number: G7NRV01C | Price: $53.00

Spec 8C
Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)—Chinese
Chinese translation of Spec 8C.
5th Edition | April 2012 | Product Number: GX08C05C | Price: $107.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
RP 11BR	Recommended Practice for the Care and Handling of Sucker Rods—Chinese	Chinese translation of RP 11BR.
Spec 11E	Specification for Pumping Units—Chinese	Chinese translation of Spec 11E.
Spec 12J	Specification for Oil and Gas Separators—Chinese	Chinese translation of Spec 12J.
Spec 12K	Specification for Indirect Type Oilfield Heaters—Chinese	Chinese translation of Spec 12K.

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Fax Orders: +1 303 397 2740
Online Orders: global.ihs.com

Std 600	Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Chinese
Product Number: C60013C	Price: $103.00
13th Edition	January 2015
Std 608	Metal Ball Valves—Flanged, Threaded, and Welding Ends—Chinese
---------	--
Product Number: C60805C	Price: $83.00
5th Edition	November 2012
Std 620	Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese
---------	--
Product Number: C62012C	Price: $330.00
12th Edition	October 2013
Std 650	Welded Tanks for Oil Storage—Chinese
---------	--
Product Number: C65012C	Price: $361.00
12th Edition	March 2013
RP 651	Cathodic Protection of Aboveground Petroleum Storage Tanks—Chinese
---------	--
Product Number: C65104C	Price: $96.00
4th Edition	September 2014
RP 652	Lining of Aboveground Petroleum Storage Tank Bottoms—Chinese
---------	--
Product Number: C65204C	Price: $99.00
4th Edition	September 2014
Std 653	Tank Inspection, Repair, Alteration, and Reconstruction—Chinese
---------	--
Product Number: C65305C	Price: $179.00
5th Edition	November 2014
Std 676	Positive Displacement Pumps—Rotary—Chinese
---------	--
Product Number: C67603 CN945	Price: $114.00
3rd Edition	November 2009
Std 682	Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Chinese
---------	--
Product Number: C68204C	Price: $194.00
4th Edition	May 2014
Std 2220	Contractor Safety Performance Process—Chinese
---------	--
Product Number: K222003C	Price: $70.00
3rd Edition	October 2011

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

RP 59
Recommended Practice for Well Control Operations—Kazakh
Kazakh translation of RP 59.

RP 500
Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2—Kazakh
Kazakh translation of RP 500.
3rd Edition | December 2012 | Product Number: C50003K | Price: $243.00

Std 1104
Welding of Pipelines and Related Facilities—Kazakh
Kazakh translation of Std 1104.
21st Edition | September 2013
Product Number: D110421K | Price: $299.00

PORTUGUESE *

Spec Q1
Specification for Quality Management System Requirements or Manufacturing Organizations for the Petroleum and Natural Gas Industry—Portuguese
Portuguese translation of Spec Q1.
9th Edition | June 2013 | Product Number: G0Q109P | Price: $131.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organization for the Petroleum and Natural Gas Industries—Portuguese
Portuguese translation of Spec Q2.
1st Edition | December 2011 | Product Number: G0Q201P | Price: $87.00

Std 1104
Welding of Pipelines and Related Facilities—Portuguese
Portuguese translation of Std 1104.
21st Edition | September 2013
Product Number: D110421P | Price: $373.00

RUSSIAN *

Spec Q1
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Russian
Russian translation of Spec Q1.
9th Edition | June 2013 | Product Number: G0Q109R | Price: $104.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organization for the Petroleum and Natural Gas Industries—Russian
Russian translation of Spec Q2.
1st Edition | December 2011 | Product Number: G0Q201R | Price: $70.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Spec 5DP/ISO 11961:2008
Specification for Drill Pipe—Russian
Russian translation of Spec 5DP
1st Edition | August 2009 | Product Number: GX5DP01R | Price: $166.00

Spec 5L
Line Pipe—Russian
Russian translation of Spec 5L.
46th Edition | April 2018 | Product Number: G05L46R | Price: $238.00

RP 5L1
Recommended Practice for Railroad Transportation of Line Pipe—Russian
Russian translation of RP 5L1.
7th Edition | September 2009 | Product Number: G5L107R | Price: $50.00

RP 5L3
Drop-Weight Tear Tests on Line Pipe—Russian
Russian translation of RP 5L3.
4th Edition | August 2014 | Product Number: G5L304R | Price: $82.00

RP 5L8
Recommended Practice for Field Inspection of New Line Pipe—Russian
Russian translation of RP 5L8.

Spec 5LCP
Specification on Coiled Line Pipe—Russian
Russian translation of Spec 5LCP.
2nd Edition | October 2006 | Product Number: G5LCP2R | Price: $128.00

Spec 5LD
CRA Clad or Lined Steel Pipe—Russian
Russian translation of Spec 5LD.

RP 5LT
Recommended Practice for Truck Transportation of Line Pipe—Russian
Russian translation of RP 5LT.
1st Edition | March 2012 | Product Number: G5LT01R | Price: $51.00

RP 5LW
Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels—Russian
Russian translation of RP 5LW.
3rd Edition | September 2009 | Product Number: G5LW03R | Price: $51.00

Bull 5T1
Imperfection and Defect Terminology—Russian
Russian translation of Bull 5T1.
11th Edition | October 2017 | Product Number: G05T111R | Price: $111.00

Spec 6A
Specification for Wellhead and Tree Equipment—Russian
Russian translation of Spec 6A.
21st Edition | November 2018 | Product Number: GX06A21R | Price: $248.00

TR 6AF
Technical Report on Capabilities of API Flanges Under Combinations of Load—Russian
Russian translation of TR 6AF.
3rd Edition | September 2008 | Product Number: G6AF03R | Price: $130.00

Spec 6D
Specification for Pipeline and Piping Valves—Russian
Russian translation of Spec 6D.

RP 6DR
Recommended Practice for the Repair and Remanufacture of Pipeline Valves—Russian
Russian translation of Spec RP 6DR.
2nd Edition | May 2012 | Product Number: G06DR2R | Price: $69.00

Spec 6DSS
Specification for Subsea Pipeline Valves—Russian
Russian translation of Spec 6DSS.
3rd Edition | August 2017 | Product Number: G6DSS3R | Price: $143.00

Std 6DX/ISO 12490:2011
Standard for Actuator Sizing and Mounting Kits for Pipeline Valves—Russian
1st Edition | October 2012 | Product Number: GG6DX01R | Price: $114.00

Std 6FA
Standard for Fire Test for Valves—Russian
Russian translation of Std 6FA.
4th Edition | June 2018 | Product Number: G06FA4R | Price: $76.00

Spec 6FD
Specification for Fire Test for Check Valves—Russian
Russian translation of Spec 6FD.
1st Edition | February 1995 | Product Number: G06FD1R | Price: $78.00

Bull 6J
Bulletin on Testing of Oilfield Elastomers—A Tutorial—Russian
Russian translation of Bull 6J.
1st Edition | February 1992 | Product Number: G03230R | Price: $69.00

Spec 7-1/ISO 10424-1:2004
Specification for Rotary Drill Stem Elements—Russian
Russian translation of Spec 7-1.
1st Edition | February 2006 | Product Number: GX7101R | Price: $141.00

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec 7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections—Russian translation of Spec 7-2.</td>
<td>2nd Edition</td>
<td>January 2017</td>
<td>GX70202R</td>
<td>$165.00</td>
</tr>
<tr>
<td>RP 10B-2</td>
<td>Recommended Practice for Testing Well Cements—Russian translation of RP 10B-2.</td>
<td>2nd Edition</td>
<td>April 2013</td>
<td>G10B202R</td>
<td>$191.00</td>
</tr>
<tr>
<td>TR 10TR1</td>
<td>Cement Sheath Evaluation—Russian translation of TR 10TR1.</td>
<td>2nd Edition</td>
<td>September 2008</td>
<td>G10TR12R</td>
<td>$125.00</td>
</tr>
<tr>
<td>TR 10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements—Russian translation of TR 10TR2.</td>
<td>1st Edition</td>
<td>July 1997</td>
<td>G10TR2R</td>
<td>$105.00</td>
</tr>
<tr>
<td>TR 10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Russian translation of TR 10TR4.</td>
<td>1st Edition</td>
<td>May 2008</td>
<td>G10TR40R</td>
<td>$53.00</td>
</tr>
<tr>
<td>Spec 11D1</td>
<td>Specification for Pumping Units—Russian translation of Spec 11D1.</td>
<td>3rd Edition</td>
<td>April 2015</td>
<td>G11D103R</td>
<td>$100.00</td>
</tr>
<tr>
<td>RP 11S2</td>
<td>Recommended Practice for Electric Submersible Pump Testing—Russian translation of RP 11S2.</td>
<td>2nd Edition</td>
<td>August 1997</td>
<td>G11S22R</td>
<td>$73.00</td>
</tr>
<tr>
<td>RP 11S3</td>
<td>Recommended Practice for Electrical Submersible Pump Installations—Russian translation of RP 11S3.</td>
<td>2nd Edition</td>
<td>March 1999</td>
<td>G11S32R</td>
<td>$78.00</td>
</tr>
<tr>
<td>Chapter 11.2.2M</td>
<td>Compressibility Factors for Hydrocarbons: 350–637 Kilograms per Cubic Meter Density (15 °C) and −46 °C to 60 °C Metering Temperature—Russian translation of Chapter 11.2.2M.</td>
<td>1st Edition</td>
<td>October 1986</td>
<td>H27309R</td>
<td>$141.00</td>
</tr>
<tr>
<td>Spec 12J</td>
<td>Specification for Oil and Gas Separators—Russian translation of Spec 12J.</td>
<td>8th Edition</td>
<td>October 2008</td>
<td>G12J08R</td>
<td>$84.00</td>
</tr>
<tr>
<td>RP 13B-2</td>
<td>Recommended Practice for Field Testing Oil-Based Drilling Fluids—Russian translation of RP 13B-2.</td>
<td>5th Edition</td>
<td>April 2014</td>
<td>G13B205R</td>
<td>$178.00</td>
</tr>
</tbody>
</table>

*These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
Translated Publications

Fax Orders: +1 303 397 2740

<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
<th>Edition</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 13K</td>
<td>Recommended Practice for Chemical Analysis of Barite—Russian</td>
<td>3rd Edition</td>
<td>G13K03R</td>
<td>$94.00</td>
</tr>
<tr>
<td>RP 13M/ISO 13503-1:2003</td>
<td>Recommended Practice for the Measurement of Viscous Properties of Completion Fluids—Russian</td>
<td>1st Edition</td>
<td>GX13M01R</td>
<td>$86.00</td>
</tr>
<tr>
<td>Spec 15S</td>
<td>Spoolable Reinforced Plastic Line Pipe—Russian</td>
<td>2nd Edition</td>
<td>G15S02R</td>
<td>$114.00</td>
</tr>
<tr>
<td>Spec 16F</td>
<td>Specification for Marine Drilling Riser Equipment—Russian</td>
<td>2nd Edition</td>
<td>G16F02R</td>
<td>$120.00</td>
</tr>
<tr>
<td>RP 16Q</td>
<td>Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems</td>
<td>2nd Edition</td>
<td>G16Q02R</td>
<td>$105.00</td>
</tr>
<tr>
<td>Spec 17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian</td>
<td>2nd Edition</td>
<td>GX17D02R</td>
<td>$162.00</td>
</tr>
<tr>
<td>Spec 17E</td>
<td>Specification for Subsea Umbilicals—Russian</td>
<td>5th Edition</td>
<td>G17E05R</td>
<td>$168.00</td>
</tr>
<tr>
<td>RP 17N</td>
<td>Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management—Russian</td>
<td>2nd Edition</td>
<td>G17N02R</td>
<td>$154.00</td>
</tr>
<tr>
<td>RP 17S</td>
<td>Recommended Practice for the Design, Testing, and Operation of Subsea Multiphase Flow Meters—Russian</td>
<td>1st Edition</td>
<td>G17S01R</td>
<td>$74.00</td>
</tr>
<tr>
<td>TR 17TR3</td>
<td>An Evaluation of the Risks and Benefits of Penetrations in Subsea Wellheads Below the BOP Stack—Russian</td>
<td>1st Edition</td>
<td>G17TR31R</td>
<td>$114.00</td>
</tr>
<tr>
<td>Std 19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations—Russian</td>
<td>2nd Edition</td>
<td>GX19C02R</td>
<td>$96.00</td>
</tr>
<tr>
<td>RP 19D/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants—Russian</td>
<td>1st Edition</td>
<td>GX19D01R</td>
<td>$94.00</td>
</tr>
<tr>
<td>Spec 19OH</td>
<td>Openhole Isolation Equipment—Russian</td>
<td>1st Edition</td>
<td>G19OH1R</td>
<td>$94.00</td>
</tr>
<tr>
<td>Chapter 20.3</td>
<td>Measurement of Multiphase Flow—Russian (supersedes RP 86)</td>
<td>1st Edition</td>
<td>H200301R</td>
<td>$148.00</td>
</tr>
<tr>
<td>RP 49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian</td>
<td>3rd Edition</td>
<td>G04903R</td>
<td>$77.00</td>
</tr>
<tr>
<td>RP 59</td>
<td>Recommended Practice for Well Control Operations—Russian</td>
<td>2nd Edition</td>
<td>G59002R</td>
<td>$107.00</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
Translated Publications

<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
<th>Edition</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 85</td>
<td>Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems—Russian</td>
<td>1st Edition</td>
<td>C08501R</td>
<td>$107.00</td>
</tr>
<tr>
<td>Std 520, Part I</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection—Russian</td>
<td>9th Edition</td>
<td>C520109R</td>
<td>$294.00</td>
</tr>
<tr>
<td>RP 520, Part II</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation—Russian</td>
<td>6th Edition</td>
<td>C520206R</td>
<td>$226.00</td>
</tr>
<tr>
<td>Std 521</td>
<td>Pressure-Relieving and Depressing Systems—Russian</td>
<td>6th Edition</td>
<td>C52106R</td>
<td>$238.00</td>
</tr>
<tr>
<td>Std 526</td>
<td>Flanged Steel Pressure-Relief Valves—Russian</td>
<td>7th Edition</td>
<td>C52607R</td>
<td>$182.00</td>
</tr>
<tr>
<td>Std 541</td>
<td>Form-Wound Squirrel Cage Induction Motors—375 kW (500 Horsepower) and Larger—Russian</td>
<td>5th Edition</td>
<td>C54105R</td>
<td>$165.00</td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian</td>
<td>2nd Edition</td>
<td>C55602R</td>
<td>$133.00</td>
</tr>
<tr>
<td>Std 598</td>
<td>Valve Inspection and Testing—Russian</td>
<td>10th Edition</td>
<td>C59810R</td>
<td>$83.00</td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>7th Edition</td>
<td>C59907R</td>
<td>$70.00</td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Russian</td>
<td>13th Edition</td>
<td>C60013R</td>
<td>$117.00</td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries—Russian</td>
<td>10th Edition</td>
<td>C60210R</td>
<td>$109.00</td>
</tr>
<tr>
<td>Std 607</td>
<td>Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seats—Russian</td>
<td>7th Edition</td>
<td>C60707R</td>
<td>$84.00</td>
</tr>
<tr>
<td>Std 608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>5th Edition</td>
<td>C60805R</td>
<td>$96.00</td>
</tr>
<tr>
<td>Std 610/ISO 13709:2009</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries—Russian</td>
<td>11th Edition</td>
<td>CX61011R</td>
<td>$223.00</td>
</tr>
<tr>
<td>Std 611</td>
<td>General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services—Russian</td>
<td>5th Edition</td>
<td>C61105R</td>
<td>$127.00</td>
</tr>
</tbody>
</table>

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.

This publication is a new entry in this catalog.
Translated Publications

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

Std 613
Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services—Russian
Russian translation of Std 613.
5th Edition | February 2003 | Product Number: C61305R | Price: $143.00

Std 614/ISO 10438-1:2007
Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries—Russian
(ANSI/API Std 614)
5th Edition | April 2008 | Product Number: CX61405R | Price: $254.00

Std 661
Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service—Russian
Russian translation of Std 661.
7th Edition | July 2013 | Product Number: C66107R | Price: $217.00

Std 673
Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services—Russian
Russian translation of Std 673.
3rd Edition | December 2014
Product Number: C67303R | Price: $147.00

Std 674
Positive Displacement Pumps—Reciprocating—Russian
Russian translation of Std 674.
3rd Edition | December 2010
Product Number: C67403R | Price: $162.00

Std 682
Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Russian
Russian translation of Std 682.
4th Edition | May 2014 | Product Number: C68204R | Price: $222.00

Std 1104
Welding of Pipelines and Related Facilities—Russian
Russian translation of Std 1104.
21st Edition | September 2013
Product Number: D110421R | Price: $299.00

Std 1163
In-Line Inspection Systems Qualification—Russian
Russian translation of Std 1163.
2nd Edition | April 2013 | Product Number: D11632R | Price: $114.00

Spec Q1
Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Spanish
Spanish translation of Q1.
9th Edition | June 2013 | Product Number: G0Q109SP | Price: $131.00

Spec Q2
Specification for Quality Management System Requirements for Service Supply Organization for the Petroleum and Natural Gas Industries—Spanish
Spanish translation of Q2.
1st Edition | December 2011
Product Number: G0Q201SP | Price: $87.00

Chapter 1
Vocabulary—Spanish [Historical]
Spanish translation of Ch. 1.
2nd Edition | July 1994 | Product Number: H010SP | Price: $118.00

Chapter 3.1A
Spanish translation of Ch. 3.1A.
3rd Edition | August 2013 | Product Number: H301A03S | Price: $109.00

Chapter 3.2
Standard Practice for Gauging Petroleum and Petroleum Products in Tank Cars—Spanish
Spanish translation of Ch. 3.2.
1st Edition | August 1995 | Product Number: H03021S | Price: $105.00

Chapter 3.3
Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.3.
1st Edition | June 1996 | Product Number: H030316 | Price: $90.00

Chapter 3.4
Standard Practice for Level Measurement of Liquid Hydrocarbons on Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.4.
1st Edition | April 1995 | Product Number: H03041SP | Price: $90.00

Chapter 3.5
Standard Practice for Level Measurement of Light Hydrocarbon Liquids Onboard Marine Vessels by Automatic Tank Gauging—Spanish
Spanish translation of Ch. 3.5
1st Edition | March 1997 | Product Number: H03051S | Price: $90.00

These translated versions are provided for the convenience of our customers and are not officially endorsed by API. The translated versions shall neither replace nor supersede the English-language versions, which remain the official standards. API shall not be responsible for any discrepancies or interpretations of these translations. Translations may not include any addenda or errata to the document. Please check the English-language versions for any updates to the documents.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction—Spanish</td>
<td>3rd</td>
<td>February 2005</td>
<td>H40101S</td>
<td>$89.00</td>
</tr>
<tr>
<td>5.1</td>
<td>General Considerations for Measurement by Meters—Spanish</td>
<td>4th</td>
<td>October 2005</td>
<td>H05014SP</td>
<td>$102.00</td>
</tr>
<tr>
<td>5.2</td>
<td>Measurement of Liquid Hydrocarbons by Displacement Meters—Spanish</td>
<td>3rd</td>
<td>October 2005</td>
<td>H50203SP</td>
<td>$95.00</td>
</tr>
<tr>
<td>5.3</td>
<td>Measurement of Liquid Hydrocarbons by Turbine Meters—Spanish</td>
<td>5th</td>
<td>September 2005</td>
<td>H50305SP</td>
<td>$115.00</td>
</tr>
<tr>
<td>5.4</td>
<td>Accessory Equipment for Liquid Meters—Spanish</td>
<td>4th</td>
<td>September 2005</td>
<td>H05044SP</td>
<td>$102.00</td>
</tr>
<tr>
<td>5.5</td>
<td>Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish</td>
<td>2nd</td>
<td>July 2005</td>
<td>H50502SP</td>
<td>$76.00</td>
</tr>
<tr>
<td>5.6</td>
<td>Measurement of Liquid Hydrocarbons by Coriolis Meters—Spanish</td>
<td>1st</td>
<td>October 2002</td>
<td>H05061S</td>
<td>$151.00</td>
</tr>
<tr>
<td>5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish</td>
<td>2nd</td>
<td>November 2011</td>
<td>H050802SP</td>
<td>$94.00</td>
</tr>
<tr>
<td>6.2</td>
<td>Loading Rack Metering Systems—Spanish</td>
<td>3rd</td>
<td>February 2004</td>
<td>H60203S</td>
<td>$86.00</td>
</tr>
<tr>
<td>7G-2</td>
<td>ISO 10407-2:2008 Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish</td>
<td>1st</td>
<td>August 2009</td>
<td>GX7G201SP</td>
<td>$152.00</td>
</tr>
<tr>
<td>7-1/ISO</td>
<td>10424-1:2004 Specification for Rotary Drill Stem Elements—Spanish</td>
<td>1st</td>
<td>February 2006</td>
<td>GX7101SP</td>
<td>$176.00</td>
</tr>
<tr>
<td>7.3</td>
<td>Fixed Automatic Tank Temperature Systems—Spanish</td>
<td>2nd</td>
<td>October 2011</td>
<td>H70302SP</td>
<td>$90.00</td>
</tr>
<tr>
<td>10.9</td>
<td>Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration—Spanish</td>
<td>3rd</td>
<td>May 2013</td>
<td>H100903SP</td>
<td>$45.00</td>
</tr>
<tr>
<td>13.3</td>
<td>Measurement Uncertainty—Spanish</td>
<td>2nd</td>
<td>December 2017</td>
<td>H130302S</td>
<td>$122.00</td>
</tr>
<tr>
<td>17.1</td>
<td>Guidelines for Marine Inspection—Spanish</td>
<td>6th</td>
<td>June 2014</td>
<td>H170106S</td>
<td>$163.00</td>
</tr>
<tr>
<td>17.2</td>
<td>Measurement of Cargoes on Board Tank Vessels—Spanish</td>
<td>2nd</td>
<td>May 1999</td>
<td>H1702SP</td>
<td>$143.00</td>
</tr>
<tr>
<td>17.3</td>
<td>Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements—Spanish</td>
<td>2nd</td>
<td>December 2016</td>
<td>H170302S</td>
<td>$131.00</td>
</tr>
<tr>
<td>17.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)—Spanish</td>
<td>2nd</td>
<td>September 2016</td>
<td>H170402S</td>
<td>$119.00</td>
</tr>
<tr>
<td>17.8</td>
<td>Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems—Spanish</td>
<td>2nd</td>
<td>August 2016</td>
<td>H170802S</td>
<td>$117.00</td>
</tr>
</tbody>
</table>
Chapter 17.11
Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment—Spanish
Spanish translation of Ch. 17.11.
2nd Edition | August 2016 | Product Number: H170112S | Price: $117.00

Chapter 17.12
Procedures for Bulk Liquid Chemical Cargo Inspections—Spanish
Spanish translation of Ch. 17.12.
2nd Edition | August 2015 | Product Number: H170122S | Price: $177.00

Chapter 20.2
Production Allocation Measurement Using Single-Phase Devices—Spanish
Spanish translation of Ch. 20.2.
1st Edition | November 2016 | Product Number H200201S | Price: $135.00

API 510
Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish
Spanish translation of API 510.
10th Edition | May 2014 | Product Number: C51010S | Price: $244.00

RP 576
Inspection of Pressure-Relieving Devices—Spanish
Spanish translation of RP 576.
4th Edition | April 2017 | Product Number: C57604S | Price: $227.00

Std 1104
Welding of Pipelines and Related Facilities—Spanish
Spanish translation of Std 1104.
21st Edition | September 2013 | Product Number: D110421SP | Price: $373.00

Std 2510
Design and Construction of LPG Installations—Spanish
Spanish translation of Std 2510.
8th Edition | May 2001 | Product Number: C25108SP | Price: $112.00
Chapter 11.1—1980 has not been withdrawn, but superseded. The 1980 standards should not be utilized on new applications. Chapter 11.1—2004 (page 60 of this Catalog) is to be utilized on all new applications.

Chapter 11.1 Volume Correction Factors—Volume I
Table 5A—Generalized Crude Oils and JP-4, Correction of Observed API Gravity to API Gravity at 60°F.
Table 6A—Generalized Crude Oils and JP-4, Correction of Volume to 60°F Against API Gravity at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Volume II
Table 5B—Generalized Products, Correction of Observed API Gravity to API Gravity at 60°F.
Table 6B—Generalized Products, Correction of Volume to 60°F Against API Gravity at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Volume III
Table 6C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 60°F Against Thermal Expansion Coefficients at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Addendum to Volume III/IX Volume Correction—MTBE
Provides users of the API Manual of Petroleum Measurement Standards Chapter 11.1, Volume III (Table 6C) and Volume IX (Table 54C) with revised volume correction factor tables for MTBE. The tables can be used to expedite calculation of the volume of mixtures composed predominantly of MTBE at standard conditions from volumes at other conditions. These tables apply to commercially available mixtures containing at least 85 weight percent MTBE. The information gained from using these tables can be used to determine quantities of MTBE in tanks, shipping containers, and other storage containers typically used in the petroleum industry. Table 6C—Volume Correction Factors for Individual and Special Applications, Volume Correction for MTBE to 60°F and Volume IX, Table 54C—Volume Correction for Individual and Special Applications, Volume Correction for MTBE to 15°C.
Pages: 4

Chapter 11.1 Volume Correction Factors—Volume IV
Table 23A—Generalized Crude Oils, Correction of Observed Relative Density to Relative Density at 60/60°F.
Table 24A—Generalized Crude Oils, Correction of Volume to 60°F Against Relative Density 60/60°F.
August 1980 | Reaffirmed, March 1997 | Price: $55.00

Chapter 11.1 Volume Correction Factors—Volume V
Table 23B—Generalized Products, Correction of Observed Relative Density to Relative Density at 60/60°F.
Table 24B—Generalized Products, Correction of Volume to 60°F Against Relative Density 60/60°F.
August 1980 | Reaffirmed, March 1997 | Price: $55.00

Chapter 11.1 Volume Correction Factors—Volume VI
Table 24C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 60°F Against Thermal Expansion Coefficients at 60°F.
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Volume VII
Table 53A—Generalized Crude Oils, Correction of Observed Density to Density at 15°C.
Table 54A—Generalized Crude Oils, Correction of Volume to 15°C Against Density at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $55.00

Chapter 11.1 Volume Correction Factors—Volume VIII
Table 53B—Generalized Products, Correction of Observed Density to Density at 15°C.
Table 54B—Generalized Products, Correction of Volume to 15°C Against Density at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $55.00

Chapter 11.1 Volume Correction Factors—Volume IX
Table 54C—Volume Correction Factors for Individual and Special Applications, Volume Correction to 15°C Against Thermal Expansion Coefficients at 15°C.
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Volume X
Background, Development, and Computer Documentation, including computer subroutines in Fortran IV for all volumes of Chapter 11.1, except Volumes XI/XII, XIII, and XIV. Implementation procedures, including rounding and truncating procedures, are also included. These subroutines are not available through API in magnetic or electronic form. Pages: 403
August 1980 | Reaffirmed, March 1997 | Price: $48.00

Chapter 11.1 Volume Correction Factors—Volume XI/XII
Superseded by Chapter 11.5, Parts 1 to 3, 2009 (see page 60 of this Catalog)
Two combined volumes, containing Petroleum Measurement Subsidiary Tables 1-4, 8-14, 21, 22, 26-31, 33, 34, 51, 52, and 56-58, which provide conversions between volume measures and density measures.
January 1980 | Reaffirmed, December 1999
Order from ASTM | 100 Barr Harbor Drive | West Conshohocken, PA 19428
Tel: (610) 832-9500

Chapter 11.1 Volume Correction Factors—Volume XIII
Table 53D—Generalized Lubricating Oils, Correction of Observed API Gravity to API Gravity at 60°F.
Table 54D—Generalized Lubricating Oils, Correction of Volume to 60°F Against API Gravity at 60°F.
January 1982 | Reaffirmed, March 1997 | Price: $55.00
Chapter 11.1
Volume Correction Factors—Volume XIV

Table 53D—Generalized Lubricating Oils, Correction of Observed Density to Density at 15°C.

Table 54D—Generalized Lubricating Oils, Correction of Volume to 15°C Against Density at 15°C.

January 1982 | Reaffirmed, March 1997 | Price: $55.00

Chapter 11.2.1
Compressibility Factors for Hydrocarbons: 0–90° API Gravity Range

Provides tables to correct hydrocarbon volumes metered under pressure to corresponding volumes at the equilibrium pressure for the metered temperature. It contains compressibility factors related to meter temperature and API gravity (60°F) of metered material. Pages: 149

Chapter 11.2.1M
Compressibility Factors for Hydrocarbons: 638–1074 Kilograms per Cubic Meter Range

Provides tables in metric (SI) units to correct hydrocarbon volumes metered under pressure to corresponding volumes at the equilibrium pressure for the metered temperature. It contains compressibility factors related to meter temperature and density (15 °C) of metered material. Pages: 187

Chapter 11.2
CD-ROM and Documentation of Chapters 11.2.1, 11.2.1M, 11.2.3, 11.2.3M

Includes tables found in Chapters 11.2.1, 11.2.1M, 11.2.3, and 11.2.3M, along with a computer documentation manual containing text information from those chapters. The tables, presented in both standard and metric (SI) units, cover compressibility factors for hydrocarbons and water calibration of volumetric provers. The tape is 9-track, 1600 bpi, unlabeled, 4-file type, and provides only the text information from Chapters 11.2.1, 11.2.1M, 11.2.3, and 11.2.3M, and information pertaining to the use of the magnetic tape described above. The manual is included with orders for the magnetic tape. Pages: 11

1st Edition | 1984

Chapter 11.2
Computer Tape Information and Documentation for Chapters 11.2.1, 11.2.1M, 11.2.3 and 11.2.3M

Provides only the text information from Chapters 11.2.1, 11.2.1M, 11.2.3 and 11.2.3M, and information pertaining to the use of the magnetic tape described above. The manual is included with orders for the magnetic tape. Pages: 11

1st Edition | 1984

WITHDRAWN IN 2019

RP 5L2
Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service

RP 5L7
Recommended Practice for Unprimed Internal Fusion Bonded Epoxy Coating of Line Pipe

2nd Edition | June 1988

RP 5L9
External Fusion Bonded Epoxy Coating of Line Pipe

1st Edition | December 2001

Phone Orders: +1 303 397 7956 (Local and International)
Historical Publications

<table>
<thead>
<tr>
<th>Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)</th>
<th>Phone Orders: +1 303 397 7956 (Local and International)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7C Dimensional Standards for Line Shafts, 1st ed. 1927</td>
<td>11V7 Recommended Practice for Repair, Testing and Setting Gas Lift Valves, 2nd ed. 1999</td>
</tr>
<tr>
<td>7D Oil-Field Boilers, 10th ed. 1949</td>
<td>12C All-Welded Oil Storage Tanks, 1st ed. 1936–15th ed. 1958</td>
</tr>
<tr>
<td>7E Care and Use of Oil-Field Boilers, 3rd ed. 1949</td>
<td>12D Large Welded Production Tanks, 3rd ed. 1944–10th ed. 1994</td>
</tr>
<tr>
<td>8B Internal-Combustion Engines and Unit-Type Radiator Coolers and Oil-Field Service, 6th ed. 1953</td>
<td>12H Recommended Practice for Installation of New Bottoms In Old Storage Tanks, 1st ed. 1957</td>
</tr>
<tr>
<td>11G Rating of Sucker Rod and Tubing Hoisting Equipment, 2nd ed. 1941</td>
<td>15L4 Care and Use of Reinforced Thermosetting Resin Line Pipe, 2nd ed. 1976</td>
</tr>
<tr>
<td>11M Recommended Practice for Grounded 830-Volt, Three-Phase Electrical System for Oil Field Service, 1st ed. 1973</td>
<td>17I Installation of Subsea Umbilicals, 1st ed. 1996</td>
</tr>
<tr>
<td></td>
<td>28 Code of Metallurgical Terms for Ferrous Alloys, 1st ed. 1937</td>
</tr>
<tr>
<td>30</td>
<td>Corrosion Fatigue Testing of Sucker Rod Materials, 1st ed. 1945</td>
</tr>
<tr>
<td>32</td>
<td>Testing Cements Used in Wells, 1st ed. 1948, 2nd ed. 1950</td>
</tr>
<tr>
<td>33</td>
<td>Standard Radioactivity Log Form, 1st ed. 1948–3rd ed. 1974</td>
</tr>
<tr>
<td>34</td>
<td>Standard Hydrocarbon Mud Log Form, 1st ed. 1958</td>
</tr>
<tr>
<td>35</td>
<td>Oil-Mapping Symbols, 1st ed. 1957</td>
</tr>
<tr>
<td>36</td>
<td>Determining Productivity Indices, 1st ed. 1958</td>
</tr>
<tr>
<td>37</td>
<td>Recommended Practice/Method-Test Procedure for the Evaluation of High-Pressure Casing and Tubing Connection Designs, 1st ed. 1958, 2nd ed. 1980</td>
</tr>
<tr>
<td>38</td>
<td>Biological Analysis of Water-Flood Injection Waters, 1st ed. 1959–3rd ed. 1975</td>
</tr>
<tr>
<td>40</td>
<td>Core-Analysis Procedure, 1st ed. 1960, 2nd ed. 1998</td>
</tr>
<tr>
<td>41</td>
<td>Recommended Practice Standard Procedure for Preventing Performance Data on Hydraulic Fracturing Equipment, 1st ed. 1961</td>
</tr>
<tr>
<td>42</td>
<td>Laboratory Testing and Field Data Analysis of Surface-Active Agents for Well Stimulation, 1st ed. 1962, 2nd ed. 1977</td>
</tr>
<tr>
<td>44</td>
<td>Sampling Petroleum Reservoir Fluids, 1st ed. 1966, 2nd ed. 2003</td>
</tr>
<tr>
<td>46</td>
<td>Testing Foam Agents for Mist Drilling, 1st ed. 1966</td>
</tr>
<tr>
<td>47</td>
<td>Drilling Mud Report Form, 1st ed. 1969</td>
</tr>
<tr>
<td>48</td>
<td>Drill Stem Test Report Form, 1st ed. 1972</td>
</tr>
<tr>
<td>57</td>
<td>Offshore Well Completion, Servicing, Workover, and Plug and Abandonment Operations, 1st ed. 1986</td>
</tr>
<tr>
<td>63</td>
<td>Evaluation of Polymers Used in Enhanced Oil Recovery Operations, 1st ed. 1990</td>
</tr>
<tr>
<td>66</td>
<td>Exploration and Production Data Digital Interchange (Version 2.00), 2nd ed. 1996</td>
</tr>
<tr>
<td>86</td>
<td>Recommended Practice for Measurement of Multiphase Flow (superseded by API MPMS Ch. 20.3), 1st ed. 2005</td>
</tr>
<tr>
<td>95F</td>
<td>Interim Guidance for Gulf of Mexico MODU Mooring Practice, 1st ed. 2006</td>
</tr>
<tr>
<td>D2</td>
<td>Organization and Procedure for the Central Committee on District Activities and for Districts and Chapters, 3rd ed. 1941–8th ed. 1955</td>
</tr>
<tr>
<td>D2A</td>
<td>Vocational Training in Oil and Gas Production, 1st ed. 1940, 2nd ed. 1943</td>
</tr>
<tr>
<td>D2A</td>
<td>Planning and Conducting an API District Meeting, 2nd ed. 1957, 3rd ed. 1958</td>
</tr>
<tr>
<td>D2B</td>
<td>Informational Bulletin Special Training Available for Leaders on Conduit of Foremanship Training Conferences, 1st ed. 1942</td>
</tr>
</tbody>
</table>

Refining

- Biological Treatment of Petroleum Refinery Wastes, 1st ed. 1963
 - Section II Waste Gases and Vapors 1st ed. 1931–5th ed. 1957
 - Section IV Sampling and Analysis of Waste Water, 1st ed. 1953
 - Section V, Sampling and Analysis of Waste Gas and Particulate Matter, 1st ed. 1954
 - Section VI, Disposal of Refinery Wastes, 1st ed. 1963

- Inspection of Refinery Equipment, 1985
 - Chapter 1, Guide for Inspection of Refinery Equipment, 1976
 - Chapter 3, Inspection Planning, 1985
 - Chapter 4, Inspection Tools, 1983
 - Chapter 5, Preparation of Equipment for Safe Entry and Work, 1978
Historical Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

544 Metal-Clad Switchgear Specification-5kV to 15 kV, 1st ed. 1980
545 Recommended Practice for Lightning Protection of Aboveground Storage Tanks for Flammable or Combustible Liquids, 1st ed. 2009
545-A Verification of Lightning Protection Requirements for Above Ground Hydrocarbon Storage Tanks, 1st ed. 2009
Part I–Process Instrumentation and Control
Section 1, Flow, 3rd ed. 1974, 4th ed. 1986
Section 2, Level, 4th ed. 1980
Section 4, Pressure, 3rd ed. 1974, 4th ed. 1980
Section 6, Control Valves and Accessories, 3rd ed. 1976, 4th ed. 1985
Section 7, Transmissions Systems, 3rd ed. 1974
Section 8, Seals, Purgers, and Winterizing, 3rd ed. 1974, 4th ed. 1980
Section 12, Control Centers, 3rd ed. 1977
Section 14, Process Computer Systems, 1st ed. 1982
550 Part II–Process Stream Analyzers
Section 1, Analyzers, 4th ed. 1985
Section 2, Process Chromatographs, 4th ed. 1981
Section 4, Moisture Analyzers, 4th ed. 1983
Section 6, Analyzers for the Measurement of Sulfur and Its Components, 4th ed. 1984
Section 7, Electrochemical Liquid Analyzers, 4th ed. 1984
Section 9, Water Quality Analyzers, 4th ed. 1984
Section 10, Area Safety Monitors, 4th ed. 1983
550 Part III, Fired Heaters and Inert Gas Generators, 3rd ed. 1985
589 Fire Test for Evaluation of Valve Stem Packing, 2nd ed. 1998
590 Steel Line Blanks, 1st ed. 1985
595 Cast-Iron Gate Valves, Flanges Ends, 2nd ed. 1979
600A API Standard on Flanged Steel Outside-Screw-and Yoke Wedge Gate Valves, 1st ed. 1942
600B API Standard on Flanged Steel Plug Valves, 1st ed. 1942
630 Tube Dimensions for Fired Heaters, 1st ed. 1959, 2nd ed. 1961

Chapter 6, Pressure Vessels (Towers, Drums, and Reactors), 1982
Chapter 9, Fired Heaters and Stacks, 1981
Chapter 10, Pumps, Compressors, and Blowers, and Their Drivers
Chapter 11, Pipe, Valves, and Fittings, 1974
Chapter 13, Atmospheric and Low-Pressure Storage Tanks, 1981
Chapter 14, Electrical Systems, 1982
Chapter 15, Instruments and Control Equipment, 1981
Chapter 16, Pressure-relieving Devices, 1985
Chapter 17, Auxiliary and Miscellaneous Equipment, 1978
Chapter 18, Protection of Idle Equipment, 1982
Chapter 20, Inspection for Fire Protection, 1961

Manual for the Prevention of Water Pollution During Marine Oil Terminal Transfer Operations, 1st ed. 1964

Manual on Disposal of Refinery Wastes, 1st ed. 1969

Chapter 1, Introduction, 1969
Chapter 2, Information on Water Pollution, 1969
Chapter 3, Collection and Treatment, 1969
Chapter 4, Liquid Flow Measurement Methods, 1969
Chapter 5, Oil Water Separator Process Design, 1969
Chapter 6, Construction Details of Gravity-Type Separators
Chapter 7, Ballast Water
Chapter 8, Treatment of Recovered Oil Emulsions
Chapter 9, Filtration, Flocculation, and Floation
Chapter 10, Stripping, Extraction, Adsorption, and Ion Exchange
Chapter 11, Oxidation, 1969
Chapter 12, Oxygenation, 1969
Chapter 13, Biological Treatment, 1975
Chapter 14, Disposal by Sale, at Sea, in Wells, and Incineration, 1969
Chapter 15, Common Refinery Wastes and Process Summaries, 1969
Chapter 16, Petrochemical Waste Treatment, 1969
Chapter 17, Monitoring, 1969
Chapter 18, Diffusion of Effluent into Receiving Waters, 1969
Chapter 19, Stream Survey Methods, 1969
Chapter 20, Solubility and Toxicity Data, 1969
Chapter 21, Handling Stormwater Runoff, 1980

“Responding to a Pipeline Emergency” Videotape

500 Classification of Areas for Electrical Installations in Petroleum Refineries, 1st ed. 1955–4th ed. 1987
500C Recommended Practice for Classification of Areas for Electrical Installations at Petroleum and Gas Pipeline Transportation Facilities, 1st ed. 1966 to 1984
525 Testing Procedure for Pressure-Relieving Devices Discharging Against Variable Back Pressure, 1st ed. 1960
528 API Standard for Safety Relief Valve Nameplate Nomenclature, 1st ed. 1964
532 Measurement of the Thermal Efficiency of Fired Process Heaters, 1st ed. 1982
533 Air Preheats Systems for Fired Process Heaters, 1st ed. 1986
542 Grouped Motor Controller Specification–Low Voltage (600 Volts), 1st ed. 1977
543 Medium Voltage Motor Controllers, 1st ed. 1976
<table>
<thead>
<tr>
<th>Page</th>
<th>Title of Document</th>
<th>Editions</th>
</tr>
</thead>
<tbody>
<tr>
<td>665</td>
<td>API Fired Heater Data Sheet, 1st ed. 1966</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>Packaged Reciprocating Plant and Instrument Air Compressors for General Refinery Services</td>
<td>1st ed. 1987</td>
</tr>
<tr>
<td>753</td>
<td>How to Install and Validate Employee Selection Techniques, 1st ed. 1971</td>
<td></td>
</tr>
<tr>
<td>754</td>
<td>Validity Study Results for Jobs Relevant to the Petroleum Refining Industry, 1st ed. 1972</td>
<td></td>
</tr>
<tr>
<td>755</td>
<td>Interpretive Guide for the API Test Validity Generalization Project, 1st, 1980, 2nd ed. 1982</td>
<td></td>
</tr>
<tr>
<td>756</td>
<td>Recommended Guidelines for Documentation of Training, 1st ed. 1977</td>
<td></td>
</tr>
<tr>
<td>757</td>
<td>Training and Materials Catalog, 1st ed. 1979</td>
<td></td>
</tr>
<tr>
<td>758</td>
<td>Safety Digest of Lessons Learned Section 1, General Safety Precautions in Refining</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>Section 2, Safety in Unit Operations, 1979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 3, Safe Operations of Auxiliaries, 1980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4, Safety in Maintenance, 1981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 5, Safe Operation of Utilities, 1981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 6, Safe Operation of Storage Facilities, 1982</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 7, Safe Handling of Petroleum Products, 1983</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 8, Environmental Controls, 1983</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 9, Precautions Against Severe Weather Conditions, 1983</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>API Standards 620, 650, and 653 Interpretations—Tank Construction and In-Service Inspection, 1st ed. 1997</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>Prevention of Brittle Fracture of Pressure Vessels, 1st ed. 1990</td>
<td></td>
</tr>
<tr>
<td>928</td>
<td>Hydrocarbon Emissions from Refineries, 1st ed. 1973</td>
<td></td>
</tr>
<tr>
<td>940</td>
<td>Steel Deterioration in Hydrogen, 1st ed. 1967</td>
<td></td>
</tr>
<tr>
<td>943</td>
<td>High-Temperature Crude Oil Corrosivity Studies, 1st ed. 1974</td>
<td></td>
</tr>
<tr>
<td>947</td>
<td>Granular Media Filtration of Petroleum Refinery Effluent Waters, 1st ed. 1975</td>
<td></td>
</tr>
<tr>
<td>948</td>
<td>A Study of Variables that Affect the Corrosion of Water Strippers, 1st ed. 1976</td>
<td></td>
</tr>
<tr>
<td>949</td>
<td>Water Reuse Studies, 1st ed. 1977</td>
<td></td>
</tr>
</tbody>
</table>

Fax Orders: +1 303 397 2740

Online Orders: global.ihs.com

<table>
<thead>
<tr>
<th>Page</th>
<th>Title of Document</th>
<th>Editions</th>
</tr>
</thead>
<tbody>
<tr>
<td>952</td>
<td>Gaussian Dispersion Models Applicable to Refinery Emission, 1st ed. 1972</td>
<td></td>
</tr>
<tr>
<td>954</td>
<td>Evaluation of Ammonia “Fixation” Components in Actual Refinery Sour Waters, 1st ed. 1978</td>
<td></td>
</tr>
<tr>
<td>955</td>
<td>A New Correlation of NH₃, CO₂, and H₂S Volatility Data from Aqueous Sour Water Systems, 1st ed. 1978</td>
<td></td>
</tr>
<tr>
<td>956</td>
<td>Hydrogen-Assisted Crack Growth in 2 1⁄4 Cr–1⁄2 Mo Steel, 1st ed. 1978</td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>Evaluation of the Principles of Magnetic Water Treatment, 1st ed. 1985</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Technical Data Book—Petroleum Refining, Metric ed.</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>API Specifications for Tank Vehicles, 1st ed. 1937, 2nd ed. 1946</td>
<td></td>
</tr>
<tr>
<td>1006</td>
<td>The Loading and Unloading of Unleaded Gasoline by Tank Motor Vehicles, 1st ed. 1974</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>Measurement of Petroleum Liquid Hydrocarbons by Positive Displacement Meter, 1st ed. 1960</td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>Bulletin on Construction Practices for Oil and Products Pipe Lines, 1st ed. 1955</td>
<td></td>
</tr>
<tr>
<td>1106</td>
<td>Bulletin on a Classification of Communications Circuits for Use in Automation in the Oil Industry, 1st ed. 1959, 2nd ed. 1961</td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>Developing a Pipeline Supervisory Control Center, 1st ed. 2007</td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Training and Qualification of Liquid Pipeline Controllers, 1st ed. 1991</td>
<td></td>
</tr>
<tr>
<td>1119</td>
<td>Training and Qualification of Liquid Pipeline Operators, 1st ed. 1991</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>Training and Qualification of Liquid Pipeline Maintenance Personnel, 1st ed. 1992</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>Emergency Preparedness and Response for Hazardous Liquids Pipelines, 1st, 1991</td>
<td></td>
</tr>
<tr>
<td>1123</td>
<td>Development of Public Awareness Programs by Hazardous Liquid Pipeline Operators, 2nd ed. 1996</td>
<td></td>
</tr>
<tr>
<td>1129</td>
<td>Assurance of Hazardous Liquid Pipeline System Integrity, 1st ed. 1996</td>
<td></td>
</tr>
<tr>
<td>1132</td>
<td>Effects of Oxygenated Fuels and Reformulated Diesel Fuels on Elastomers and Polymers in Pipeline/Terminal Components, 1994</td>
<td></td>
</tr>
</tbody>
</table>
Historical Publications

<table>
<thead>
<tr>
<th>Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)</th>
<th>Phone Orders: +1 303 397 7956 (Local and International)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140 Guidelines for Developing Bridge Management Teams, 1st ed. 1991</td>
<td>1525 A Short Course in the Lubrication of Automotive Equipment, 1st ed. 1957</td>
</tr>
<tr>
<td>1157 Hydrostatic Test Water Treatment and Disposal Options for Liquid Pipeline Systems, 1st ed. 1998</td>
<td>1529 Recommended Performance Requirements for Aviation Fueling Hose, 2nd ed. 1963, 3rd ed. 1982</td>
</tr>
<tr>
<td>Marine</td>
<td>1536 Members Handbook on Marketing Division, 1st ed. 1961</td>
</tr>
<tr>
<td>Marketing</td>
<td>1546 How You Can Cooperate with Distributive Education to Develop Dealers for Tomorrow, 1st ed. 1965</td>
</tr>
<tr>
<td>1504 A System of Accounting for Distributors and Jobbers of Petroleum Products, 1st ed. 1953, 2nd ed. 1959</td>
<td>1554 Using Credit to Increase Sales and Profits, 1st ed. 1966</td>
</tr>
<tr>
<td>1506 Service Station Management, 1st ed. 1954</td>
<td>1557 Case Studies in Credit for Oil Jobbers, 1st ed. 1966</td>
</tr>
<tr>
<td>1509 Engine Oil Licensing and Certification System, 14th ed. 1996</td>
<td>1563 A First Step, 1st ed. 1971</td>
</tr>
<tr>
<td>1514 Personal Development Plans, 1st ed. 1955</td>
<td>1571 Diesel Fuel Questions and Answers for Your Car, 2nd ed. 1982</td>
</tr>
<tr>
<td>1527 How to Plan and Organize Management Institute Programs for Oil Marketers, 1st ed. 1958</td>
<td>1579 Diesel Fuel Questions & Answers, 1st ed. 1977</td>
</tr>
</tbody>
</table>
Historical Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

2020 Driver Improvement Course, 1st ed. 1970
2021A Interim Study—Prevention and Suppression of Fires in Large Aboveground Atmospheric Storage Tanks, 1st ed. 1998
2022 Fire Hazards of Oil Spills on Waterways, 1st ed. 1977, 2nd ed. 1982
2025 Emergency Planning and Mutual Aid for Products Terminals and Bulk Plants, 1st ed. 1978
2031 Combustible-Gas Detector Systems and Environmental/Operational Factors Influencing their Performance, 1st ed. 1991
2202 Guidelines for Protecting Against Lead Hazard when Dismantling and Disposing of Steel from Tanks that Have Contained Leaded Gasoline, 1st ed. 1975-3rd 1991
2204 Fracturing Oil or Gas Wells with Flammable Fluids, 1st ed. 1964
2205 Guide for the safe Storage and Loading of Heavy Oil and Asphalt, 1st ed. 1966-2nd ed. 1969
2206 Identification of Compressed Gases in Cylinders, 1st ed. 1970
2209 Pipe Plugging Practices, 1st ed. 1978
2211 Precautions While Working in Reactors Having an Inert Atmosphere, 1st ed. 1971
2212 Ignition Risks of Ordinary Flashlights, 1st ed. 1972, 2nd ed. 1983
2213 Ignition Risks of Ordinary Flashlights, 1st ed. 1974
2215 Crude Oil as a Burner Fuel, 1st ed. 1974, 2nd ed. 1982
2300 Evaluation of Fire FightingFoams as Fire Protection for Alcohol Containing Fuels, 1st ed. 1985

Measurement
2501 Crude-Oil Tank Measurement and Calibration, 1st ed. 1955, 2nd ed. 1961
2502 API Recommended Practice for Lease Automatic Custody Transfer, 1st ed. 1961
2502 STD Lease Automatic Custody Transfer, 1st ed. 1967
2508 Design and Construction of Ethane and Ethylene Installations at Marine and Pipeline Terminals, Natural Gas Processing Plants, refineries, Petrochemical Plants, andTank Farms, 1st ed. 1979
2509A Bulletin on Lease Automatic Custody Transfer, 1956
2509B Shop Testing of Automatic Liquid-Level Gauges, 1961
2509C Volumetric Shrinkage Resulting from Blending Volatile Hydrocarbons with Crude Oils, 2nd ed. 1967, Reaffirmed 1992
2512 Tentative Methods of MeasuringEvaporation Loss from Petroleum Tanks and Transportation Equipment, 1957
2513 Evaporation Loss in the Petroleum Industry—Causes and Control, 1959
2514 Bulletin on Evaporation Loss from Tank Cars, Tank Trucks, and Marine Vessels, 1959
2515 Bulletin on Use of Plastic Foam to Reduce Evaporation Loss, 1961
2516 Evaporation Loss from Low-Pressure Tanks, 1962
2518 Evaporation Loss from Fixed-Roof Tanks, 1962

API Manual of Petroleum Measurement Standards
API/GPA Office Meter Data Project, Archival Data Tapes, 1st ed.
Ch. 1 Vocabulary, 1977
Ch. 2 Tank Gauging, Section 1A, Manual Gauging of Petroleum and Petroleum Products, 1st ed. 1994
Ch. 3 Proving Systems, 1978
Ch. 4 Proving Systems, Section 1, Introduction, 2nd ed. 1998
Ch. 4 Proving Systems, Section 2, Pipe Provers 2nd 2001
Ch. 4 Proving Systems, Section 3, Small Volume Provers, 1st ed. 1988
Ch. 4 Proving Systems, Section 5, Master-Meter Provers, 2nd ed. 2000
Historical Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada) Phone Orders: +1 303 397 7956 (Local and International)

4536 Methanol Health Effects Epidemiology Literature Review and Search for Study Population, 1991
4538 Remote Sensing of Automobile Exhaust, 1991
4541 Area and Volume Source Dispersion Models for Petroleum and Chemical Industry Facilities, Phase III, 1994
4542 Temperature, Reid Vapor Pressure and Gasohol Effects on Running Losses, 1992
4548 Screening of Soils for Leachable Benzene: Prediction of Toxicity Characteristic Leaching Procedure (TCLP) Benzene from Total Benzene Analysis, Mini-TCLP and Headspace Analysis, 1992
4549 A Field Study of Sediment Quality Near a Refinery Outfall, 1994
4550 Uncertainties in Current Models of Global Warming, 1992
4551 Treatment of Gasoline-Contaminated Groundwater Through Surface Application: Laboratory Experiments, 1994
4553 Gasoline Vapor Exposure Assessment at Service Stations, 1993
4554 A Study of the Relationship Between Folate Status and Methanol Toxicity, 1993
4555 A Mortality Study of Marketing and Marine Distribution Workers with Potential Exposure to Gasoline, 1992
4561 Scientific Assessment of the Urban Airshed Model (UAM–IV): An Overview, 1993
4560 A 90-Day Feeding Study in the Rat with Six Different Mineral Oils, Three Different Mineral Waxes, and Coconut Oil. BIBRA Project Number 31010, 1992
4561 Pump and Treat: The Petroleum Industry Perspective, 1992
4563 Assessment of Planned Northeast Ozone Transport Region Modeling Activities, 1993
4564 Evaluation of the Technology Alternatives for Controlling Fugitive Emissions from Sludge Dewatering Operations, 1992
4567 Oil Spill Response in the Freshwater Environment, 1993
4568 Preliminary Scope for a Gulf Coast Ozone Study, 1993
4569 Subsurface Fate and Transport of a Methanol/Gasoline Blend (M85): A Laboratory Investigation, 1994
4571 A Fundamental Evaluation of CHEMDAT Air Emissions Model, 1993
4572 In-Use Vehicle Exhaust Emissions Study: Controlled Testing, 1994
4574 On-Road Carbon Monoxide and Hydrocarbon Remote Sensing in the Chicago Area in 1992, 1994
4581 Evaluation of Technologies for the Treatment of Petroleum Product Marketing Terminal Wastewater, 1993
4591 Odor Taste Threshold Studies Performed with Tertiary Amyl Methyl Ether (TAME), 1993
4595 Criteria for pH in Onshore Solid Waste Management in Exploration and Production Operations, 1995
4596 Studies to Determine the Ecological Effects of Cleanup Methods for Oiled Shorelines, 1994
4597 Analytical Method Performance for RCRA Programs, 1995
4598 Gasoline: Insights into the Etiology of Hepatocellular Carcinoma in the Female Mouse, 1994
4604 Investigation of MOBILE5a Emission Factors: Evaluation of I/M and LEV Program Benefits, 1994
4606 Source Control and Treatment of Contaminants Found in Petroleum Product Terminal Tank Bottoms, 1994
4630 Electronic Exchange of Environmental Compliance Information: A Proposed Approach, 1995
4645 Methane and Carbon Dioxide Emission Estimates from U.S. Petroleum Sources, 1997
4682 Free-Product Recovery of Petroleum Hydrocarbon Liquids, 1999
HF1 Hydraulic Fracturing Operations—Well Construction and Integrity Guidelines, 2009
HF2 Water Management Associated with Hydraulic Fracturing, 2010
HF3 Practices for Mitigating Surface Impacts Associated with Hydraulic Fracturing, 2011

Policy and Economic Studies

Competition is Alive and Well in Gasoline Marketing, 1992
Domestic Petroleum Production and National Security, 1986
Economic Costs of Technology-Forcing Mandates, 1996
Encouraging Innovation: R&D in the Petroleum Industry, 1995
Regulation and Jobs—Sorting Out the Consequences, 1992
The Economic Impact of ANWR Development, 1990
The Sense and Nonsense of Energy Conservation
9 Acute Toxicity of Drilling Muds Containing Hydrocarbon Additives and Their Fate and Partitioning Among Liquid, Suspended and Solid Phases, 1985
013 Superfund Liability and Taxes: Petroleum Industry Shares in Their Historical Context, 1997
014 Regular, Mid-grade or Premium: Which Should I Buy?, 1996
16 Analysis of Foods for Benzene, 1992
016 Heating Oil in the United States, 2002
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>021</td>
<td>API Mineral Oil Review, 1992</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>Energy, Conservation, and Economic Growth, 1981</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>The Origin and Evolution of Gasoline Marketing, 1981</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>Oil Industry Participation in Emergency Planning, 1981</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>Economic Theory and Evidence on Cross-Subsidization of Retail Gasoline Operations, 1983</td>
<td></td>
</tr>
<tr>
<td>028</td>
<td>Oil Exploration in Less Developed Countries: The Activities of Private Oil Companies, 1983</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>The Consumer Impacts of Mandatory Markup Laws and Related Restrictions, 1984</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>A Legislative History and Analysis of the Black Lung Program, 1984</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>Survey of Oil and Gas Activities on Federal Wildlife Refuges and Waterfowl Production Areas, 1983</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>An Empirical Analysis of the Determinants of Petroleum Drilling, 1983</td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>Compatibility of Oil and Gas Operations on Federal Onshore Lands with Environmental and Rural Community Values, 1984</td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>Production and Revenue Impacts of OCS Moratoria, 1984</td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>The Efficiency Loss and Income Distribution Effects of Crude Oil and Natural Gas Price Controls, 1984</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>The Cost of OCS Bid Rejection, 1984</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>Labor Responses to Income-Providing Programs: A Literature Review, 1984</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>Diligence Requirements for Federal Coal, 1985</td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Dual Distribution: Theory and Evidence, 1986</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>A Review of Evidence of the Consequences of United States Cargo Preference Programs, 1985</td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>The Longshoremen's and Harbor Workers' Compensation Act: The 1972 and 1984 Amendments, 1985</td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>Efficiency Issues in Other Continental Shelf Leasing, 1987</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>Value Added Taxes: The Experience of Western European Countries, 1985</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>Safety of Interstate Liquid Pipelines: An Evaluation of Present Levels and Proposals for Change, 1987</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>The Impact of a Tax on All Oil on the Costs of U.S. Energy Intensive Industries, 1987</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>Mineral Leasing on Federal Lands: A Comparison of Key Leasing Elements, 1985</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>Analytics of Proposals to Compel Open Supply, 1987</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>Factors Affecting Petroleum Product Imports, 1985</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>The Effects of State Below-Cost Selling Laws on Retail Prices of Motor Gasoline, 1987</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>Risk and Returns in the Interstate Natural Gas Pipeline, 1988</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>Aggregate Energy Demand: Determinants and Implications for Conservation Policy, 1989</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>Compensation for Medical Expenses and Lost Wages of the Chronically Ill, 1986</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>The Economics of Alternative Fuel Use: Substituting Methanol, 1989</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>Workers Compensation and Disease, 1986</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>Biological Research on the Effects of Undispersed and Dispersed Experimental Crude Oil slicks in the New York Bight, 1985</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>OECD Countries and the VAT: The Historical Experience, 1990</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>Analysis of Factors Influencing the Consumption of Premium Motor Gasolines, 1990</td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>Competition in the Interstate Natural Gas Pipeline Industry, 1987</td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>Public Policy and the Imprecision of Petroleum Resource Estimates, 1987</td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>Non-OPEC Supply and World Petroleum Markets: Past Forecasts, Recent Experience and Future Prospects, 1990</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>Petroleum Production on the Arctic National Wildlife Refuge Coastal Plain and the National Interest, 1987</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>Gasoline Distribution and Service Station Margins: An Assessment of EPA Assumptions and Implications for Methanol, 1990</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>Federal Policy Regarding the Take-or-Pay Obligations of Interstate Gas Pipelines, 1988</td>
<td></td>
</tr>
<tr>
<td>057</td>
<td>Managing the Environment: A Review of Present Programs and Their Goals and Methods, 1989</td>
<td></td>
</tr>
<tr>
<td>057</td>
<td>Non-Hazardous Solid Waste Landfill Policy, 1991</td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>The Decline of Gasoline Service Stations and Motorists' Access to Car Maintenance Services, 1989</td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>Meeting the Oxygenate Requirements of the 1990 Clean Air Act Amendments, 1991</td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>Structure and Performance in Motor Gasoline Manufacturing and Marketing, 1991</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>Energy and Macroeconomic Performance, 1989</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>Price Adjustment in Gasoline and Heating Oil Markets, 1991</td>
<td></td>
</tr>
<tr>
<td>062</td>
<td>An Historical Overview of Solid Waste Management in the Petroleum Industry, 1990</td>
<td></td>
</tr>
<tr>
<td>062</td>
<td>The Impact of State Legislation on the Number of Retail Gasoline Outlets, 1991</td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>Used Oil Management in Selected Industrialized Countries, 1991</td>
<td></td>
</tr>
<tr>
<td>065</td>
<td>Economic Evaluation of Wetlands, 1991</td>
<td></td>
</tr>
<tr>
<td>065</td>
<td>Estimated Costs and Benefits of Retrofitting Aboveground Petroleum Industry Storage Tanks with Release Prevention Barriers, 1992</td>
<td></td>
</tr>
<tr>
<td>065</td>
<td>Control Strategies for Reducing Landfarm Air Emissions, 1989</td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>Economic Aspects of Workplace Safety Regulation with Application to the U.S. Petroleum Industry, 1992</td>
<td></td>
</tr>
<tr>
<td>067</td>
<td>Petroleum Industry Technology to Meet Today’s Challenges, 1991</td>
<td></td>
</tr>
<tr>
<td>069</td>
<td>Energy Prices and Externalities, 1993</td>
<td></td>
</tr>
<tr>
<td>069</td>
<td>Do Product Prices Respond Symmetrically to Changes in Crude Prices?, 1992</td>
<td></td>
</tr>
<tr>
<td>069</td>
<td>The Cleanup of Inactive Hazardous Waste Sites in Selected Industrialized Countries, 1991</td>
<td></td>
</tr>
<tr>
<td>070</td>
<td>Dealing with Uncertainties in a Biologically Based Risk Assessment of Cyclophosphamide-Induced Leukemia, 1994</td>
<td></td>
</tr>
</tbody>
</table>
Historical Publications

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)
Phone Orders: +1 303 397 7956 (Local and International)

070 The Differential Impact of Motor Fuel Taxes on States and Regions, 1993
071 Petroleum and Public Policy: The Post-World War II Experience, 1992
071 Petroleum Product Taxation in the OECD Countries: How Much are They, Who Pays Them, and What are They Doing to Petroleum Markets?, 1993
072 Water Quality Management: Policy and Practice in Selected Countries, 1992
072 RCRA Economic Impact Analysis: Refinery Nonhazardous Wastewater Surface Impoundments, 1993
073 International Management of Wetlands, 1992

75 Development of Improved Methods to Measure Effective Doses of Ozone, 1994
075 Effluent Fees: Present Practice and Future Potential, 1993
078 Potential Expenditures by The Petroleum Industry for Water Pollution Control Measures, 1995
078 Estimates of Annual U.S. Road User Payments Versus Annual Road Expenditures, 1995
079 Water Efluent Trading, 1995
079 Household Energy Consumption in the United States: Lifestyles and Conservation Policy, 1995
080 Efficiency and Equity Effects of Value-added and Other Broad-based Consumption Taxes: A Review of the Literature, 1995
080 Subsidies to Alternative Transportation Fuels and Alternative Fuel Vehicles in Twelve Eastern States and the District of Columbia, 1995
081 Initial Cost Impacts of a Carbon Tax on U.S. Manufacturing Industries and Other Sectors, 1996
082 The Funding of Roads in New York: Taxes Collected from Road Users Versus Expenditure on Roads, 1995
083 The Funding of Roads in New Jersey: Taxes Collected from Road Users Versus Expenditure on Roads, 1995
083 Octane Requirements of the Motor Vehicle Fleet and Gasoline Grade Sales, 1996
085 Restructuring the Electric Power Industry: Trends and Prospects, 1996
087 Competition and Electric Power Generation, 1997
087 An Examination of Incentives for and Obstacles to Pollution Prevention in the Petroleum Industry, 1997
088 Restoring Natural Resources: Legal Background and Economic Analysis, 1997
088 The Funding of Roads in the United States: How the Taxes and Fees Collected from Motorists are Spent, 1997
089 Distribution and Behavior of Drilling Fluids and Cuttings Around Gulf of Mexico Drilling Sites, 1985
089 The Benefits of Road Travel and Transport, 1998
089 Climate Change Policy Commitments: A Reality Check, 1997
090 A Review of the Literature on Health-health Threshold Values, 1998
091 Carbon Sinks and The Kyoto Protocol, 1999

093 Implications of the Kyoto Protocol Targets for OECD Countries, 1998
095 The Kyoto Protocol: Implications of Emissions Trading Scenarios, 1999
101 Impacts of Oil Sanctions in World Markets, 1997
104 Country Impacts of Multilateral Oil Sanctions and the Conduct of U.S. Foreign Policy, 1998
104 Emissions and Vehicle Performance with Lower RVP Fuels
106 The Feasibility of “No Cost” Efforts To Reduce Carbon Emissions in the United States, 1999
108 The EPACML Model: Analysis of Critical Components and Finite Source Methodology
109 Environmental Fate and Attenuation of Gasoline in the Subsurface, 1988
110 Estimation of Aromatic Hydrocarbon Emissions from Glycol Dehydration Units Using a Process Simulation Model, 1993
111 Estimation of Incremental Benzene Exposure Associated with Seven Bulk Gasoline Storage Facilities in North Carolina, 1991
112 Global Emissions of Methane from Petroleum Sources, 1992
112 Method Development and Freon-113 Replacement in the Analysis of Oil and Grease in Petroleum Industry Samples, 1994
112 Modeling Oxygen-Transport Limited Biodegradation in Three-Dimensionally Heterogeneous Aquifers, 1994
114 Literature Review on the Effects of Oil and Oil Dispersants on Fishes, 1984
115 Naturally Occurring Benzene, Toluene and Xylenes in Soils, 1991
119 Oil Spill Studies: Measurement of Environmental Effects and Recovery, 1983
120 Modeling Aerobic Biodegradation of Dissolved Hydrocarbons in Groundwater, 1995
123 Novel Techniques for the Containment of Oil Flowing Water, 1995
204 Polynuclear Hydrocarbons in Sediments in the Vicinity of a Refinery Outfall, 1987
218 A Pilot Study in Los Angeles to Measure Personal Ozone Exposures During Sick Built Activities, 1997
220 Potential BTEX Emissions from the Nations Triethylene Glycol Units in Oil and Natural Gas Facilities, 1995
221 Removal of Benzene from Refinery Wastewater, 1991
224 Review of EPA’s Proposed Flare Plume Rise Procedure, 1988
334 Sediment Criteria Development: A Technical Critique, 1988
349 Use of Biological Monitoring and Biomarkers, 1990
364 York River: Brief Review of Its Physical, Chemical and Biological Characteristics, 1987

Communications
All About Petroleum
Discover the Wonders of Natural Gas
Reinventing Energy
Running on Oil
There’s A Lot of Life in a Barrel of Oil
<table>
<thead>
<tr>
<th>Pub Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPMS Ch. 1 [Historical] Vocabulary</td>
<td>2nd</td>
<td>1994</td>
<td>H01002</td>
<td>$118.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 1 [Historical] Vocabulary—Spanish</td>
<td>2nd</td>
<td>1994</td>
<td>H0105P</td>
<td>$118.00</td>
<td>51, 175</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2A Measurement and Calibration of Upright Cylindrical Tanks by the Manual Tank Strapping Method</td>
<td>2nd</td>
<td>2019</td>
<td>H022A2</td>
<td>$200.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2B Calibration of Upright Cylindrical Tanks Using the Optical Reference Line Method</td>
<td>1st</td>
<td>1989</td>
<td>H30023</td>
<td>$90.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2C/ISO 12917-2:2002 Calibration of Upright Cylindrical Tanks Using the Optical-Triangulation Method</td>
<td>1st</td>
<td>2004</td>
<td>H022D1</td>
<td>$90.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2D/ISO 12917-2:2002 Petroleum and Liquid Petroleum Products—Calibration of Horizontal Cylindrical Tanks—Part 1: Manual Methods</td>
<td>1st</td>
<td>2004</td>
<td>H022F01</td>
<td>$83.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2E/ISO Petroleum and Liquid Petroleum Products—Calibration of Horizontal Cylindrical Tanks—Part 2: Internal Electro-Optical Distance-Ranging Method</td>
<td>1st</td>
<td>2004</td>
<td>H022F01</td>
<td>$83.00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.2G Calibration of Upright Cylindrical Tanks Using the Total Station Reference Line Method</td>
<td>1st</td>
<td>2014</td>
<td>H202G01</td>
<td>$87.00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.7 Calibration of Barge Tanks</td>
<td>1st</td>
<td>1991</td>
<td>H30044</td>
<td>$65.00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.8A Calibration of Tanks on Ships and Oceangoing Barges</td>
<td>1st</td>
<td>1991</td>
<td>H30049</td>
<td>$97.00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 2.8B Recommended Practice for the Establishment of the Location of the Reference Gauge Point and the Gauge Height of Tanks on Marine Tank Vessels</td>
<td>1st</td>
<td>1995</td>
<td>H028B1</td>
<td>$105.00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 3.1A Standard Practice for the Manual Gauging of Petroleum and Petroleum Products</td>
<td>3rd</td>
<td>2013</td>
<td>H301A03</td>
<td>$109.00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 3.1A Standard Practice for the Manual Gauging of Petroleum and Petroleum Products—Spanish</td>
<td>3rd</td>
<td>2013</td>
<td>H301A03SP</td>
<td>$109.00</td>
<td>53, 175</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 3.1B Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Tanks by Automatic Tank Gauging</td>
<td>3rd</td>
<td>2018</td>
<td>H301B3</td>
<td>$112.00</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.1 Introduction</td>
<td>3rd</td>
<td>2005</td>
<td>H04013</td>
<td>$89.00</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.1 Introduction—Spanish</td>
<td>3rd</td>
<td>2005</td>
<td>H04015S</td>
<td>$89.00</td>
<td>54, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.2 Displacement Provers</td>
<td>3rd</td>
<td>2003</td>
<td>H04023</td>
<td>$134.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.2 Displacement Provers—Russian</td>
<td>3rd</td>
<td>2003</td>
<td>H04023R</td>
<td>$134.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.4 Tank Provers</td>
<td>2nd</td>
<td>1998</td>
<td>H04042</td>
<td>$90.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.5 Master Meter Provers</td>
<td>4th</td>
<td>2016</td>
<td>H40504</td>
<td>$87.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.6 Pulse Interpolation</td>
<td>2nd</td>
<td>1999</td>
<td>H40602</td>
<td>$71.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.7 Field Standard Test Measures</td>
<td>3rd</td>
<td>2006</td>
<td>H40703</td>
<td>$94.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.8 Operation of Proving Systems</td>
<td>2nd</td>
<td>2013</td>
<td>H04082</td>
<td>$136.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.9.1 Methods of Calibration for Displacement and Volumetric Tank Provers, Part 1—Introduction to the Determination of the Volume of Displacement and Tank Provers</td>
<td>1st</td>
<td>2005</td>
<td>H409011</td>
<td>$82.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.9.2 Methods of Calibration for Displacement and Volumetric Tank Provers, Part 2—Determination of the Volume of Displacement and Tank Provers by the Waterdraw Method of Calibration</td>
<td>1st</td>
<td>2005</td>
<td>H409021</td>
<td>$197.00</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.9.3 Methods of Calibration for Displacement and Volumetric Tank Provers, Part 3—Determination of the Volume of Displacement Provers by the Master Meter Method of Calibration</td>
<td>1st</td>
<td>2010</td>
<td>H409031</td>
<td>$80.00</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 4.9.4 Methods of Calibration for Displacement and Volumetric Tank Provers, Part 4—Determination of the Volume of Displacement and Tank Provers by the Gravimetric Method of Calibration</td>
<td>1st</td>
<td>2010</td>
<td>H4090401</td>
<td>$90.00</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.1 General Considerations for Measurement by Meters</td>
<td>4th</td>
<td>2005</td>
<td>H05014</td>
<td>$102.00</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.1 General Considerations for Measurement by Meters—Spanish</td>
<td>4th</td>
<td>2005</td>
<td>H05014SP</td>
<td>$102.00</td>
<td>55, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.2 Measurement of Liquid Hydrocarbons by Displacement Meters</td>
<td>3rd</td>
<td>2005</td>
<td>H05023</td>
<td>$95.00</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.2 Measurement of Liquid Hydrocarbons by Displacement Meters—Spanish</td>
<td>3rd</td>
<td>2005</td>
<td>H50203SP</td>
<td>$95.00</td>
<td>55, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.3 Measurement of Liquid Hydrocarbons by Turbine Meters</td>
<td>5th</td>
<td>2005</td>
<td>H50305</td>
<td>$115.00</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.3 Measurement of Liquid Hydrocarbons by Turbine Meters—Spanish</td>
<td>5th</td>
<td>2005</td>
<td>H50305SP</td>
<td>$115.00</td>
<td>55, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.4 Accessory Equipment for Liquid Meters</td>
<td>4th</td>
<td>2005</td>
<td>H5044</td>
<td>$102.00</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

195
<table>
<thead>
<tr>
<th>Pub</th>
<th>Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPMS Ch. 5.4</td>
<td>Accessory Equipment for Liquid Meters—Spanish</td>
<td>4th</td>
<td>2005</td>
<td>H05044SP</td>
<td>$102.00</td>
<td>55, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.5</td>
<td>Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems</td>
<td>2nd</td>
<td>2005</td>
<td>H50502</td>
<td>$76.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.5</td>
<td>Fidelity and Security of Flow Measurement Pulsed-Data Transmission Systems—Spanish</td>
<td>2nd</td>
<td>2005</td>
<td>H50502SP</td>
<td>$76.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.6</td>
<td>Measurement of Liquid Hydrocarbons by Coriolis Meters</td>
<td>1st</td>
<td>2002</td>
<td>H50506</td>
<td>$151.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.6</td>
<td>Measurement of Liquid Hydrocarbons by Coriolis Meters</td>
<td>1st</td>
<td>2002</td>
<td>H50506S</td>
<td>$151.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters</td>
<td>2nd</td>
<td>2011</td>
<td>H5050802</td>
<td>$94.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 5.8</td>
<td>Measurement of Liquid Hydrocarbons by Ultrasonic Flow Meters—Spanish</td>
<td>2nd</td>
<td>2011</td>
<td>H5050802S</td>
<td>$94.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.1</td>
<td>Lease Automatic Custody Transfer (LACT) Systems</td>
<td>2nd</td>
<td>1991</td>
<td>H30121</td>
<td>$66.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.2</td>
<td>Loading Rack Metering Systems</td>
<td>3rd</td>
<td>2004</td>
<td>H60203S</td>
<td>$86.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.2</td>
<td>Loading Rack Metering Systems—Spanish</td>
<td>3rd</td>
<td>2004</td>
<td>H60203</td>
<td>$86.00</td>
<td>56, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.5</td>
<td>Metering Systems for Loading and Unloading Marine Bulk Carriers</td>
<td>2nd</td>
<td>1991</td>
<td>H30125</td>
<td>$71.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.6</td>
<td>Pipeline Metering Systems</td>
<td>2nd</td>
<td>1991</td>
<td>H30126</td>
<td>$71.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 6.7</td>
<td>Metering Viscous Hydrocarbons</td>
<td>2nd</td>
<td>1991</td>
<td>H30127</td>
<td>$71.00</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.1</td>
<td>Liquid-in-Glass Thermometers</td>
<td>3rd</td>
<td>2018</td>
<td>H70203</td>
<td>$116.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.2</td>
<td>Portable Electronic Thermometers</td>
<td>3rd</td>
<td>2011</td>
<td>H70302</td>
<td>$90.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.3</td>
<td>Fixed Automatic Tank Temperature Systems</td>
<td>3rd</td>
<td>2011</td>
<td>H70302</td>
<td>$90.00</td>
<td>57, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.4</td>
<td>Fixed Automatic Tank Temperature Systems—Spanish</td>
<td>3rd</td>
<td>2011</td>
<td>H70302SP</td>
<td>$90.00</td>
<td>57, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.6</td>
<td>Dynamic Temperature Measurement</td>
<td>2nd</td>
<td>2018</td>
<td>H70402</td>
<td>$109.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 7.5/ISO</td>
<td>Automatic Tank Temperature Measurement Onboard Marine Vessels Carrying Refrigerated Hydrocarbon and Chemical Gas Fluids</td>
<td>1st</td>
<td>2014</td>
<td>H4070501</td>
<td>$103.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.1</td>
<td>Standard Practice for Manual Sampling of Petroleum and Petroleum Products</td>
<td>5th</td>
<td>2019</td>
<td>H80105</td>
<td>$79.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.2</td>
<td>Standard Practice for Automatic Sampling of Petroleum and Petroleum Products</td>
<td>4th</td>
<td>2016</td>
<td>H80204</td>
<td>$77.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.3</td>
<td>Standard Practice for Measuring and Handling of Liquid Samples of Petroleum and Petroleum Products</td>
<td>2nd</td>
<td>2019</td>
<td>H80302</td>
<td>$69.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.4</td>
<td>Standard Practice for Sampling and Handling of Fuels for Volatility Measurement</td>
<td>4th</td>
<td>2017</td>
<td>H80404</td>
<td>$50.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.5</td>
<td>Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils, Condensates, and Liquid Petroleum Products</td>
<td>1st</td>
<td>2015</td>
<td>H80501</td>
<td>$55.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 8.5</td>
<td>Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils, Condensates, and Liquid Petroleum Products—Spanish</td>
<td>1st</td>
<td>2015</td>
<td>H80501S</td>
<td>$55.00</td>
<td>58, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 9.1</td>
<td>Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method</td>
<td>3rd</td>
<td>2012</td>
<td>H90913</td>
<td>$45.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 9.2</td>
<td>Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure Hydrometer</td>
<td>3rd</td>
<td>2012</td>
<td>H90923</td>
<td>$45.00</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 9.3</td>
<td>Standard Test Method for Density, Relative Density, and API Gravity of Crude Petroleum and Liquid Petroleum Products by Thermohydrometer Method</td>
<td>3rd</td>
<td>2012</td>
<td>H90933</td>
<td>$45.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 9.4</td>
<td>Continuous Density Measurement Under Dynamic (Flowing) Conditions</td>
<td>1st</td>
<td>2018</td>
<td>H90941</td>
<td>$168.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.2</td>
<td>Standard Test Method for Sediment in Crude Oils and Fuel Oils by the Extraction Method</td>
<td>3rd</td>
<td>2007</td>
<td>H10013</td>
<td>$42.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.2</td>
<td>Standard Test Method for Water in Crude Oil by Distillation</td>
<td>4th</td>
<td>2016</td>
<td>H100204</td>
<td>$55.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.3</td>
<td>Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure)</td>
<td>4th</td>
<td>2013</td>
<td>H100304</td>
<td>$55.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.4</td>
<td>Determination of Water and/or Sediment in Crude Oil by the Centrifuge Method (Field Procedure)</td>
<td>4th</td>
<td>2013</td>
<td>H100404</td>
<td>$93.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.5</td>
<td>Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation</td>
<td>5th</td>
<td>2013</td>
<td>H100505</td>
<td>$45.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.6</td>
<td>Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)</td>
<td>5th</td>
<td>2013</td>
<td>H100605</td>
<td>$45.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.7</td>
<td>Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration</td>
<td>2nd</td>
<td>2002</td>
<td>H10072</td>
<td>$42.00</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.8</td>
<td>Standard Test Method for Sediment in Crude Oil by Membrane Filtration</td>
<td>2nd</td>
<td>2005</td>
<td>H100802</td>
<td>$42.00</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.9</td>
<td>Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration</td>
<td>3rd</td>
<td>2013</td>
<td>H100903</td>
<td>$45.00</td>
<td>60, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 10.9</td>
<td>Standard Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration—Spanish</td>
<td>3rd</td>
<td>2013</td>
<td>H100903SP</td>
<td>$45.00</td>
<td>60, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Standard Document and API 11.1 VCF Application—Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils</td>
<td>2004</td>
<td></td>
<td>H11013</td>
<td>See Listing</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Add-In Program for Microsoft® Excel</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Dynamic Link Library (DLL)</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Source Code</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.1</td>
<td>Source Code, DLL & XL Add-In—Combined</td>
<td>See Listing</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.2</td>
<td>Data File of Chapters 11.2.2 and 11.2.2M</td>
<td>1st</td>
<td>1984</td>
<td>H27320</td>
<td>$321.00</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.2.2</td>
<td>Compressibility Factors for Hydrocarbons: 0.350–0.637 Relative Density (60 °F/60 °F) and -50 °F to 140 °F Metering Temperature</td>
<td>2nd</td>
<td>1986</td>
<td>H27307</td>
<td>$185.00</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.2.2M</td>
<td>Compressibility Factors for Hydrocarbons: 350-637 Kilograms per Cubic Meter Density (15 °C) and -46 °C to 60 °C Metering Temperature—Russian</td>
<td>1st</td>
<td>1986</td>
<td>H27309R</td>
<td>$141.00</td>
<td>62, 172</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.2.4</td>
<td>Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 55E, 56E</td>
<td>2nd</td>
<td>2019</td>
<td>H1102042</td>
<td>$205.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.2.5</td>
<td>A Simplified Vapor Pressure Correlation for Commercial NGLs</td>
<td>1st</td>
<td>2007</td>
<td>H1102051</td>
<td>$98.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.3.2.1</td>
<td>Ethylene Density</td>
<td>2nd</td>
<td>2013</td>
<td>H1132102</td>
<td>$66.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.3.3.3</td>
<td>Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol Density and Volume Correction Factors</td>
<td>3rd</td>
<td>2019</td>
<td>H1103033</td>
<td>$160.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.3.3.2</td>
<td>Propane Compressibility</td>
<td>1974</td>
<td></td>
<td>H2565E</td>
<td>$321.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.3.4</td>
<td>Miscellaneous Hydrocarbon Product Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors</td>
<td>1st</td>
<td>2019</td>
<td>H11030401</td>
<td>$180.00</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.4.1</td>
<td>Properties of Reference Materials, Part 1—Density of Water and Water Volumetric Correction Factors for Water Calibration of Volumetric Probes</td>
<td>2nd</td>
<td>2018</td>
<td>H11412</td>
<td>$81.00</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 11.5.5</td>
<td>Density/Weight/Volume Intraconversion</td>
<td>1st</td>
<td>2009</td>
<td>H1105CD</td>
<td>$268.00</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.1.1</td>
<td>Calculation of Static Petroleum Quantities, Part 1–Upright Cylindrical Tanks and Marine Vessels</td>
<td>4th</td>
<td>2019</td>
<td>H1201014</td>
<td>$125.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.1.2</td>
<td>Calculation of Static Petroleum Quantities, Part 2—Calculation Procedures for Tank Cars</td>
<td>2nd</td>
<td>2018</td>
<td>H12122</td>
<td>$128.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.2.1</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 1—Introduction</td>
<td>2nd</td>
<td>1995</td>
<td>H12021</td>
<td>$118.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.2.2</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 2—Measurement Tickets</td>
<td>3rd</td>
<td>2003</td>
<td>H12223</td>
<td>$110.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.2.3</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 3—Proving Reports</td>
<td>1st</td>
<td>1998</td>
<td>H12023</td>
<td>$130.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.2.4</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 4—Calculation of Base Prover Volumes by Waterdraw Method</td>
<td>1st</td>
<td>1997</td>
<td>H12024</td>
<td>$133.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.2.5</td>
<td>Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors, Part 5—Base Prover Volume Using Master Meter Method</td>
<td>1st</td>
<td>2001</td>
<td>H12025</td>
<td>$184.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 12.3</td>
<td>Calculation of Volumetric Shrinkage from Blending Light Hydrocarbons with Crude Oils</td>
<td>1st</td>
<td>1996</td>
<td>H12031</td>
<td>$97.00</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 13.2</td>
<td>Methods of Evaluating Meter Proving Data</td>
<td>2nd</td>
<td>2018</td>
<td>H13022</td>
<td>$105.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 13.3</td>
<td>Measurement Uncertainty—Spanish</td>
<td>2nd</td>
<td>2017</td>
<td>H130302</td>
<td>$122.00</td>
<td>65, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.1</td>
<td>Collecting and Handling of Natural Gas Samples for Custody Transfer</td>
<td>7th</td>
<td>2016</td>
<td>H140107</td>
<td>$226.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.3.1</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric Square-Edge Orifice Meters, Part 1: General Equations and Uncertainty Guidelines</td>
<td>4th</td>
<td>2012</td>
<td>H1403014</td>
<td>$196.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.3.2</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edge Orifice Meters, Part 2: Specification and Installation Requirements</td>
<td>5th</td>
<td>2016</td>
<td>H1403025</td>
<td>$204.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.3.3</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edge Orifice Meters, Part 3: Natural Gas Applications</td>
<td>4th</td>
<td>2013</td>
<td>H1403034</td>
<td>$239.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.3.4</td>
<td>Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids—Concentric, Square-Edge Orifice Meters, Part 4: Background, Development, Implementation Procedure, and Example Calculations</td>
<td>4th</td>
<td>2019</td>
<td>H1403044</td>
<td>$186.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.4</td>
<td>Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes</td>
<td>2nd</td>
<td>2017</td>
<td>H140402</td>
<td>$71.00</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.5</td>
<td>Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer</td>
<td>3rd</td>
<td>2009</td>
<td>H140503</td>
<td>$79.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.7</td>
<td>Mass Measurement of Natural Gas Liquids and Other Hydrocarbons</td>
<td>5th</td>
<td>2018</td>
<td>H140705</td>
<td>$77.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.9</td>
<td>Measurement of Natural Gas by Coriolis Meter</td>
<td>2nd</td>
<td>2013</td>
<td></td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.10</td>
<td>Measurement of Flow to Flares</td>
<td>1st</td>
<td>2007</td>
<td>H140101</td>
<td>$116.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 14.12</td>
<td>Measurement of Gas by Vortex Meters</td>
<td>1st</td>
<td>2017</td>
<td>H140121</td>
<td>$94.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 15</td>
<td>Guidelines for the Use of Petroleum Industry-Specific International System (SI) Units</td>
<td>4th</td>
<td>2019</td>
<td>H15004</td>
<td>$130.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 16.2</td>
<td>Mass Measurement of Liquid Hydrocarbons in Vertical Cylindrical Storage Tanks by Hydrostatic Tank Gauging</td>
<td>1st</td>
<td>1994</td>
<td>H16021</td>
<td>$105.00</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.1</td>
<td>Guidelines for Marine Inspection</td>
<td>6th</td>
<td>2014</td>
<td>H170106</td>
<td>$163.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.1</td>
<td>Guidelines for Marine Inspection—Spanish</td>
<td>6th</td>
<td>2014</td>
<td>H170106S</td>
<td>$163.00</td>
<td>67, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.2</td>
<td>Measurement of Cargoes On Board Tank Vessels</td>
<td>2nd</td>
<td>1999</td>
<td>H17022</td>
<td>$143.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.2</td>
<td>Measurement of Cargoes On Board Tank Vessels—Spanish</td>
<td>2nd</td>
<td>1999</td>
<td>H17025P</td>
<td>$143.00</td>
<td>67, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.3</td>
<td>Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements</td>
<td>2nd</td>
<td>2016</td>
<td>H170302</td>
<td>$131.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.3</td>
<td>Guidelines for Identification of the Source of Free Waters Associated with Marine Petroleum Cargo Movements—Spanish</td>
<td>2nd</td>
<td>2016</td>
<td>H170302S</td>
<td>$131.00</td>
<td>67, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)</td>
<td>2nd</td>
<td>2016</td>
<td>H170402</td>
<td>$119.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.4</td>
<td>Method for Quantification of Small Volumes on Marine Vessels (OBQ/ROB)—Spanish</td>
<td>2nd</td>
<td>2016</td>
<td>H170402S</td>
<td>$119.00</td>
<td>67, 176</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.5</td>
<td>Guidelines for Voyage Analysis and Reconciliation of Cargo Quantities</td>
<td>4th</td>
<td>2019</td>
<td>H170504</td>
<td>$160.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.6</td>
<td>Guidelines for Determining Fullness of Pipelines Between Vessels and Shore Tanks</td>
<td>2nd</td>
<td>2014</td>
<td>H170602</td>
<td>$119.00</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>MPMS Ch. 17.8</td>
<td>Guidelines for Pre-Loading Inspection of Marine Vessel Cargo Tanks and Their Cargo-Handling Systems</td>
<td>2nd</td>
<td>2016</td>
<td>H170802</td>
<td>$117.00</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.8</td>
<td>Guidelines for Pre-Loading Inspection of Marine Vessel Cargo tanks and Their Cargo-Handling Systems—Spanish</td>
<td>2nd</td>
<td>2016</td>
<td>H170802S</td>
<td>$117.00</td>
<td>68, 176</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.9</td>
<td>Vessel Experience Factor (VEF)</td>
<td>3rd</td>
<td>2019</td>
<td>H170903</td>
<td>$185.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.10.1/ISO 10976:2012</td>
<td>Measurement of Cargoes On Board Marine Gas Carriers, Part 1—Liquefied Natural Gas</td>
<td>1st</td>
<td>2014</td>
<td>HH171011</td>
<td>$163.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.10.2</td>
<td>Measurement of Cargoes On Board Marine Gas Carriers, Part 2—Liquefied Petroleum and Chemical Gases</td>
<td>2nd</td>
<td>2016</td>
<td>H171022</td>
<td>$163.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.11</td>
<td>Measurement and Sampling of Cargoes On Board Tank Vessels Using Closed and Restricted Equipment</td>
<td>2nd</td>
<td>2016</td>
<td>H170112</td>
<td>$117.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.12</td>
<td>Procedures for Bulk Liquid Chemical Cargo Inspections</td>
<td>2nd</td>
<td>2015</td>
<td>H170122</td>
<td>$177.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 17.12</td>
<td>Procedures for Bulk Liquid Chemical Cargo Inspections—Spanish</td>
<td>2nd</td>
<td>2015</td>
<td>H170122S</td>
<td>$177.00</td>
<td>68, 177</td>
</tr>
<tr>
<td>MPMS</td>
<td>17.4.1</td>
<td>Measurement of Bulk Cargoes by Draft Survey, Part 1: Ocean-Going Vessels</td>
<td>1st</td>
<td>2019</td>
<td>H1714101</td>
<td>$160.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>17.4.2</td>
<td>Measurement of Bulk Cargoes by Draft Survey, Part 2: Inland Barges</td>
<td>1st</td>
<td>2019</td>
<td>H1714201</td>
<td>$150.00</td>
<td>68</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 18.1</td>
<td>Measurement Procedures for Crude Oil Gathered from Lease Tanks by Truck</td>
<td>3rd</td>
<td>2018</td>
<td>H18013</td>
<td>$131.00</td>
<td>69</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 18.2</td>
<td>Custody Transfer of Crude Oil from Lease Tanks Using Alternative Measurement Methods</td>
<td>1st</td>
<td>2016</td>
<td>H180201</td>
<td>$136.00</td>
<td>69</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.1</td>
<td>Evaporative Loss from Fixed-Roof Tanks</td>
<td>5th</td>
<td>2017</td>
<td>H190105</td>
<td>$168.00</td>
<td>69</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.10</td>
<td>Documentation File for API Manual of Petroleum Measurement Standards Chapter 19.1—Evaporative Loss from Fixed-Roof Tanks</td>
<td>1st</td>
<td>1993</td>
<td>H30553</td>
<td>$185.00</td>
<td>69</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.2</td>
<td>Evaporative Loss from Floating-Roof Tanks</td>
<td>3rd</td>
<td>2012</td>
<td>H190203</td>
<td>$191.00</td>
<td>69</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part A</td>
<td>Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss Factors for External Floating-Roof Tanks</td>
<td>1st</td>
<td>1997</td>
<td>H1903A</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part B</td>
<td>Air Concentration Test Method—Rim-Beam Loss Factors for Floating-Roof Tanks</td>
<td>1st</td>
<td>1997</td>
<td>H1903B</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part C</td>
<td>Weight Loss Test Method for the Measurement of Rim-Beam Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st</td>
<td>1998</td>
<td>H1903C</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part D</td>
<td>Fugitive Emission Test Method for the Measurement of Deck-Seam Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st</td>
<td>2001</td>
<td>H1903D</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part E</td>
<td>Weight Loss Test Method for the Measurement of Deck-Fitting Loss Factors for Internal Floating-Roof Tanks</td>
<td>1st</td>
<td>1997</td>
<td>H1903E</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.3, Part H</td>
<td>Tank Seals and Fittings Certification—Administration</td>
<td>1st</td>
<td>1998</td>
<td>H1903H</td>
<td>$133.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.4</td>
<td>Evaporative Loss Reference Information and Specification Methodology</td>
<td>3rd</td>
<td>2012</td>
<td>H190403</td>
<td>$213.00</td>
<td>70</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.5</td>
<td>Atmospheric Hydrocarbon Emissions from Marine Vessel Transfer Operations</td>
<td>1st</td>
<td>2009</td>
<td>H19051</td>
<td>$135.00</td>
<td>71</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.6.1</td>
<td>Evaporative Loss from Storage Tank Flooding Roof Landings</td>
<td>1st</td>
<td>2017</td>
<td>H1906011</td>
<td>$136.00</td>
<td>71</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 19.6.2</td>
<td>Evaporative Loss from the Cleaning of Storage Tanks</td>
<td>1st</td>
<td>2019</td>
<td>H1906021</td>
<td>$150.00</td>
<td>71</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.1</td>
<td>Allocation Measurement</td>
<td>1st</td>
<td>1993</td>
<td>H30701</td>
<td>$118.00</td>
<td>72</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.2</td>
<td>Production Allocation Measurement Using Single-Phase Devices</td>
<td>1st</td>
<td>2016</td>
<td>H200201</td>
<td>$135.00</td>
<td>72</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.2</td>
<td>Production Allocation Measurement Using Single-Phase Devices—Spanish</td>
<td>1st</td>
<td>2016</td>
<td>H200201S</td>
<td>$135.00</td>
<td>72, 177</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.3</td>
<td>Measurement of Multiphase Flow</td>
<td>1st</td>
<td>2013</td>
<td>H200301</td>
<td>$195.00</td>
<td>72</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.3</td>
<td>Measurement of Multiphase Flow—Russian</td>
<td>1st</td>
<td>2013</td>
<td>H200301R</td>
<td>$148.00</td>
<td>72, 173</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 20.5</td>
<td>Recommended Practice for Application of Production Well Testing In Measurement and Allocation</td>
<td>1st</td>
<td>2017</td>
<td>H200501</td>
<td>$202.00</td>
<td>73</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 21.1</td>
<td>Flow Measurement Using Electronic Metering Systems—Electronic Gas Measurement</td>
<td>2nd</td>
<td>2013</td>
<td>H210102</td>
<td>$179.00</td>
<td>73</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 21.2</td>
<td>Electronic Liquid Volume Measurement Using Positive Displacement and Turbine Meters</td>
<td>1st</td>
<td>1998</td>
<td>H210201</td>
<td>$207.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 21.2-A1</td>
<td>Addendum 1 to Flow Measurement Using Electronic Metering Systems, Inferred Mass</td>
<td>1st</td>
<td>2000</td>
<td>H2102A</td>
<td>$66.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 22.1</td>
<td>General Guidelines for Developing Testing Protocols for Devices Used in the Measurement of Hydrocarbon Fluids</td>
<td>2nd</td>
<td>2015</td>
<td>H220102</td>
<td>$95.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 22.2</td>
<td>Testing Protocols—Differential Pressure Flow Measurement Devices</td>
<td>2nd</td>
<td>2017</td>
<td>H220202</td>
<td>$113.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 22.3</td>
<td>Testing Protocols for Flare Gas Metering</td>
<td>1st</td>
<td>2015</td>
<td>H220301</td>
<td>$107.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 22.4</td>
<td>Testing Protocols for Pressure, Differential Pressure, and Temperature Measuring Devices</td>
<td>1st</td>
<td>2018</td>
<td>H220401</td>
<td>$81.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 22.6</td>
<td>Testing Protocols for Gas Chromatographs</td>
<td>1st</td>
<td>2015</td>
<td>H220601</td>
<td>$107.00</td>
<td>74</td>
</tr>
<tr>
<td>MPMS</td>
<td>Ch. 23.1</td>
<td>Reconciliation of Liquid Pipeline Quantities</td>
<td>1st</td>
<td>2016</td>
<td>H230101</td>
<td>$103.00</td>
<td>74</td>
</tr>
<tr>
<td>Bull</td>
<td>E1</td>
<td>Generic Hazardous Chemical Category List and Inventory for the Oil and Gas Exploration and Production Industry</td>
<td>2nd</td>
<td>1990</td>
<td>G11000</td>
<td>$154.00</td>
<td>49</td>
</tr>
<tr>
<td>Bull</td>
<td>E2</td>
<td>Management of Naturally Occurring Radioactive Materials (NORM) in Oil and Gas Production</td>
<td>2nd</td>
<td>2006</td>
<td>GE2002</td>
<td>$133.00</td>
<td>49</td>
</tr>
<tr>
<td>Bull</td>
<td>E3</td>
<td>Welfare Plugging and Abandonment Practices</td>
<td>2nd</td>
<td>2018</td>
<td>G11008</td>
<td>$149.00</td>
<td>18</td>
</tr>
<tr>
<td>Bull</td>
<td>E4</td>
<td>Environmental Guidance Document: Release Reporting for the Oil and Gas Exploration and Production Industry as Required by the Clean Water Act, the Comprehensive Environmental Response, Compensation and Liability Act, and the Emergency Planning and Community</td>
<td>2nd</td>
<td>2003</td>
<td>GE4002</td>
<td>$183.00</td>
<td>49</td>
</tr>
<tr>
<td>API</td>
<td>E5</td>
<td>Environmental Guidance Document: Waste Management in Exploration and Production Operations</td>
<td>2nd</td>
<td>1997</td>
<td>GE5002</td>
<td>$136.00</td>
<td>50</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Spec Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Chinese</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109C</td>
<td>$92.00</td>
<td>1, 167</td>
<td></td>
</tr>
<tr>
<td>Spec Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Portuguese</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109P</td>
<td>$130.00</td>
<td>1, 170</td>
<td></td>
</tr>
<tr>
<td>Spec Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Russian</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109R</td>
<td>$104.00</td>
<td>1, 170</td>
<td></td>
</tr>
<tr>
<td>Spec Q1</td>
<td>Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum and Natural Gas Industry—Spanish</td>
<td>9th</td>
<td>2013</td>
<td>G0Q109SP</td>
<td>$130.00</td>
<td>1, 175</td>
<td></td>
</tr>
<tr>
<td>Spec Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Chinese</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201C</td>
<td>$61.00</td>
<td>1, 167</td>
<td></td>
</tr>
<tr>
<td>Spec Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Portuguese</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201P</td>
<td>$87.00</td>
<td>1, 170</td>
<td></td>
</tr>
<tr>
<td>Spec Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Russian</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201R</td>
<td>$70.00</td>
<td>1, 170</td>
<td></td>
</tr>
<tr>
<td>Spec Q2</td>
<td>Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries—Spanish</td>
<td>1st</td>
<td>2011</td>
<td>G0Q201SP</td>
<td>$87.00</td>
<td>2, 175</td>
<td></td>
</tr>
<tr>
<td>RP T-1</td>
<td>Creating Orientation Programs for Personnel Going Offshore</td>
<td>5th</td>
<td>2016</td>
<td>GT1005</td>
<td>$71.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP T-2</td>
<td>Recommended Practice for Qualification Programs for Offshore Production Personnel Who Work with Safety Devices</td>
<td>2nd</td>
<td>2001</td>
<td>GT2002</td>
<td>$65.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP T-4</td>
<td>Training of Offshore Personnel in Nonoperating Emergencies</td>
<td>2nd</td>
<td>1995</td>
<td>GT4002</td>
<td>$65.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP T-6</td>
<td>Recommended Practice for Training and Qualification of Personnel in Well Control Equipment and Techniques for Wireline Operations on Offshore Locations</td>
<td>1st</td>
<td>2002</td>
<td>GT6001</td>
<td>$65.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP T-7</td>
<td>Training of Personnel in Rescue of Persons in Water</td>
<td>2nd</td>
<td>1995</td>
<td>GT7002</td>
<td>$62.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP T-8</td>
<td>Fundamental Safety Training for Offshore Personnel</td>
<td>1st</td>
<td>2019</td>
<td>GT8001</td>
<td>$65.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RS O51</td>
<td>The Use of Economic Incentive Mechanisms in Environmental Management</td>
<td>1990</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O53</td>
<td>Reducing Emissions from Older Vehicles</td>
<td>1990</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O56</td>
<td>Economics of Alternative Fuel Use: Compressed Natural Gas as a Vehicle Fuel</td>
<td>1990</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O67</td>
<td>The Cost Effectiveness of Vehicle Inspection and Maintenance Programs</td>
<td>1993</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>DP O74</td>
<td>Current Status of Watershed Management in the United States</td>
<td>1993</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O74</td>
<td>Air Emissions Banking and Trading: Analysis and Implications for Wetland Mitigation Banking</td>
<td>1994</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>RS O75</td>
<td>Improving Cost-Effectiveness Estimation: A Reassessment of Control Options to Reduce Ozone Precursor Emissions</td>
<td>1994</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>RS O76</td>
<td>Paying for Automobile Insurance at the Pump: A Critical Review</td>
<td>1994</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>DP O77</td>
<td>Alternative Wetland Mitigation Programs</td>
<td>1995</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>DP O81</td>
<td>Are We Running Out of Oil?</td>
<td>1995</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O82</td>
<td>Superfund Liability and Taxes: Petroleum Industry Shares in Their Historical Context</td>
<td>1996</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>RS O84R</td>
<td>Analysis of the Costs and Benefits of Regulations: Review of Historical Experience</td>
<td>1996</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>DP O86</td>
<td>Opposition to OCS Development, Historical Context and Economic Considerations</td>
<td>1996</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>DP O88</td>
<td>Restoring Natural Resources: Legal Background and Economic Analysis</td>
<td>1997</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>RS O94</td>
<td>How Unilateral Economic Sanctions Affect the U.S. Economy: An Inter-Industry Analysis</td>
<td>1998</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>RP 1FSC</td>
<td>Facilities Systems Completion Planning and Execution</td>
<td>1st</td>
<td>2013</td>
<td>G1FSC01</td>
<td>$66.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TR 1PER15K-1</td>
<td>Protocol for Verification and Validation of High-Pressure High-Temperature Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G1PER15K1</td>
<td>$159.00</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP 2A-LRFD</td>
<td>Planning, Designing, and Constructing Fixed Offshore Platforms—Load and Resistance Factor Design</td>
<td>2nd</td>
<td>2019</td>
<td>G2ALRFD2</td>
<td>$387.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spec 2B</td>
<td>Specification for the Fabrication of Structural Steel Pipe</td>
<td>6th</td>
<td>2001</td>
<td>G02B06</td>
<td>$90.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spec 2C</td>
<td>Offshore Pedestal-Mounted Cranes</td>
<td>7th</td>
<td>2012</td>
<td>G02C07</td>
<td>$155.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spec 2C</td>
<td>Offshore Pedestal-Mounted Cranes—Chinese</td>
<td>7th</td>
<td>2012</td>
<td>G02C07C</td>
<td>$110.00</td>
<td>3, 167</td>
<td></td>
</tr>
<tr>
<td>Std 2CU</td>
<td>Offshore Cargo Carrying Units</td>
<td>1st</td>
<td>2017</td>
<td>G2CU01</td>
<td>$114.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RP 2D</td>
<td>Operation and Maintenance of Offshore Cranes</td>
<td>7th</td>
<td>2014</td>
<td>G2D007</td>
<td>$157.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RP 2EQ/ISO</td>
<td>Seismic Design Procedures and Criteria for Offshore Structures</td>
<td>1st</td>
<td>2014</td>
<td>G2EQ01</td>
<td>$136.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spec 2F</td>
<td>Specification for Mooring Chain</td>
<td>6th</td>
<td>1997</td>
<td>G02F06</td>
<td>$97.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spec 2F</td>
<td>Specification for Mooring Chain—Chinese</td>
<td>6th</td>
<td>1997</td>
<td>G02F06C</td>
<td>$69.00</td>
<td>3, 167</td>
<td></td>
</tr>
<tr>
<td>Pub. Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice for Design of Offshore Facilities Against Fire and Blast Loading</td>
<td>1st</td>
<td>2006</td>
<td>G2FB01</td>
<td>$171.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Planning, Designing, and Constructing Floating Production Systems</td>
<td>2nd</td>
<td>2011</td>
<td>G2FPS02</td>
<td>$202.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Floating Systems Integrity Management</td>
<td>1st</td>
<td>2019</td>
<td>G2FSIM01</td>
<td>$175.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Geotechnical and Foundation Design Considerations</td>
<td>1st</td>
<td>2011</td>
<td>G2GEO01</td>
<td>$167.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Specification for Carbon Manganese Steel Plate for Offshore Structures</td>
<td>9th</td>
<td>2006</td>
<td>G02H90</td>
<td>$102.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>Guidance for Post-Hurricane Structural Inspection of Offshore Structures</td>
<td>1st</td>
<td>2009</td>
<td>G2HINS01</td>
<td>$90.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>In-Service Inspection of Mooring Hardware for Floating Structures</td>
<td>3rd</td>
<td>2008</td>
<td>G2I03</td>
<td>$160.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Depreciation of Metocean Design and Operating Considerations</td>
<td>2nd</td>
<td>2019</td>
<td>G2MET02</td>
<td>$227.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Mooring Integrity Management</td>
<td>1st</td>
<td>2019</td>
<td>G2MIM01</td>
<td>$137.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Specification for Carbon Manganese Steel Plate with Improved Toughness for Offshore Structures</td>
<td>2nd</td>
<td>2001</td>
<td>G2MT12</td>
<td>$90.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Rolled Shapes with Improved Notch Toughness</td>
<td>1st</td>
<td>2002</td>
<td>G2MT21</td>
<td>$86.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions</td>
<td>3rd</td>
<td>2015</td>
<td>G2N03</td>
<td>$216.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions</td>
<td>3rd</td>
<td>2010</td>
<td>G2N03</td>
<td>$246.00</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>Guidelines for Tie-Downs on Offshore Production Facilities for Hurricane Season</td>
<td>1st</td>
<td>2006</td>
<td>G2T01</td>
<td>$56.00</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>Guideline for Design of Flat Plate Structures</td>
<td>1st</td>
<td>2019</td>
<td>G2T02</td>
<td>$156.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>Design of Flat Plate Structures</td>
<td>3rd</td>
<td>2004</td>
<td>G2W03</td>
<td>$207.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Steel Plates Produced by Thermo-Mechanically Controlled Processing for Offshore Structures</td>
<td>6th</td>
<td>2019</td>
<td>G2W06</td>
<td>$105.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Steel Plates Produced by Thermo-Mechanically Controlled Processing for Offshore Structures–Russian</td>
<td>6th</td>
<td>2019</td>
<td>G2W06R</td>
<td>$84.00</td>
<td>7,170</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice for Ultrasonic and Magnetic Examination of Offshore Structural Fabrication and Guidelines for Qualification of Technicians</td>
<td>4th</td>
<td>2004</td>
<td>G2X04</td>
<td>$159.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Specification for Steel Plates, Quenched-and-Tempered, for Offshore Structures</td>
<td>5th</td>
<td>2006</td>
<td>G2Y05</td>
<td>$102.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures</td>
<td>4th</td>
<td>2005</td>
<td>G2Z02</td>
<td>$130.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommendation Practice for Preproduction Qualification for Steel Plates for Offshore Structures–Russian</td>
<td>4th</td>
<td>2005</td>
<td>G2Z02R</td>
<td>$103.00</td>
<td>7,170</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Specification for Diving and Well Servicing Structures</td>
<td>4th</td>
<td>2013</td>
<td>G2F04</td>
<td>$124.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Specification for Diving and Well Servicing Structures–Chinese</td>
<td>4th</td>
<td>2013</td>
<td>G2F04C</td>
<td>$88.00</td>
<td>8,167</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Operation, Inspection, Maintenance, and Repair of Diving and Well Servicing Structures</td>
<td>5th</td>
<td>2019</td>
<td>G2E05</td>
<td>$126.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice on Thread Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements</td>
<td>3rd</td>
<td>2009</td>
<td>G2SA03R</td>
<td>$157.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice on Thread Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements–Russian</td>
<td>3rd</td>
<td>2009</td>
<td>G2SA03</td>
<td>$125.00</td>
<td>8,170</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe</td>
<td>7th</td>
<td>2005</td>
<td>G2S507</td>
<td>$171.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Field Inspection of New Casing, Tubing, and Plain-End Drill Pipe–Chinese</td>
<td>7th</td>
<td>2005</td>
<td>G2S507C</td>
<td>$119.00</td>
<td>8,167</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads</td>
<td>16th</td>
<td>2017</td>
<td>G2B016</td>
<td>$163.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads–Russian</td>
<td>16th</td>
<td>2017</td>
<td>G2B016R</td>
<td>$126.00</td>
<td>8,170</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Gauging and Inspection of Casing, Tubing and Line Pipe Threads</td>
<td>5th</td>
<td>1999</td>
<td>G2B105</td>
<td>$154.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Gauging and Inspection of Casing, Tubing and Line Pipe Threads–Kazakh</td>
<td>5th</td>
<td>1999</td>
<td>G2B15K</td>
<td>$123.00</td>
<td>8,169</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Gauging and Inspection of Casing, Tubing and Pipe Line Threads–Russian</td>
<td>5th</td>
<td>1999</td>
<td>G2B15R</td>
<td>$123.00</td>
<td>9,170</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice for Care and Use of Casing and Tubing</td>
<td>18th</td>
<td>1999</td>
<td>G2C18</td>
<td>$124.00</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice for Care and Use of Casing and Tubing–Chinese</td>
<td>18th</td>
<td>1999</td>
<td>G2C18C</td>
<td>$88.00</td>
<td>9,167</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Calculating Performance Properties of Pipe Used as Casing or Tubing</td>
<td>7th</td>
<td>2018</td>
<td>G2C307</td>
<td>$246.00</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Procedures for Testing Casing and Tubing Connections</td>
<td>4th</td>
<td>2017</td>
<td>G2S504</td>
<td>$195.00</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Procedures for Testing Casing and Tubing Connections–Russian</td>
<td>4th</td>
<td>2017</td>
<td>G2S504R</td>
<td>$156.00</td>
<td>9,170</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RP</td>
<td>5C6</td>
<td>Pipe with Welded Connectors</td>
<td>3rd</td>
<td>2018</td>
<td>G05C62</td>
<td>$103.00</td>
<td>9</td>
</tr>
<tr>
<td>RP</td>
<td>5C8</td>
<td>Care, Maintenance, and Inspection of Coiled Tubing</td>
<td>1st</td>
<td>2017</td>
<td>G05C801</td>
<td>$131.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec</td>
<td>5CRA/ISO 13680:2008</td>
<td>Specification for Corrosion Resistant Alloy Seamless Tubes for Use as Casing, Tubing and Coupling Stock</td>
<td>1st</td>
<td>2010</td>
<td>G05CRA01</td>
<td>$168.00</td>
<td>9</td>
</tr>
<tr>
<td>Spec</td>
<td>5C8/ISO 13680:2008</td>
<td>Specification for Corrosion Resistant Alloy Seamless Tubes for Use as Casing, Tubing and Coupling Stock—Russian</td>
<td>10th</td>
<td>2018</td>
<td>G5C8010</td>
<td>$282.00</td>
<td>9, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>5C7</td>
<td>Casing and Tubing</td>
<td>10th</td>
<td>2018</td>
<td>G5C7001</td>
<td>$197.00</td>
<td>9, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>5C7</td>
<td>Casing and Tubing—Chinese</td>
<td>10th</td>
<td>2018</td>
<td>G5C7010CR</td>
<td>$225.00</td>
<td>9, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>5C7</td>
<td>Casing and Tubing—Russian</td>
<td>10th</td>
<td>2018</td>
<td>G5C7010R</td>
<td>$194.00</td>
<td>9, 170</td>
</tr>
<tr>
<td>Spec</td>
<td>5D0/ISO 11961:2008</td>
<td>Specification for Drill Pipe</td>
<td>1st</td>
<td>2009</td>
<td>GX5D010</td>
<td>$196.00</td>
<td>10</td>
</tr>
<tr>
<td>Spec</td>
<td>5D0/ISO 11961:2008</td>
<td>Specification for Drill Pipe—Chinese</td>
<td>1st</td>
<td>2009</td>
<td>GX5D010C</td>
<td>$138.00</td>
<td>10, 167</td>
</tr>
<tr>
<td>RP</td>
<td>5EX</td>
<td>Design, Verification, and Application of Solid Expandable Systems</td>
<td>1st</td>
<td>2018</td>
<td>G5EX01</td>
<td>$144.00</td>
<td>10</td>
</tr>
<tr>
<td>Spec</td>
<td>5L</td>
<td>Line Pipe</td>
<td>46th</td>
<td>2018</td>
<td>G05L46</td>
<td>$298.00</td>
<td>10</td>
</tr>
<tr>
<td>Spec</td>
<td>5L</td>
<td>Line Pipe—Chinese</td>
<td>46th</td>
<td>2018</td>
<td>G05L46C</td>
<td>$209.00</td>
<td>10</td>
</tr>
<tr>
<td>Spec</td>
<td>5L</td>
<td>Line Pipe—Russian</td>
<td>46th</td>
<td>2018</td>
<td>G05L46R</td>
<td>$238.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP</td>
<td>5L1</td>
<td>Recommended Practice for Railroad Transportation of Line Pipe</td>
<td>7th</td>
<td>2009</td>
<td>G5L107</td>
<td>$65.00</td>
<td>10</td>
</tr>
<tr>
<td>RP</td>
<td>5L1</td>
<td>Recommended Practice for Railroad Transportation of Line Pipe—Russian</td>
<td>7th</td>
<td>2009</td>
<td>G5L107R</td>
<td>$50.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP</td>
<td>5L3</td>
<td>Drop-Weight Tear Tests on Line Pipe</td>
<td>4th</td>
<td>2014</td>
<td>G5L304</td>
<td>$103.00</td>
<td>10</td>
</tr>
<tr>
<td>RP</td>
<td>5L3</td>
<td>Drop-Weight Tear Tests on Line Pipe—Russian</td>
<td>4th</td>
<td>2014</td>
<td>G5L304R</td>
<td>$82.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>RP</td>
<td>5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802</td>
<td>$136.00</td>
<td>10</td>
</tr>
<tr>
<td>RP</td>
<td>5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe—Kazakh</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802K</td>
<td>$109.00</td>
<td>10, 169</td>
</tr>
<tr>
<td>RP</td>
<td>5L8</td>
<td>Recommended Practice for Field Inspection of New Line Pipe—Russian</td>
<td>2nd</td>
<td>1996</td>
<td>G5L802R</td>
<td>$109.00</td>
<td>10, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>5LC</td>
<td>CRA Line Pipe</td>
<td>4th</td>
<td>2015</td>
<td>G5L404</td>
<td>$189.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec</td>
<td>5LCP</td>
<td>Specification on Coiled Line Pipe</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2</td>
<td>$158.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec</td>
<td>5LCP</td>
<td>Specification on Coiled Line Pipe—Chinese</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2C</td>
<td>$122.00</td>
<td>11, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>5LCP</td>
<td>Specification on Coiled Line Pipe—Russian</td>
<td>2nd</td>
<td>2006</td>
<td>G5LCP2R</td>
<td>$128.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>5LD</td>
<td>CRA Clad or Lined Steel Pipe</td>
<td>4th</td>
<td>2015</td>
<td>G5L504</td>
<td>$157.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec</td>
<td>5LD</td>
<td>CRA Clad or Lined Steel Pipe—Russian</td>
<td>4th</td>
<td>2015</td>
<td>G5L504R</td>
<td>$125.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>RP</td>
<td>5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe</td>
<td>1st</td>
<td>2012</td>
<td>G5L501</td>
<td>$65.00</td>
<td>11</td>
</tr>
<tr>
<td>RP</td>
<td>5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe—Chinese</td>
<td>1st</td>
<td>2012</td>
<td>G5L501C</td>
<td>$46.00</td>
<td>11, 167</td>
</tr>
<tr>
<td>RP</td>
<td>5LT</td>
<td>Recommended Practice for Truck Transportation of Line Pipe—Russian</td>
<td>1st</td>
<td>2012</td>
<td>G5L501R</td>
<td>$51.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>RP</td>
<td>5LW</td>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels</td>
<td>3rd</td>
<td>2009</td>
<td>G5L503</td>
<td>$65.00</td>
<td>11</td>
</tr>
<tr>
<td>RP</td>
<td>5LW</td>
<td>Recommended Practice for Transportation of Line Pipe on Barges and Marine Vessels—Russian</td>
<td>3rd</td>
<td>2009</td>
<td>G5L503R</td>
<td>$51.00</td>
<td>11, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>5ST</td>
<td>Specification for Coiled Tubing—U.S. Customary and SI Units</td>
<td>1st</td>
<td>2010</td>
<td>G5S501</td>
<td>$145.00</td>
<td>11</td>
</tr>
<tr>
<td>Spec</td>
<td>5ST</td>
<td>Specification for Coiled Tubing—U.S. Customary and SI Units—Chinese</td>
<td>1st</td>
<td>2010</td>
<td>G5S501C</td>
<td>$102.00</td>
<td>11, 167</td>
</tr>
<tr>
<td>Bull</td>
<td>5T1</td>
<td>Imperfection and Defect Terminology</td>
<td>11th</td>
<td>2017</td>
<td>G5T1011</td>
<td>$138.00</td>
<td>12</td>
</tr>
<tr>
<td>Bull</td>
<td>5T1</td>
<td>Imperfection and Defect Terminology—Russian</td>
<td>11th</td>
<td>2017</td>
<td>G5T1011R</td>
<td>$111.00</td>
<td>12, 171</td>
</tr>
<tr>
<td>TR</td>
<td>5TP</td>
<td>Torque-Position Assembly Guidelines for API Casing and Tubing Connections</td>
<td>1st</td>
<td>2013</td>
<td>G5T501</td>
<td>$124.00</td>
<td>12</td>
</tr>
<tr>
<td>TR</td>
<td>5TRS22</td>
<td>Technical Report in SR22 Supplementary Requirements for Enhanced Leak Resistance LTC</td>
<td>1st</td>
<td>2002</td>
<td>G5T5012</td>
<td>$96.00</td>
<td>12</td>
</tr>
<tr>
<td>RP</td>
<td>5UE</td>
<td>Recommended Practice for Ultrasonic Evaluation of Pipe Imperfections</td>
<td>2nd</td>
<td>2005</td>
<td>G5UE02</td>
<td>$86.00</td>
<td>12</td>
</tr>
<tr>
<td>Spec</td>
<td>6A</td>
<td>Specification for Wellhead and Free Equipment</td>
<td>21st</td>
<td>2018</td>
<td>G6A602</td>
<td>$310.00</td>
<td>12</td>
</tr>
<tr>
<td>Spec</td>
<td>6A</td>
<td>Specification for Wellhead and Free Equipment—Russian</td>
<td>21st</td>
<td>2018</td>
<td>G6A602R</td>
<td>$248.00</td>
<td>12, 171</td>
</tr>
<tr>
<td>Std</td>
<td>6ACRA</td>
<td>Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G6ACRA1</td>
<td>$98.00</td>
<td>12</td>
</tr>
<tr>
<td>TR</td>
<td>6AF</td>
<td>Technical Report on Capabilities of API Flanges Under Combinations of Load</td>
<td>3rd</td>
<td>2008</td>
<td>G6AF03</td>
<td>$163.00</td>
<td>13</td>
</tr>
<tr>
<td>TR</td>
<td>6AF1</td>
<td>Technical Report on Temperature Derating of API Flanges Under Combination of Loading</td>
<td>2nd</td>
<td>1998</td>
<td>G6AF10</td>
<td>$171.00</td>
<td>13</td>
</tr>
<tr>
<td>TR</td>
<td>6AF2</td>
<td>Technical Report on Capabilities of API Integral Flanges Under Combination of Loading—Phase II</td>
<td>5th</td>
<td>2013</td>
<td>G6AF25</td>
<td>$184.00</td>
<td>13</td>
</tr>
<tr>
<td>TR</td>
<td>6AM</td>
<td>Technical Report on Material Toughness</td>
<td>2nd</td>
<td>1995</td>
<td>G6AM2</td>
<td>$82.00</td>
<td>13</td>
</tr>
<tr>
<td>Std</td>
<td>6AR</td>
<td>Repair and Remanufacture of Wellhead and Free Equipment</td>
<td>2nd</td>
<td>2019</td>
<td>G6AR02</td>
<td>$75.00</td>
<td>13</td>
</tr>
<tr>
<td>Spec</td>
<td>6AV1</td>
<td>Validation of Safety and Shutdown Valves for Sandy Service</td>
<td>3rd</td>
<td>2018</td>
<td>G6AV103</td>
<td>$105.00</td>
<td>13</td>
</tr>
<tr>
<td>Std</td>
<td>6AV2</td>
<td>Installation, Maintenance and Repair of Surface Safety Valves and Underwater Safety Valves—Offshore</td>
<td>1st</td>
<td>2014</td>
<td>G6AV201</td>
<td>$146.00</td>
<td>13</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves</td>
<td>24th</td>
<td>2014</td>
<td>G6D024</td>
<td>$163.00</td>
<td>14</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves—Chinese</td>
<td>24th</td>
<td>2014</td>
<td>G6D024C</td>
<td>$114.00</td>
<td>14, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>6D</td>
<td>Specification for Pipeline and Piping Valves—Russian</td>
<td>24th</td>
<td>2014</td>
<td>G6D024R</td>
<td>$131.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RP</td>
<td>6DR</td>
<td>Recommended Practice for the Repair and Remanufacture of Pipeline Valves</td>
<td>2nd</td>
<td>2012</td>
<td>G06DR2</td>
<td>$84.00</td>
<td>14</td>
</tr>
<tr>
<td>RP</td>
<td>6DR</td>
<td>Recommended Practice for the Repair and Remanufacture of Pipeline Valves—Russian</td>
<td>2nd</td>
<td>2012</td>
<td>G06DR2R</td>
<td>$69.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>6DSS</td>
<td>Specification for Subsea Pipeline Valves</td>
<td>3rd</td>
<td>2017</td>
<td>G6DSS3</td>
<td>$179.00</td>
<td>14</td>
</tr>
<tr>
<td>Spec</td>
<td>6DSS</td>
<td>Specification for Subsea Pipeline Valves—Russian</td>
<td>3rd</td>
<td>2017</td>
<td>G6DSS3R</td>
<td>$143.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>Std</td>
<td>6DX/ISO</td>
<td>Standard for Actuator Sizing and Mounting Kits for Pipeline Valves</td>
<td>1st</td>
<td>2012</td>
<td>GG6DX01</td>
<td>$114.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>Std</td>
<td>6DX/ISO</td>
<td>Standard for Actuator Sizing and Mounting Kits for Pipeline Valves—Russian</td>
<td>1st</td>
<td>2012</td>
<td>GG6DX01R</td>
<td>$143.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>TR</td>
<td>6F2</td>
<td>Technical Report on Fire Resistance Improvements for API Flanges</td>
<td>3rd</td>
<td>1999</td>
<td>G06F23</td>
<td>$118.00</td>
<td>14</td>
</tr>
<tr>
<td>Std</td>
<td>6FA</td>
<td>Standard for Fire Test for Valves</td>
<td>4th</td>
<td>2018</td>
<td>G06FAA</td>
<td>$95.00</td>
<td>14, 171</td>
</tr>
<tr>
<td>Std</td>
<td>6FA</td>
<td>Standard for Fire Test for Valves–Russian</td>
<td>4th</td>
<td>2018</td>
<td>G06FAAR</td>
<td>$76.00</td>
<td>15, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>6FB</td>
<td>Specification for Fire Test for Check Valves</td>
<td>1st</td>
<td>1995</td>
<td>G06FD1</td>
<td>$97.00</td>
<td>15</td>
</tr>
<tr>
<td>Spec</td>
<td>6FD</td>
<td>Specification for Fire Test for Check Valves—Russian</td>
<td>1st</td>
<td>1995</td>
<td>G06FD1R</td>
<td>$78.00</td>
<td>15, 171</td>
</tr>
<tr>
<td>RP</td>
<td>6HT</td>
<td>Heat Treatment and Testing of Carbon and Low Alloy Steel Large Cross Section and Critical Section Components</td>
<td>2nd</td>
<td>2013</td>
<td>G6HT02</td>
<td>$93.00</td>
<td>15</td>
</tr>
<tr>
<td>Bull</td>
<td>6J</td>
<td>Bulletin on Testing of Oilfield Elastomers—A Tutorial</td>
<td>1st</td>
<td>1992</td>
<td>G03J30</td>
<td>$86.00</td>
<td>15</td>
</tr>
<tr>
<td>TR</td>
<td>6J1</td>
<td>Elastomer Life Estimation Testing Procedures</td>
<td>1st</td>
<td>2000</td>
<td>G06J11</td>
<td>$86.00</td>
<td>15</td>
</tr>
<tr>
<td>TR</td>
<td>6MET</td>
<td>Metallic Material Limits for Wellhead Equipment Used in High Temperature for API 6A and API 17D Applications</td>
<td>2nd</td>
<td>2018</td>
<td>G6MET2</td>
<td>$118.00</td>
<td>15</td>
</tr>
<tr>
<td>Std</td>
<td>6X</td>
<td>Design Calculations for Pressure-Containing Equipment</td>
<td>2nd</td>
<td>2019</td>
<td>G06X02</td>
<td>$71.00</td>
<td>15</td>
</tr>
<tr>
<td>Std</td>
<td>7CW</td>
<td>Casing Wear Tests</td>
<td>1st</td>
<td>2015</td>
<td>G7CW01</td>
<td>$93.00</td>
<td>16</td>
</tr>
<tr>
<td>Spec</td>
<td>7F</td>
<td>Oil Field Chain and Sprockets</td>
<td>8th</td>
<td>2010</td>
<td>G7F030</td>
<td>$125.00</td>
<td>16</td>
</tr>
<tr>
<td>Spec</td>
<td>7F</td>
<td>Oil Field Chain and Sprockets—Chinese</td>
<td>8th</td>
<td>2010</td>
<td>G7F030C</td>
<td>$89.00</td>
<td>16, 167</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits</td>
<td>16th</td>
<td>1998</td>
<td>G07G6A</td>
<td>$210.00</td>
<td>16</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits—Kazakh</td>
<td>16th</td>
<td>1998</td>
<td>G07G6AK</td>
<td>$168.00</td>
<td>16, 169</td>
</tr>
<tr>
<td>RP</td>
<td>7G</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits—Russian</td>
<td>16th</td>
<td>1998</td>
<td>G07G6AR</td>
<td>$168.00</td>
<td>17, 172</td>
</tr>
<tr>
<td>RP</td>
<td>7G-2/ISO</td>
<td>Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish</td>
<td>1st</td>
<td>2009</td>
<td>GX7G201</td>
<td>$152.00</td>
<td>17</td>
</tr>
<tr>
<td>RP</td>
<td>7G-2/ISO</td>
<td>Recommended Practice for Inspection and Classification of Drill Stem Element Inspection—Spanish</td>
<td>1st</td>
<td>2009</td>
<td>GX7G201SP</td>
<td>$152.00</td>
<td>17, 176</td>
</tr>
<tr>
<td>RP</td>
<td>7H1U</td>
<td>Safe Use of 2-Inch Hammer Unions for Oilfield Applications</td>
<td>1st</td>
<td>2009</td>
<td>H7H11</td>
<td>$40.00</td>
<td>17</td>
</tr>
<tr>
<td>Spec</td>
<td>7K</td>
<td>Drilling and Well Servicing Equipment</td>
<td>6th</td>
<td>2015</td>
<td>G07K06</td>
<td>$217.00</td>
<td>17</td>
</tr>
<tr>
<td>RP</td>
<td>7L</td>
<td>Procedures for Inspection, Maintenance, Repair, and Remanufacture of Drilling Equipment</td>
<td>1st</td>
<td>1995</td>
<td>G07L101</td>
<td>$118.00</td>
<td>17</td>
</tr>
<tr>
<td>Spec</td>
<td>7NRV</td>
<td>Specification for Drill String Non-Return Valves</td>
<td>1st</td>
<td>2006</td>
<td>G7NRV01</td>
<td>$76.00</td>
<td>17, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>7NRV</td>
<td>Specification for Drill String Non-Return Valves—Chinese</td>
<td>1st</td>
<td>2006</td>
<td>G7NRV01C</td>
<td>$53.00</td>
<td>17, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO</td>
<td>Specification for Rotary Drill Stem Elements</td>
<td>1st</td>
<td>2006</td>
<td>GX7101</td>
<td>$176.00</td>
<td>16</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO</td>
<td>Specification for Rotary Drill Stem Elements—Chinese</td>
<td>1st</td>
<td>2006</td>
<td>GX7101C</td>
<td>$123.00</td>
<td>16, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO</td>
<td>Specification for Rotary Drill Stem Elements—Russian</td>
<td>1st</td>
<td>2006</td>
<td>GX7101R</td>
<td>$141.00</td>
<td>16, 171</td>
</tr>
<tr>
<td>Spec</td>
<td>7-1/ISO</td>
<td>Specification for Rotary Drill Stem Elements—Spanish</td>
<td>1st</td>
<td>2006</td>
<td>GX7101SP</td>
<td>$176.00</td>
<td>16, 176</td>
</tr>
<tr>
<td>Spec</td>
<td>7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections</td>
<td>2nd</td>
<td>2017</td>
<td>G7X0202</td>
<td>$206.00</td>
<td>16</td>
</tr>
<tr>
<td>Spec</td>
<td>7-2</td>
<td>Threading and Gauging of Rotary Shouldered Connections—Russian</td>
<td>2nd</td>
<td>2017</td>
<td>G7X0202R</td>
<td>$165.00</td>
<td>16, 172</td>
</tr>
<tr>
<td>RP</td>
<td>8B</td>
<td>Recommended Practice for Procedures for Inspection, Maintenance, Repair, and Remanufacture of Hosing Equipment</td>
<td>8th</td>
<td>2014</td>
<td>G08B08</td>
<td>$103.00</td>
<td>17</td>
</tr>
<tr>
<td>Spec</td>
<td>8C</td>
<td>Drilling and Production Hosing Equipment (PSL 1 and PSL 2)</td>
<td>5th</td>
<td>2012</td>
<td>G08C05</td>
<td>$152.00</td>
<td>18</td>
</tr>
<tr>
<td>Spec</td>
<td>8C</td>
<td>Drilling and Production Hosing Equipment (PSL 1 and PSL 2)—Chinese</td>
<td>5th</td>
<td>2012</td>
<td>G08C05C</td>
<td>$107.00</td>
<td>18, 167</td>
</tr>
<tr>
<td>Spec</td>
<td>9A</td>
<td>Specification for Wire Rope</td>
<td>26th</td>
<td>2011</td>
<td>G09M02</td>
<td>$118.00</td>
<td>18</td>
</tr>
<tr>
<td>Spec</td>
<td>9A</td>
<td>Specification for Wire Rope—Chinese</td>
<td>26th</td>
<td>2011</td>
<td>G09M02C</td>
<td>$83.00</td>
<td>18, 168</td>
</tr>
<tr>
<td>RP</td>
<td>9B</td>
<td>Application, Care, and Use of Wire Ropes for Oil Field Service</td>
<td>14th</td>
<td>2015</td>
<td>G9B014</td>
<td>$131.00</td>
<td>18</td>
</tr>
<tr>
<td>Spec</td>
<td>10A</td>
<td>Cements and Materials for Well Cementing</td>
<td>25th</td>
<td>2019</td>
<td>GX10A25</td>
<td>$163.00</td>
<td>18</td>
</tr>
<tr>
<td>Spec</td>
<td>10A</td>
<td>Cements and Materials for Well Cementing—Russian</td>
<td>25th</td>
<td>2019</td>
<td>GX10A25R</td>
<td>$130.00</td>
<td>19, 172</td>
</tr>
<tr>
<td>RP</td>
<td>10B-2</td>
<td>Recommended Practice for Testing Well Cements</td>
<td>2nd</td>
<td>2013</td>
<td>G10B202</td>
<td>$239.00</td>
<td>19</td>
</tr>
<tr>
<td>RP</td>
<td>10B-2</td>
<td>Recommended Practice for Testing Well Cements—Russian</td>
<td>2nd</td>
<td>2013</td>
<td>G10B202R</td>
<td>$191.00</td>
<td>19, 172</td>
</tr>
<tr>
<td>RP</td>
<td>10B-3</td>
<td>Testing of Well Cements Used in Deepwater Well Construction</td>
<td>2nd</td>
<td>2016</td>
<td>G10B32</td>
<td>$103.00</td>
<td>19</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RP</td>
<td>10B-4</td>
<td>Preparation and Testing of Foamed Cement Formulations at Atmospheric Pressure</td>
<td>2nd</td>
<td>2015</td>
<td>G10B402</td>
<td>$103.00</td>
<td>19</td>
</tr>
<tr>
<td>RP</td>
<td>10B-5/ISO 10426-5:2004 Recommended Practice on Determination of Shrinkage and Expansion of Well Cement Formulations at Atmospheric Pressure</td>
<td>1st</td>
<td>2005</td>
<td>G10B501</td>
<td>$87.00</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>10B-6/ISO 10426-6:2006 Recommended Practice on Determining the Static Gel Strength of Cement Formulations</td>
<td>1st</td>
<td>2010</td>
<td>G10B601</td>
<td>$68.00</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>10/ISO 10427-1:2001 Specification for Bow-Spring Casing Centralizers</td>
<td>6th</td>
<td>2002</td>
<td>G10D06</td>
<td>$97.00</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>10/ISO 10427-2:2004 Recommended Practice for Centralizer Placement and Stop Collar Testing</td>
<td>1st</td>
<td>2004</td>
<td>G10D21</td>
<td>$83.00</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>10F Cementing Float Equipment Testing</td>
<td>4th</td>
<td>2018</td>
<td>G10F04</td>
<td>$81.00</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>10F Cementing Float Equipment Testing—Russian</td>
<td>4th</td>
<td>2018</td>
<td>G10F04R</td>
<td>$65.00</td>
<td>20,172</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>10TR1</td>
<td>Cement Sheath Evaluation—Kazakh</td>
<td>2nd</td>
<td>2008</td>
<td>G10TR12K</td>
<td>$157.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR1</td>
<td>Cement Sheath Evaluation—Russian</td>
<td>2nd</td>
<td>2008</td>
<td>G10TR12R</td>
<td>$157.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements—Russian</td>
<td>1st</td>
<td>1997</td>
<td>G10TR2R</td>
<td>$133.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR2</td>
<td>Shrinkage and Expansion in Oilwell Cements—Kazakh</td>
<td>1st</td>
<td>1997</td>
<td>G10TR2</td>
<td>$133.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Russian</td>
<td>1st</td>
<td>2008</td>
<td>G10TR4R</td>
<td>$53.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR4</td>
<td>Selection of Centralizers for Primary Cementing Operations—Kazakh</td>
<td>1st</td>
<td>2008</td>
<td>G10TR4</td>
<td>$53.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR5</td>
<td>Methods for Testing of Solid and Rigid Centralizers—Russian</td>
<td>1st</td>
<td>2008</td>
<td>G10TR5R</td>
<td>$53.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR5</td>
<td>Methods for Testing of Solid and Rigid Centralizers—Kazakh</td>
<td>1st</td>
<td>2008</td>
<td>G10TR5</td>
<td>$53.00</td>
<td>20,169</td>
</tr>
<tr>
<td>TR</td>
<td>10TR6</td>
<td>Evaluation and Testing of Mechanical Cement Wiper Plugs</td>
<td>1st</td>
<td>2015</td>
<td>G10TR601</td>
<td>$98.00</td>
<td>20</td>
</tr>
<tr>
<td>TR</td>
<td>10TR7</td>
<td>Mechanical Behavior of Cement</td>
<td>1st</td>
<td>2017</td>
<td>G10TR71</td>
<td>$128.00</td>
<td>21</td>
</tr>
<tr>
<td>RP</td>
<td>11AR</td>
<td>Recommended Practice for Care and Use of Subsurface Pumps</td>
<td>4th</td>
<td>2000</td>
<td>G11AR4</td>
<td>$135.00</td>
<td>21</td>
</tr>
<tr>
<td>Spec</td>
<td>11AX Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings</td>
<td>13th</td>
<td>2015</td>
<td>G11AX13</td>
<td>$189.00</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11AX Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings—Russian</td>
<td>13th</td>
<td>2015</td>
<td>G11AX13R</td>
<td>$189.00</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11B Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps and Pumping Tees</td>
<td>27th</td>
<td>2010</td>
<td>G11B27</td>
<td>$168.00</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11B Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Russian</td>
<td>27th</td>
<td>2010</td>
<td>G11B27C</td>
<td>$118.00</td>
<td>21,168</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11B Specification for Sucker Rods, Polished Rods and Liners, Couplings, Sinker Bars, Polished Rod Clamps, Stuffing Boxes, and Pumping Tees—Chinese</td>
<td>27th</td>
<td>2010</td>
<td>G11B27C</td>
<td>$118.00</td>
<td>21,168</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>11BR</td>
<td>Recommended Practice for the Care and Handling of Sucker Rods</td>
<td>9th</td>
<td>2008</td>
<td>G11BR9</td>
<td>$114.00</td>
<td>22</td>
</tr>
<tr>
<td>RP</td>
<td>11BR</td>
<td>Recommended Practice for the Care and Handling of Sucker Rods—Chinese</td>
<td>9th</td>
<td>2008</td>
<td>G11BR9C</td>
<td>$80.00</td>
<td>22,168</td>
</tr>
<tr>
<td>Spec</td>
<td>11D1/ISO 14310-2008 Packers and Bridge Plugs</td>
<td>3rd</td>
<td>2015</td>
<td>G11D103</td>
<td>$124.00</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11D1/ISO 14310-2008 Packers and Bridge Plugs—Russian</td>
<td>3rd</td>
<td>2015</td>
<td>G11D103R</td>
<td>$100.00</td>
<td>37,172</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11E Specification for Pumping Units</td>
<td>19th</td>
<td>2013</td>
<td>G11E019</td>
<td>$184.00</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11E Specification for Pumping Units—Chinese</td>
<td>19th</td>
<td>2013</td>
<td>G11E019C</td>
<td>$130.00</td>
<td>22,168</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11E Specification for Pumping Units—Russian</td>
<td>19th</td>
<td>2013</td>
<td>G11E019R</td>
<td>$147.00</td>
<td>22,172</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>11ER</td>
<td>Recommended Practice for Guarding of Pumping Units</td>
<td>3rd</td>
<td>2009</td>
<td>G11ER03</td>
<td>$87.00</td>
<td>22</td>
</tr>
<tr>
<td>RP</td>
<td>11G</td>
<td>Recommended Practice for Installation, Maintenance and Lubrication of Pumping Units</td>
<td>5th</td>
<td>2013</td>
<td>G11G05</td>
<td>$93.00</td>
<td>22</td>
</tr>
<tr>
<td>TR</td>
<td>11L Design Calculations for Sucker Rod Pumping Systems (Conventional Units)</td>
<td>5th</td>
<td>2008</td>
<td>G11L05</td>
<td>$115.00</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Bull 11L2 Bulletin on Catalog of Analog Computer Dynamometer Cards</td>
<td>1st</td>
<td>1969</td>
<td>G05700</td>
<td>$133.00</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull 11L3 Sucker Rod Pumping System Design Book</td>
<td>1st</td>
<td>1970</td>
<td>G05800</td>
<td>$143.00</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>11L6 Technical Report on Electric Motor Prime Mover for Beam Pumping Unit Service</td>
<td>2nd</td>
<td>2008</td>
<td>G11L602</td>
<td>$94.00</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Spec</td>
<td>11PL Plunger Lift Lubricators and Related Equipment</td>
<td>1st</td>
<td>2019</td>
<td>G11PL01</td>
<td>$121.00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>11S</td>
<td>Recommended Practice for the Operation, Maintenance and Troubleshooting of Electric Submersible Pump Installations</td>
<td>3rd</td>
<td>1994</td>
<td>G11S03</td>
<td>$90.00</td>
<td>23</td>
</tr>
<tr>
<td>RP</td>
<td>11S1</td>
<td>Recommended Practice for Electrical Submersible Pump Teardown Report</td>
<td>3rd</td>
<td>1997</td>
<td>G11S13</td>
<td>$133.00</td>
<td>23</td>
</tr>
<tr>
<td>RP</td>
<td>11S2</td>
<td>Recommended Practice for Electric Submersible Pump Testing</td>
<td>2nd</td>
<td>1997</td>
<td>G11S22</td>
<td>$90.00</td>
<td>23</td>
</tr>
<tr>
<td>RP</td>
<td>11S2</td>
<td>Recommended Practice for Electric Submersible Pump Testing—Russian</td>
<td>2nd</td>
<td>1997</td>
<td>G11S22R</td>
<td>$73.00</td>
<td>23,172</td>
</tr>
<tr>
<td>RP</td>
<td>11S3</td>
<td>Recommended Practice for Electrical Submersible Pump Installations</td>
<td>2nd</td>
<td>1999</td>
<td>G11S32</td>
<td>$97.00</td>
<td>23</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>RP 11S3</td>
<td>Recommended Practice for Electrical Submersible Pump Installations—Russian</td>
<td>2nd</td>
<td>1999</td>
<td>G11S3R</td>
<td>$78.00</td>
<td>23, 172</td>
<td></td>
</tr>
<tr>
<td>RP 11S4</td>
<td>Recommended Practice for Sizing and Selection of Electric Submersible Pump Installations</td>
<td>3rd</td>
<td>2002</td>
<td>G11S43</td>
<td>$86.00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>RP 11S5</td>
<td>Recommended Practice for the Application of Electrical Submersible Cable Systems</td>
<td>2nd</td>
<td>2008</td>
<td>G11S52</td>
<td>$118.00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>RP 11S6</td>
<td>Recommended Practice for Testing of Electric Submersible Pump Cable Systems</td>
<td>1st</td>
<td>1995</td>
<td>G11S61</td>
<td>$97.00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>RP 11S7</td>
<td>Recommended Practice on Application and Testing of Electric Submersible Pump Seal Chamber Sections</td>
<td>1st</td>
<td>1993</td>
<td>G05S947</td>
<td>$97.00</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>RP 11S8</td>
<td>Recommended Practice on Electric Submersible System Vibrations</td>
<td>2nd</td>
<td>2012</td>
<td>G11S802</td>
<td>$84.00</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>RP 11V6</td>
<td>Recommended Practice for Design of Continuous Flow Gas Lift Installations Using Injection Pressure Operated Valves</td>
<td>2nd</td>
<td>1999</td>
<td>G11V62</td>
<td>$161.00</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>RP 11V8</td>
<td>Recommended Practice for Gas Lift System Design and Performance Prediction</td>
<td>1st</td>
<td>2003</td>
<td>G11V81</td>
<td>$130.00</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Spec 12B</td>
<td>Specification for Boiled Tanks for Storage of Production Liquids</td>
<td>16th</td>
<td>2014</td>
<td>G12B156</td>
<td>$130.00</td>
<td>24, 99</td>
<td></td>
</tr>
<tr>
<td>Spec 12D</td>
<td>Specification for Field-Welded tanks for Storage of Production Liquids</td>
<td>12th</td>
<td>2017</td>
<td>G12D12</td>
<td>$111.00</td>
<td>24, 99</td>
<td></td>
</tr>
<tr>
<td>Spec 12J</td>
<td>Specification for Oil and Gas Separators—Chinese</td>
<td>8th</td>
<td>2008</td>
<td>G12J806</td>
<td>$105.00</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Spec 12J</td>
<td>Specification for Oil and Gas Separators—Russian</td>
<td>8th</td>
<td>2008</td>
<td>G12J808</td>
<td>$74.00</td>
<td>24, 168</td>
<td></td>
</tr>
<tr>
<td>Spec 12K</td>
<td>Specification for Indirect Type Oiled Heaters</td>
<td>8th</td>
<td>2008</td>
<td>G12K808</td>
<td>$124.00</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Spec 12K</td>
<td>Specification for Indirect Type Oiled Heaters—Chinese</td>
<td>8th</td>
<td>2008</td>
<td>G12K808C</td>
<td>$88.00</td>
<td>24, 168</td>
<td></td>
</tr>
<tr>
<td>Spec 12L</td>
<td>Specification for Vertical and Horizontal Emulsion Teaters</td>
<td>5th</td>
<td>2008</td>
<td>G12L05</td>
<td>$105.00</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RP 12N</td>
<td>Recommended Practice for the Operation, Maintenance and Testing of Firebox Flame Arrestors</td>
<td>2nd</td>
<td>1994</td>
<td>G12N02</td>
<td>$90.00</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RP 12R</td>
<td>Recommended Practice for Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service</td>
<td>5th</td>
<td>1997</td>
<td>G12R15</td>
<td>$143.00</td>
<td>25, 99</td>
<td></td>
</tr>
<tr>
<td>Spec 13A</td>
<td>Drilling Fluids Materials</td>
<td>19th</td>
<td>2019</td>
<td>G13A19</td>
<td>$205.00</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RP 13B-1</td>
<td>Recommended Practice for Field Testing Water-Based Drilling Fluids</td>
<td>5th</td>
<td>2019</td>
<td>G13B15</td>
<td>$190.00</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RP 13B-2</td>
<td>Recommended Practice for Field Testing Oil-Based Drilling Fluids</td>
<td>5th</td>
<td>2019</td>
<td>G13B205</td>
<td>$222.00</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RP 13C</td>
<td>Recommended Practice on Drilling Fluid Processing Systems Evaluation</td>
<td>5th</td>
<td>2014</td>
<td>G13C05</td>
<td>$146.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13D</td>
<td>Rheology and Hydraulics of Oil-Well Drilling Fluids</td>
<td>7th</td>
<td>2017</td>
<td>G13D07</td>
<td>$167.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13I/ISO 10416:2008</td>
<td>Recommended Practice for Laboratory Testing of Drilling Fluids</td>
<td>8th</td>
<td>2009</td>
<td>G13I8</td>
<td>$202.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13J</td>
<td>Testing of Heavy Brines</td>
<td>5th</td>
<td>2014</td>
<td>G13J05</td>
<td>$141.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13K</td>
<td>Recommended Practice for Chemical Analysis of Barite</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03</td>
<td>$116.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13K</td>
<td>Recommended Practice for Chemical Analysis of Barite—Kazakh</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03K</td>
<td>$94.00</td>
<td>26, 169</td>
<td></td>
</tr>
<tr>
<td>RP 13K</td>
<td>Recommended Practice for Chemical Analysis of Barite—Russian</td>
<td>3rd</td>
<td>2011</td>
<td>G13K03R</td>
<td>$94.00</td>
<td>26, 173</td>
<td></td>
</tr>
<tr>
<td>RP 13L</td>
<td>Training and Qualification of Drilling Fluid Technologists</td>
<td>2nd</td>
<td>2017</td>
<td>G13L02</td>
<td>$94.00</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RP 13M/ISO 13503-1:2003</td>
<td>Recommended Practice for the Measurement of Viscous Properties of Completion Fluids</td>
<td>1st</td>
<td>2004</td>
<td>G13M01</td>
<td>$107.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RP 13M/ISO 13503-2:2003</td>
<td>Recommended Practice for the Measurement of Viscous Properties of Completion Fluids—Russian</td>
<td>1st</td>
<td>2004</td>
<td>G13M01R</td>
<td>$86.00</td>
<td>27, 173</td>
<td></td>
</tr>
<tr>
<td>TR 13M-5</td>
<td>Procedure for Testing and Evaluating the Performance of Friction (Drag) Reducers in Aqueous-based Fluid Flowing in Straight, Smooth Circular Conduits</td>
<td>1st</td>
<td>2018</td>
<td>G13M501</td>
<td>$89.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>TR 13TR1</td>
<td>Stress Corrosion Cracking of Corrosion Resistant Alloys in Halide Brines Exposed to Acidic Production Gas</td>
<td>1st</td>
<td>2017</td>
<td>G13TR11</td>
<td>$135.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>TR 13TR3</td>
<td>Size Measurement of Dry, Granular Drilling Fluid Particulates</td>
<td>1st</td>
<td>2018</td>
<td>G13TR31</td>
<td>$103.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Spec 14A</td>
<td>Specification for Subsurface Safety Valve Equipment</td>
<td>12th</td>
<td>2015</td>
<td>G14A12</td>
<td>$244.00</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>RP 14B</td>
<td>Design, Installation, Operation, Test, and Redress of Subsurface Safety Valve Systems</td>
<td>6th</td>
<td>2015</td>
<td>G14B06</td>
<td>$137.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RP 14C</td>
<td>Analysis, Design, Installation, and Testing of Safety Systems for Offshore Production Facilities</td>
<td>8th</td>
<td>2017</td>
<td>G14C08</td>
<td>$249.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RP 14E</td>
<td>Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems</td>
<td>5th</td>
<td>1991</td>
<td>G07I85</td>
<td>$161.00</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>RP 14E</td>
<td>Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems—Chinese</td>
<td>5th</td>
<td>1991</td>
<td>G07I85CN</td>
<td>$114.00</td>
<td>28, 168</td>
<td></td>
</tr>
<tr>
<td>RP 14F</td>
<td>Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Division 1, and Division 2 Locations</td>
<td>6th</td>
<td>2018</td>
<td>G14F06</td>
<td>$171.00</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>RP 14FZ</td>
<td>Recommended Practice for Design, Installation, and Maintenance of Electrical Systems for Fixed and Floating Offshore Petroleum Facilities for Unclassified and Class I, Zone 0, Zone 1, and Zone 2 Locations</td>
<td>2nd</td>
<td>2013</td>
<td>G14F020</td>
<td>$303.00</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Pub Number 14G</td>
<td>Recommended Practice for Fire Prevention and Control on Fixed Open-Type Offshore Production Platforms</td>
<td>4th</td>
<td>2007</td>
<td>G14G04</td>
<td>$135.00</td>
<td>28</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RP</td>
<td>14J</td>
<td>Recommended Practice for Design and Hazards Analysis for Offshore Production Facilities</td>
<td>2nd</td>
<td>2001</td>
<td>G14J02</td>
<td>$128.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec</td>
<td>14L/ISO 16070:2005</td>
<td>Specification for Lock Mandrels and Landing Nipples</td>
<td>2nd</td>
<td>2007</td>
<td>G14L02</td>
<td>$130.00</td>
<td>38</td>
</tr>
<tr>
<td>RP</td>
<td>15CLT</td>
<td>Recommended Practice for Composite Lined Steel Tubular Goods</td>
<td>1st</td>
<td>2007</td>
<td>G15CLT1</td>
<td>$90.00</td>
<td>28</td>
</tr>
<tr>
<td>Spec</td>
<td>15HR</td>
<td>High-Pressure Fiberglass Line Pipe</td>
<td>4th</td>
<td>2016</td>
<td>G15HR4</td>
<td>$119.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec</td>
<td>15LR</td>
<td>Specification for Low Pressure Fiberglass Line Pipe</td>
<td>7th</td>
<td>2001</td>
<td>G15LR7</td>
<td>$105.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec</td>
<td>15LR</td>
<td>Specification for Low Pressure Fiberglass Line Pipe—Chinese</td>
<td>7th</td>
<td>2001</td>
<td>G15LR7C</td>
<td>$74.00</td>
<td>29, 168</td>
</tr>
<tr>
<td>Spec</td>
<td>15PX</td>
<td>Specification for Crosslinked Polyethylene (PEX) Line Pipe</td>
<td>7th</td>
<td>2018</td>
<td>G15PX1</td>
<td>$103.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec</td>
<td>15S</td>
<td>Spoolable Reinforced Plastic Line Pipe</td>
<td>2nd</td>
<td>2016</td>
<td>G15S02</td>
<td>$143.00</td>
<td>29</td>
</tr>
<tr>
<td>Spec</td>
<td>15S</td>
<td>Spoolable Reinforced Plastic Line Pipe—Russian</td>
<td>2nd</td>
<td>2016</td>
<td>G15S02R</td>
<td>$114.00</td>
<td>29, 173</td>
</tr>
<tr>
<td>RP</td>
<td>15TL4</td>
<td>Recommended Practice for Care and Use of Fiberglass Tubulars</td>
<td>2nd</td>
<td>1999</td>
<td>G15TL4</td>
<td>$105.00</td>
<td>29</td>
</tr>
<tr>
<td>RP</td>
<td>15WT</td>
<td>Operations for Layflat Hose in Oilfield Water Applications</td>
<td>1st</td>
<td>2019</td>
<td>G15WT1</td>
<td>$105.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec</td>
<td>16AR</td>
<td>Specification for Welded Line Pipe</td>
<td>4th</td>
<td>2017</td>
<td>G16AR04</td>
<td>$210.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec</td>
<td>16C</td>
<td>Choke and Kill Equipment</td>
<td>2nd</td>
<td>2015</td>
<td>G16C02</td>
<td>$163.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec</td>
<td>16D</td>
<td>Control Systems for Drilling Well Control Equipment and Control Systems for Diverter Equipment</td>
<td>3rd</td>
<td>2018</td>
<td>G16D03</td>
<td>$205.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec</td>
<td>16E</td>
<td>Specification for Marine Drilling Riser Equipment</td>
<td>3rd</td>
<td>2017</td>
<td>G16E02</td>
<td>$150.00</td>
<td>30</td>
</tr>
<tr>
<td>Spec</td>
<td>16E</td>
<td>Specification for Marine Drilling Riser Equipment—Russian</td>
<td>2nd</td>
<td>2017</td>
<td>G16E02R</td>
<td>$130.00</td>
<td>30, 173</td>
</tr>
<tr>
<td>RP</td>
<td>16Q</td>
<td>Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems</td>
<td>2nd</td>
<td>2017</td>
<td>G16Q02</td>
<td>$130.00</td>
<td>30, 173</td>
</tr>
<tr>
<td>Spec</td>
<td>16RCD</td>
<td>Specification for Rotating Control Devices</td>
<td>2nd</td>
<td>2015</td>
<td>G16RCD02</td>
<td>$168.00</td>
<td>31</td>
</tr>
<tr>
<td>RP</td>
<td>16ST</td>
<td>Coiled Tubing Well Control Equipment Systems</td>
<td>1st</td>
<td>2009</td>
<td>G16ST1</td>
<td>$157.00</td>
<td>31</td>
</tr>
<tr>
<td>TR</td>
<td>16TR1</td>
<td>BOP Shear Ram Performance Test Protocol</td>
<td>1st</td>
<td>2018</td>
<td>G16TR11</td>
<td>$105.00</td>
<td>31</td>
</tr>
<tr>
<td>Spec</td>
<td>17A</td>
<td>Design and Operation of Subsea Production Systems—General Requirements and Recommendations</td>
<td>5th</td>
<td>2017</td>
<td>G17A05</td>
<td>$108.00</td>
<td>31</td>
</tr>
<tr>
<td>Spec</td>
<td>17B</td>
<td>Recommended Practice for Flexible Pipe</td>
<td>5th</td>
<td>2014</td>
<td>G17B05</td>
<td>$249.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec</td>
<td>17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Chinese</td>
<td>2nd</td>
<td>2011</td>
<td>G17D02C</td>
<td>$142.00</td>
<td>32, 168</td>
</tr>
<tr>
<td>Spec</td>
<td>17D/ISO 13628-4</td>
<td>Design and Operation of Subsea Production Systems—Subsea Wellhead and Tree Equipment—Russian</td>
<td>2nd</td>
<td>2011</td>
<td>G17D02R</td>
<td>$162.00</td>
<td>32, 173</td>
</tr>
<tr>
<td>Spec</td>
<td>17E</td>
<td>Specification for Subsea Umbilicals</td>
<td>5th</td>
<td>2017</td>
<td>G17E05</td>
<td>$210.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec</td>
<td>17E</td>
<td>Specification for Subsea Umbilicals—Russian</td>
<td>5th</td>
<td>2017</td>
<td>G17E05R</td>
<td>$168.00</td>
<td>32, 173</td>
</tr>
<tr>
<td>Std</td>
<td>17F</td>
<td>Standard for Repair and Remanufacture of Drill-Through Equipment</td>
<td>4th</td>
<td>2017</td>
<td>G17F04</td>
<td>$262.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec</td>
<td>17G</td>
<td>Design and Operation of Subsea Production Systems—Subsea Well Intervention Equipment</td>
<td>3rd</td>
<td>2019</td>
<td>G17G03</td>
<td>$187.00</td>
<td>32</td>
</tr>
<tr>
<td>Spec</td>
<td>17G</td>
<td>Subsea Intervention Workover Control Systems</td>
<td>1st</td>
<td>2019</td>
<td>G17G01</td>
<td>$86.00</td>
<td>33</td>
</tr>
<tr>
<td>Spec</td>
<td>17H</td>
<td>Remotely Operated Tools and Interfaces on Subsea Production Systems</td>
<td>3rd</td>
<td>2019</td>
<td>G17H03</td>
<td>$160.00</td>
<td>33</td>
</tr>
<tr>
<td>Spec</td>
<td>17I</td>
<td>Specification for Unbonded Flexible Pipe</td>
<td>4th</td>
<td>2014</td>
<td>G17I04</td>
<td>$146.00</td>
<td>33</td>
</tr>
<tr>
<td>Spec</td>
<td>17K</td>
<td>Specification for Bonded Flexible Pipe</td>
<td>3rd</td>
<td>2017</td>
<td>G17K03</td>
<td>$147.00</td>
<td>33</td>
</tr>
<tr>
<td>Spec</td>
<td>17L</td>
<td>Specification for Flexible Pipe Ancillary Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G17L101</td>
<td>$184.00</td>
<td>33</td>
</tr>
<tr>
<td>RP</td>
<td>17L2</td>
<td>Recommended Practice for Flexible Pipe Ancillary Equipment</td>
<td>1st</td>
<td>2013</td>
<td>G17L021</td>
<td>$184.00</td>
<td>33</td>
</tr>
<tr>
<td>RP</td>
<td>17N</td>
<td>Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management</td>
<td>2nd</td>
<td>2017</td>
<td>G17N02</td>
<td>$193.00</td>
<td>34</td>
</tr>
<tr>
<td>RP</td>
<td>17N</td>
<td>Recommended Practice on Subsea Production System Reliability, Technical Risk, and Integrity Management—Russian</td>
<td>2nd</td>
<td>2017</td>
<td>G17N02R</td>
<td>$154.00</td>
<td>34, 173</td>
</tr>
<tr>
<td>RP</td>
<td>17O</td>
<td>Recommended Practice for Subsea High Integrity Pressure Protection Systems (HIPPS)</td>
<td>2nd</td>
<td>2014</td>
<td>G17O02</td>
<td>$131.00</td>
<td>34</td>
</tr>
<tr>
<td>RP</td>
<td>17P</td>
<td>Recommended Practice for Subsea Structures and Manifolds</td>
<td>2nd</td>
<td>2019</td>
<td>G17P02</td>
<td>$150.00</td>
<td>34</td>
</tr>
<tr>
<td>RP</td>
<td>17Q</td>
<td>Recommended Practice on Subsea Equipment Qualification</td>
<td>2nd</td>
<td>2018</td>
<td>G17Q02</td>
<td>$145.00</td>
<td>34</td>
</tr>
<tr>
<td>RP</td>
<td>17R</td>
<td>Recommended Practice for Flowline Connectors and Jumpers</td>
<td>1st</td>
<td>2015</td>
<td>G17R01</td>
<td>$131.00</td>
<td>34</td>
</tr>
<tr>
<td>RP</td>
<td>17S</td>
<td>Recommended Practice for the Design, Testing, and Operation of Subsea Multiphase Flow Meters</td>
<td>1st</td>
<td>2015</td>
<td>G17S01</td>
<td>$93.00</td>
<td>35</td>
</tr>
<tr>
<td>RP</td>
<td>17S</td>
<td>Recommended Practice for the Design, Testing, and Operation of Subsea Multiphase Flow Meters—Russian</td>
<td>1st</td>
<td>2015</td>
<td>G17S01R</td>
<td>$74.00</td>
<td>35, 173</td>
</tr>
<tr>
<td>TR</td>
<td>17TR1</td>
<td>BOP Shear Ram Performance Test Protocol</td>
<td>1st</td>
<td>2018</td>
<td>G17TR11</td>
<td>$105.00</td>
<td>31</td>
</tr>
<tr>
<td>TR</td>
<td>17TR2</td>
<td>The Aging of PA-11 In Flexible Pipes</td>
<td>1st</td>
<td>2003</td>
<td>G17TR21</td>
<td>$110.00</td>
<td>35</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>TR</td>
<td>17TR3</td>
<td>An Evaluation of the Risks and Benefits of Penetrations in Subsea Wellheads Below the BOP Stack</td>
<td>1st</td>
<td>2004</td>
<td>G17TR31</td>
<td>$143.00</td>
<td>35</td>
</tr>
<tr>
<td>TR</td>
<td>17TR3</td>
<td>An Evaluation of the Risks and Benefits of Penetrations in Subsea Wellheads Below the BOP Stack—Russian</td>
<td>1st</td>
<td>2004</td>
<td>G17TR31R</td>
<td>$114.00</td>
<td>35, 173</td>
</tr>
<tr>
<td>TR</td>
<td>17TR4</td>
<td>Subsea Equipment Pressure Ratings</td>
<td>2nd</td>
<td>2016</td>
<td>G17TR402</td>
<td>$71.00</td>
<td>35</td>
</tr>
<tr>
<td>TR</td>
<td>17TR5</td>
<td>Avoidance of Blockages in Subsea Production Control and Chemical Injection Systems</td>
<td>1st</td>
<td>2012</td>
<td>G17TR501</td>
<td>$107.00</td>
<td>35</td>
</tr>
<tr>
<td>TR</td>
<td>17TR6</td>
<td>Attributes of Production Chemicals in Subsea Production Systems</td>
<td>1st</td>
<td>2012</td>
<td>G17TR601</td>
<td>$107.00</td>
<td>35</td>
</tr>
<tr>
<td>TR</td>
<td>17TR7</td>
<td>Verification and Validation of Subsea Connectors</td>
<td>1st</td>
<td>2017</td>
<td>G17TR71</td>
<td>$93.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR8</td>
<td>High-Pressure High-Temperature Design Guidelines</td>
<td>2nd</td>
<td>2018</td>
<td>G17TR82</td>
<td>$150.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR9</td>
<td>Umbilical Termination Assembly (UTA) Selection and Sizing Recommendations</td>
<td>1st</td>
<td>2017</td>
<td>G17TR91</td>
<td>$113.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR10</td>
<td>Subsea Umbilical Termination (SUT) Design Recommendations</td>
<td>1st</td>
<td>2015</td>
<td>G17TR101</td>
<td>$113.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR11</td>
<td>Pressure Effects on Subsea Hardware During Flowline Pressure Testing in Deep Water</td>
<td>1st</td>
<td>2015</td>
<td>G17TR111</td>
<td>$87.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR12</td>
<td>Consideration of External Pressure in the Design and Pressure Rating of Subsea Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G17TR121</td>
<td>$103.00</td>
<td>36</td>
</tr>
<tr>
<td>TR</td>
<td>17TR13</td>
<td>General Overview of Subsea Production Systems</td>
<td>1st</td>
<td>2016</td>
<td>G17TR131</td>
<td>$131.00</td>
<td>36</td>
</tr>
<tr>
<td>RP</td>
<td>17U</td>
<td>Recommended Practice for Wet and Dry Thermal Insulation of Subsea Flowlines and Equipment</td>
<td>1st</td>
<td>2015</td>
<td>G17U01</td>
<td>$81.00</td>
<td>37</td>
</tr>
<tr>
<td>RP</td>
<td>17V</td>
<td>Recommended Practice for Analysis, Design, Installation, and Testing of Safety Systems for Subsea Applications</td>
<td>1st</td>
<td>2015</td>
<td>G17V01</td>
<td>$152.00</td>
<td>37</td>
</tr>
<tr>
<td>RP</td>
<td>17W</td>
<td>Recommended Practice for Subsea Capping Stacks</td>
<td>1st</td>
<td>2014</td>
<td>G17W01</td>
<td>$136.00</td>
<td>37</td>
</tr>
<tr>
<td>Std</td>
<td>18LCM</td>
<td>Product Life Cycle Management System Requirements for the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2017</td>
<td>G18LCM1</td>
<td>$84.00</td>
<td>2</td>
</tr>
<tr>
<td>TR</td>
<td>18TR1</td>
<td>Guidance on Changes to API Q1, Ninth Edition</td>
<td>1st</td>
<td>2015</td>
<td>G18TR101</td>
<td>$71.00</td>
<td>2</td>
</tr>
<tr>
<td>TR</td>
<td>18TR2</td>
<td>Guidance to API Specification Q2</td>
<td>1st</td>
<td>2017</td>
<td>G18TR201</td>
<td>$66.00</td>
<td>2</td>
</tr>
<tr>
<td>TR</td>
<td>18TR4</td>
<td>Evaluation of Welding Requirements as Applicable to API Product Specifications</td>
<td>1st</td>
<td>2017</td>
<td>G18TR401</td>
<td>$131.00</td>
<td>2</td>
</tr>
<tr>
<td>Spec</td>
<td>19AC/ISO 14998:2013</td>
<td>Specification for Completion Accessories</td>
<td>1st</td>
<td>2016</td>
<td>G19AC01</td>
<td>$121.00</td>
<td>38</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2</td>
<td>$133.00</td>
<td>38</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators—Chinese</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2C</td>
<td>$94.00</td>
<td>38, 168</td>
</tr>
<tr>
<td>RP</td>
<td>19B</td>
<td>Recommended Practice for Evaluation of Well Perforators—Kazakh</td>
<td>2nd</td>
<td>2006</td>
<td>G019B2K</td>
<td>$107.00</td>
<td>38, 169</td>
</tr>
<tr>
<td>Std</td>
<td>19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations</td>
<td>2nd</td>
<td>2018</td>
<td>GX19C02</td>
<td>$122.00</td>
<td>39</td>
</tr>
<tr>
<td>Std</td>
<td>19C</td>
<td>Measurement of and Specifications for Proppants Used in Hydraulic Fracturing and Gravel-Packing Operations—Russian</td>
<td>2nd</td>
<td>2018</td>
<td>GX19C02R</td>
<td>$96.00</td>
<td>39, 173</td>
</tr>
<tr>
<td>Spec</td>
<td>19CI</td>
<td>Downhole Chemical Injection Devices and Related Equipment</td>
<td>1st</td>
<td>2019</td>
<td>G19CI01</td>
<td>$162.00</td>
<td>39</td>
</tr>
<tr>
<td>RP</td>
<td>19/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants</td>
<td>1st</td>
<td>2008</td>
<td>GX19K01</td>
<td>$116.00</td>
<td>39</td>
</tr>
<tr>
<td>RP</td>
<td>19/ISO 13503-5:2006</td>
<td>Measuring the Long-Term Conductivity of Proppants—Russian</td>
<td>1st</td>
<td>2008</td>
<td>GX19K01R</td>
<td>$94.00</td>
<td>39, 173</td>
</tr>
<tr>
<td>Spec</td>
<td>19G1</td>
<td>Side-Pocket Mandrels</td>
<td>2nd</td>
<td>2019</td>
<td>G19G12</td>
<td>$113.00</td>
<td>39</td>
</tr>
<tr>
<td>RP</td>
<td>19G9</td>
<td>Design, Operation, and Troubleshooting of Dual Gas-Lift Wells</td>
<td>2nd</td>
<td>2015</td>
<td>G19G92</td>
<td>$179.00</td>
<td>40</td>
</tr>
<tr>
<td>RP</td>
<td>19G10</td>
<td>Design and Operation of Intermittent Gas-Lift Systems</td>
<td>1st</td>
<td>2018</td>
<td>G19G101</td>
<td>$170.00</td>
<td>40</td>
</tr>
<tr>
<td>RP</td>
<td>19G11</td>
<td>Dynamic Simulation of Gas-Lift Wells and Systems</td>
<td>1st</td>
<td>2018</td>
<td>G19G111</td>
<td>$164.00</td>
<td>40</td>
</tr>
<tr>
<td>Spec</td>
<td>19H</td>
<td>Liner Hanger Equipment</td>
<td>1st</td>
<td>2019</td>
<td>G19H01</td>
<td>$120.00</td>
<td>40</td>
</tr>
<tr>
<td>Spec</td>
<td>19H0</td>
<td>Openhole Isolation Equipment</td>
<td>1st</td>
<td>2018</td>
<td>G19H01</td>
<td>$118.00</td>
<td>40</td>
</tr>
<tr>
<td>Spec</td>
<td>19H0</td>
<td>Openhole Isolation Equipment—Russian</td>
<td>1st</td>
<td>2018</td>
<td>G19H01R</td>
<td>$94.00</td>
<td>41, 173</td>
</tr>
<tr>
<td>Spec</td>
<td>19SS/ISO 17824-2009</td>
<td>Sand Screens</td>
<td>1st</td>
<td>2018</td>
<td>G19SS01</td>
<td>$174.00</td>
<td>41</td>
</tr>
<tr>
<td>Spec</td>
<td>19T</td>
<td>Specification for Downhole Well Test Tools and Related Equipment</td>
<td>1st</td>
<td>2016</td>
<td>G19T01</td>
<td>$143.00</td>
<td>41</td>
</tr>
<tr>
<td>Spec</td>
<td>19V</td>
<td>Subsurface Completion Isolation (Barrier) Valves and Related Equipment</td>
<td>2nd</td>
<td>2019</td>
<td>G19V02</td>
<td>$185.00</td>
<td>41</td>
</tr>
<tr>
<td>Spec</td>
<td>20A</td>
<td>Carbon Steel, Alloy Steel, Stainless Steel, and Nickel Base Alloy Castings for Use in the Petroleum and Natural Gas Industry</td>
<td>2nd</td>
<td>2017</td>
<td>G20A02</td>
<td>$94.00</td>
<td>41</td>
</tr>
<tr>
<td>Spec</td>
<td>20B</td>
<td>Open Die Shaped Forgings for Use in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2013</td>
<td>G20B01</td>
<td>$93.00</td>
<td>41</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Spec 20C</td>
<td>Closed Die Forgings for Use in the Petroleum and Natural Gas Industry</td>
<td>2nd</td>
<td>2015</td>
<td>G20C02</td>
<td>$88.00</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Std 20D</td>
<td>Qualification of Nondestructive Examination Services for Equipment Used in the Petroleum and Natural Gas Industry</td>
<td>2nd</td>
<td>2019</td>
<td>G20D02</td>
<td>$101.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Spec 20E</td>
<td>Alloy and Carbon Steel Bolting for Use in the Petroleum and Natural Gas Industries</td>
<td>2nd</td>
<td>2017</td>
<td>G20E02</td>
<td>$93.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Spec 20F</td>
<td>Corrosion-Resistant Bolting for Use in the Petroleum and Natural Gas Industries</td>
<td>2nd</td>
<td>2018</td>
<td>G20F02</td>
<td>$94.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Std 20H</td>
<td>Heat Treatment Services—Batch Type for Equipment Used in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2015</td>
<td>G20H01</td>
<td>$71.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Std 20J</td>
<td>Qualification of Distributors of Metallic Materials for Use in the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2017</td>
<td>G20J01</td>
<td>$94.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Std 20L</td>
<td>Qualification of Polymeric Seal Manufacturers for Use in the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2018</td>
<td>G20L01</td>
<td>$71.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Std 20M</td>
<td>Qualification of Suppliers of Machining Services for Use in the Petroleum and Natural Gas Industries</td>
<td>1st</td>
<td>2017</td>
<td>G20M01</td>
<td>$78.00</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Std 20N</td>
<td>Heat Treatment Services—Continuous Line for Equipment Used in the Petroleum and Natural Gas Industry</td>
<td>1st</td>
<td>2019</td>
<td>G20N01</td>
<td>$81.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>TR 21TR1</td>
<td>Materials Selection for Bolting</td>
<td>1st</td>
<td>2019</td>
<td>G21TR101</td>
<td>$94.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 31A</td>
<td>Standard Form for Hardcopy Presentation of Downhole Well Log Data</td>
<td>1st</td>
<td>1997</td>
<td>G31A01</td>
<td>$105.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 49</td>
<td>Recommended Practice for Analysis of Oilfield Waters</td>
<td>3rd</td>
<td>1998</td>
<td>G49003</td>
<td>$154.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide at Kazakh</td>
<td>3rd</td>
<td>2001</td>
<td>G49003K</td>
<td>$96.00</td>
<td>47, 121</td>
<td></td>
</tr>
<tr>
<td>RP 49</td>
<td>Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide—Russian</td>
<td>3rd</td>
<td>2001</td>
<td>G49003R</td>
<td>$77.00</td>
<td>47, 121, 169</td>
<td></td>
</tr>
<tr>
<td>RP 50</td>
<td>Natural Gas Processing Plant Practices for Protection of the Environment</td>
<td>2nd</td>
<td>1995</td>
<td>G50002</td>
<td>$118.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 51</td>
<td>Onshore Oil and Gas Production Practices for Protection of the Environment</td>
<td>3rd</td>
<td>2001</td>
<td>G51003</td>
<td>$56.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 51R</td>
<td>Environmental Protection for Onshore Oil and Gas Production and Leases</td>
<td>1st</td>
<td>2009</td>
<td>G51R01</td>
<td>See Listing 43, 47, 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 52</td>
<td>Land Drilling Practices for Protection of the Environment</td>
<td>2nd</td>
<td>1995</td>
<td>G52002</td>
<td>$124.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>DR 53</td>
<td>Characterization of Exploration and Production Associated Wastes</td>
<td>1996</td>
<td>I00053</td>
<td>G53003</td>
<td>$147.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Std 53</td>
<td>Well Control Equipment Systems for Drilling Wells</td>
<td>5th</td>
<td>2018</td>
<td>G53005</td>
<td>$164.00</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>RP 54</td>
<td>Occupational Safety and Health for Oil and Gas Well Drilling and Servicing Operation</td>
<td>4th</td>
<td>2019</td>
<td>G54004</td>
<td>$140.00</td>
<td>47, 121</td>
<td></td>
</tr>
<tr>
<td>RP 55</td>
<td>Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide</td>
<td>2nd</td>
<td>1995</td>
<td>G55002</td>
<td>$124.00</td>
<td>47, 121</td>
<td></td>
</tr>
<tr>
<td>RP 59</td>
<td>Recommended Practice for Well Control Operations</td>
<td>2nd</td>
<td>2006</td>
<td>G59002</td>
<td>$133.00</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>RP 59</td>
<td>Recommended Practice for Well Control Operations—Kazakh</td>
<td>2nd</td>
<td>2006</td>
<td>G59002K</td>
<td>$107.00</td>
<td>31, 170</td>
<td></td>
</tr>
<tr>
<td>RP 59</td>
<td>Recommended Practice for Well Control Operations—Russian</td>
<td>2nd</td>
<td>2006</td>
<td>G59002R</td>
<td>$107.00</td>
<td>31, 173</td>
<td></td>
</tr>
<tr>
<td>Std 64</td>
<td>Diverter Equipment Systems</td>
<td>3rd</td>
<td>2017</td>
<td>G64003</td>
<td>$149.00</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>RP 65-1</td>
<td>Cementing Shallow-Water Flow Zones in Deepwater Wells</td>
<td>2nd</td>
<td>2018</td>
<td>G65102</td>
<td>$144.00</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Std 65-2</td>
<td>Isolating Potential Flow Zones During Well Construction</td>
<td>2nd</td>
<td>2010</td>
<td>G65202</td>
<td>$140.00</td>
<td>21, 121</td>
<td></td>
</tr>
<tr>
<td>RP 67</td>
<td>Recommended Practice for Oilfield Explosives Safety</td>
<td>3rd</td>
<td>2019</td>
<td>G67003</td>
<td>$121.00</td>
<td>48, 121</td>
<td></td>
</tr>
<tr>
<td>RP 68</td>
<td>Recommended Practice for Oil and Gas Well Servicing and Workover Operations Involving Hydrogen Sulfide</td>
<td>1st</td>
<td>1998</td>
<td>G68001</td>
<td>$82.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 70</td>
<td>Security for Offshore Oil and Natural Gas Operations</td>
<td>1st</td>
<td>2003</td>
<td>G70001</td>
<td>$62.00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>RP 70I</td>
<td>Security for Worldwide Offshore Oil and Natural Gas Operations</td>
<td>1st</td>
<td>2004</td>
<td>G70I01</td>
<td>$67.00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>RP 74</td>
<td>Recommended Practice for Occupational Safety on Offshore Oil and Gas Production Operation</td>
<td>1st</td>
<td>2001</td>
<td>G74001</td>
<td>$67.00</td>
<td>48, 122</td>
<td></td>
</tr>
<tr>
<td>RP 75</td>
<td>Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities</td>
<td>4th</td>
<td>2019</td>
<td>G75004</td>
<td>$110.00</td>
<td>48, 122, 146</td>
<td></td>
</tr>
<tr>
<td>Bull 75L</td>
<td>Guidance Document for the Development of a Safety and Environmental Management System for Offshore Oil and Natural Gas Production Operations and Associated Activities</td>
<td>1st</td>
<td>2007</td>
<td>G75L01</td>
<td>$37.00</td>
<td>48, 122</td>
<td></td>
</tr>
<tr>
<td>DR 76</td>
<td>Determination of Emissions from Retail Gasoline Outlets Using Optical Remote Sensing, Pilot Field Study at a Non-Vapor Recovery Site, Project Summary Report, Volume I</td>
<td>1999</td>
<td>I00076</td>
<td>G76001</td>
<td>$133.00</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>RP 76</td>
<td>Contractor Safety Management for Oil and Gas Drilling and Production Operations</td>
<td>2nd</td>
<td>2007</td>
<td>G76002</td>
<td>$62.00</td>
<td>48, 122</td>
<td></td>
</tr>
<tr>
<td>RP 77</td>
<td>Risk-Based Approach for Managing Hydrocarbon Vapor Exposure During Tank Gauging, Sampling, and Maintenance of Onshore Production Facilities</td>
<td>1st</td>
<td>2018</td>
<td>G77001</td>
<td>$93.00</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>RP 80</td>
<td>Guidelines for the Definition of Onshore Gas Gathering Lines</td>
<td>1st</td>
<td>2000</td>
<td>G80001</td>
<td>$136.00</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>RP 85</td>
<td>Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems</td>
<td>1st</td>
<td>2003</td>
<td>G85001</td>
<td>$134.00</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>RP 85</td>
<td>Use of Subsea Wet-Gas Flowmeters in Allocation Measurement Systems—Russian</td>
<td>1st</td>
<td>2003</td>
<td>G85001R</td>
<td>$107.00</td>
<td>73, 174</td>
<td></td>
</tr>
<tr>
<td>RP 87</td>
<td>Recommended Practice for Field Analysis of Crude Oil Samples Containing from Two to Fifty Percent by Volume</td>
<td>1st</td>
<td>2007</td>
<td>G87001</td>
<td>$98.00</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>RP 90</td>
<td>Annular Casing Pressure Management for Offshore Wells</td>
<td>1st</td>
<td>2006</td>
<td>G90001</td>
<td>$197.00</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>RP 90-2</td>
<td>Annular Casing Pressure Management for Onshore Wells</td>
<td>1st</td>
<td>2016</td>
<td>G90201</td>
<td>$197.00</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Bull 91</td>
<td>Planning and Conducting Surface Preparation and Coating Operations for Oil and Natural Gas Drilling and Production Facilities in a Marine Environment</td>
<td>1st</td>
<td>2007</td>
<td>G91001</td>
<td>$67.00</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR 343</td>
<td>Automated Validation System for the Offshore Operations Committee Mud and Produced Water Discharge Model</td>
<td>2002</td>
<td>See Listing</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 346</td>
<td>Results of Range-Finding Testing of Leak Detection and Leak Location Technologies for Underground Pipelines</td>
<td>1998</td>
<td>J34600</td>
<td>$90.00</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 347</td>
<td>Hazardous Air Pollutant Emissions from Gasoline Loading Operations at Bulk Gasoline Terminals</td>
<td>1998</td>
<td>J34700</td>
<td>$90.00</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR 351</td>
<td>Proceedings: Workshop to Identify Promising Technologies for the Treatment of Produced Water Toxicity</td>
<td>1996</td>
<td>I00351</td>
<td>$79.00</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 351</td>
<td>Overview of Soil Permeability Test Methods</td>
<td>1999</td>
<td>J35100</td>
<td>$98.00</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 352</td>
<td>Management of Residual Materials: 1997 Petroleum Refining Performance</td>
<td>1999</td>
<td>J35200</td>
<td>$133.00</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 353</td>
<td>Managing Systems Integrity of Terminal and Tank Facilities</td>
<td>1st</td>
<td>J35300</td>
<td>$158.00</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 400</td>
<td>Toluene: A Preliminary Study of the Effect of Toluene on Pregnancy of the Rat</td>
<td>1993</td>
<td>I00400</td>
<td>$67.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 401</td>
<td>Toluene: The Effect on Pregnancy of the Rat</td>
<td>1993</td>
<td>I00401</td>
<td>$95.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 402</td>
<td>Toxicity to Freshwater Algae, Selenastrum capricornutum</td>
<td>1995</td>
<td>I00402</td>
<td>$67.00</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 403</td>
<td>Closed-Patch Repeated Insult Dermal Sensitization Study of TAME in Guinea Pigs</td>
<td>1995</td>
<td>I00403</td>
<td>$67.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 404</td>
<td>An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part I—Rats</td>
<td>1995</td>
<td>I00404</td>
<td>$86.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 405</td>
<td>An Inhalation Oncogenicity Study of Commercial Hexane in Rats and Mice, Part II—Mice</td>
<td>1995</td>
<td>I00405</td>
<td>$67.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 406</td>
<td>TAME—Acute Toxicity to Daphnids Under Flow-Through Conditions</td>
<td>1995</td>
<td>I00406</td>
<td>$67.00</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 407</td>
<td>TAME—Acute Toxicity to Mycid Shrimp (Mysisopsis bahia) Under Static Renewal Conditions</td>
<td>1995</td>
<td>I00407</td>
<td>$67.00</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 408</td>
<td>TAME—Acute Toxicity to Rainbow Trout Under Flow-Through Conditions</td>
<td>1995</td>
<td>I00408</td>
<td>$68.00</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 409</td>
<td>Primary Skin Irritation Study in Rabbits of API 91-01 and PS-6 Unleaded Test Gasolines</td>
<td>1995</td>
<td>I00409</td>
<td>$67.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 410</td>
<td>Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells Exposed to Tertiary Amyl Methyl Ether (TAME)</td>
<td>1996</td>
<td>I00410</td>
<td>$95.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 411</td>
<td>Chinese Hamster Ovary (CHO) HGPRT Mutation Assay of Tertiary Amyl Methyl Ether (TAME)</td>
<td>1996</td>
<td>I00411</td>
<td>$95.00</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 412 and 414</td>
<td>A Range-Finding Developmental Inhalation Toxicity Study of Unleaded Gasoline Vapor Condensate in Rats and Mice via Whole-Body Exposure and an Inhalation Developmental Toxicity Study of Unleaded Gasoline Vapor Condensate in the Rat via Whole-Body Exposure</td>
<td>1998</td>
<td>I00412</td>
<td>$105.00</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ 422</td>
<td>Groundwater Protection Programs for Petroleum Refining and Storage Facilities: A Guidance Document</td>
<td>1st</td>
<td>C42201</td>
<td>$71.00</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 425</td>
<td>Options for Minimizing Environmental Impacts of Inland Spill Response</td>
<td>2016</td>
<td>I42500</td>
<td>See Listing</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 500</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2</td>
<td>3rd</td>
<td>2012</td>
<td>C50003</td>
<td>$302.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>RP 500</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2—Kazakh</td>
<td>3rd</td>
<td>2012</td>
<td>C50003K</td>
<td>$243.00</td>
<td>107, 170</td>
<td></td>
</tr>
<tr>
<td>RP 505</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2</td>
<td>2nd</td>
<td>2018</td>
<td>C50502</td>
<td>$235.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration</td>
<td>10th</td>
<td>2014</td>
<td>C51010</td>
<td>$244.00</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Chinese</td>
<td>10th</td>
<td>2014</td>
<td>C51010C</td>
<td>$172.00</td>
<td>91, 168</td>
<td></td>
</tr>
<tr>
<td>API 510</td>
<td>Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration—Spanish</td>
<td>10th</td>
<td>2014</td>
<td>C51010S</td>
<td>$244.00</td>
<td>91, 177</td>
<td></td>
</tr>
<tr>
<td>Std 520, Part I</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection</td>
<td>9th</td>
<td>2014</td>
<td>C520109</td>
<td>$368.00</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Std 520, Part I</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I—Sizing and Selection—Russian</td>
<td>9th</td>
<td>2014</td>
<td>C520109R</td>
<td>$294.00</td>
<td>102, 174</td>
<td></td>
</tr>
<tr>
<td>RP 520, Part II</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation</td>
<td>6th</td>
<td>2015</td>
<td>C520206</td>
<td>$282.00</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>RP 520, Part II</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices—Part II—Installation—Russian</td>
<td>6th</td>
<td>2015</td>
<td>C520206R</td>
<td>$226.00</td>
<td>102, 174</td>
<td></td>
</tr>
<tr>
<td>Std 521</td>
<td>Pressure-Relieving and Depressuring Systems</td>
<td>6th</td>
<td>2014</td>
<td>C52106B</td>
<td>$298.00</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Std 521</td>
<td>Pressure-Relieving and Depressuring Systems—Russian</td>
<td>6th</td>
<td>2014</td>
<td>C52106B</td>
<td>$238.00</td>
<td>102, 174</td>
<td></td>
</tr>
<tr>
<td>Std 526</td>
<td>Flanged Steel Pressure-Relief Valves</td>
<td>7th</td>
<td>2017</td>
<td>C52607</td>
<td>$227.00</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Std 526</td>
<td>Flanged Steel Pressure-Relief Valves—Russian</td>
<td>7th</td>
<td>2017</td>
<td>C52607R</td>
<td>$182.00</td>
<td>103, 174</td>
<td></td>
</tr>
<tr>
<td>Std 527</td>
<td>Seat Tightness of Pressure Relief Valves</td>
<td>4th</td>
<td>2014</td>
<td>C52704</td>
<td>$98.00</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Std 530</td>
<td>Calculation of Heater-Tube Thickness in Petroleum Refineries</td>
<td>7th</td>
<td>2015</td>
<td>C53007</td>
<td>$314.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>RP 534</td>
<td>Heat Recovery Steam Generators</td>
<td>2nd</td>
<td>2007</td>
<td>C53402</td>
<td>$103.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>RP 535</td>
<td>Burners for Fired Heaters in General Refinery Services</td>
<td>3rd</td>
<td>2014</td>
<td>C53503</td>
<td>$163.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Std 536</td>
<td>Post-Combustion NOx Control for Equipment in General Refinery and Petrochemical Services</td>
<td>3rd</td>
<td>2017</td>
<td>C53603</td>
<td>$182.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Std 537</td>
<td>Flare Details for Petroleum, Petrochemical, and Natural Gas Industries</td>
<td>3rd</td>
<td>2017</td>
<td>C53703</td>
<td>$260.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>RP 538</td>
<td>Industrial Fired Boilers for General Refinery and Petrochemical Service</td>
<td>1st</td>
<td>2015</td>
<td>C53801</td>
<td>$330.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 540</td>
<td>Electrical Installations in Petroleum Processing Plants</td>
<td>4th</td>
<td>1999</td>
<td>C54004</td>
<td>$204.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Std 541</td>
<td>Form-Wound Squirrel Cage Induction Motors—375 kW (500 Horsepower) and Larger</td>
<td>5th</td>
<td>2014</td>
<td>C54105</td>
<td>$206.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Std 541</td>
<td>Form-Wound Squirrel Cage Induction Motors—375 kW (500 Horsepower) and Larger—Russian</td>
<td>5th</td>
<td>2014</td>
<td>C54105R</td>
<td>$165.00</td>
<td>107, 174</td>
<td></td>
</tr>
<tr>
<td>Std 546</td>
<td>Brushless Synchronous Machines—500 kVA and Larger</td>
<td>3rd</td>
<td>2008</td>
<td>C54603</td>
<td>$225.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Std 547</td>
<td>General Purpose Form-Wound Squirrel Cage Induction Motors—185 kW (250 hp) Through 2240 kW (3000 hp)</td>
<td>2nd</td>
<td>2017</td>
<td>C54702</td>
<td>$128.00</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>RP 551</td>
<td>Process Measurement Instrumentation</td>
<td>2nd</td>
<td>2016</td>
<td>C55102</td>
<td>$171.00</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>RP 552</td>
<td>Transmission Systems</td>
<td>1st</td>
<td>1994</td>
<td>C55201</td>
<td>$118.00</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>RP 553</td>
<td>Refinery Valves and Accessories for Control and Safety Instrumented Systems</td>
<td>2nd</td>
<td>2012</td>
<td>C55302</td>
<td>$157.00</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>API 555</td>
<td>Process Analyzers</td>
<td>3rd</td>
<td>2013</td>
<td>C55503</td>
<td>$206.00</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters</td>
<td>2nd</td>
<td>2011</td>
<td>C55602</td>
<td>$165.00</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>RP 556</td>
<td>Instrumentation, Control, and Protective Systems for Gas Fired Heaters—Russian</td>
<td>2nd</td>
<td>2011</td>
<td>C55602R</td>
<td>$133.00</td>
<td>110, 174</td>
<td></td>
</tr>
<tr>
<td>RP 557</td>
<td>Guide to Advanced Control Systems</td>
<td>2nd</td>
<td>2013</td>
<td>C55702</td>
<td>$119.00</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Std 560</td>
<td>Fired Heaters for General Refinery Service</td>
<td>5th</td>
<td>2016</td>
<td>C56005</td>
<td>$363.00</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>API 570</td>
<td>Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems</td>
<td>4th</td>
<td>2016</td>
<td>C57004</td>
<td>$195.00</td>
<td>91, 103</td>
<td></td>
</tr>
<tr>
<td>RP 571</td>
<td>Damage Mechanics Affecting Fixed Equipment in the Refining Industry</td>
<td>2nd</td>
<td>2011</td>
<td>C57102</td>
<td>$356.00</td>
<td>91, 111, 168</td>
<td></td>
</tr>
<tr>
<td>RP 571</td>
<td>Damage Mechanics Affecting Fixed Equipment in the Refining Industry—Chinese</td>
<td>2nd</td>
<td>2011</td>
<td>C57102C</td>
<td>$250.00</td>
<td>91, 111, 168</td>
<td></td>
</tr>
<tr>
<td>RP 572</td>
<td>Inspection Practices for Pressure Vessels</td>
<td>4th</td>
<td>2016</td>
<td>C57204</td>
<td>$249.00</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>RP 573</td>
<td>Inspection of Fired Boilers and Heaters</td>
<td>3rd</td>
<td>2013</td>
<td>C57303</td>
<td>$163.00</td>
<td>91, 108</td>
<td></td>
</tr>
<tr>
<td>RP 574</td>
<td>Inspection Practices for Piping System Components</td>
<td>4th</td>
<td>2016</td>
<td>C57404</td>
<td>$227.00</td>
<td>91, 104</td>
<td></td>
</tr>
<tr>
<td>RP 575</td>
<td>Inspection Practices for Atmospheric and Low-Pressure Storage Tanks</td>
<td>3rd</td>
<td>2014</td>
<td>C57503</td>
<td>$206.00</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>RP 575</td>
<td>Inspection Practices for Atmospheric and Low-Pressure Storage Tanks—Chinese</td>
<td>3rd</td>
<td>2014</td>
<td>C57503C</td>
<td>$144.00</td>
<td>92, 168</td>
<td></td>
</tr>
<tr>
<td>RP 576</td>
<td>Inspection of Pressure-Relieving Devices</td>
<td>4th</td>
<td>2017</td>
<td>C57604</td>
<td>$227.00</td>
<td>92, 103</td>
<td></td>
</tr>
<tr>
<td>RP 576</td>
<td>Inspection of Pressure-Relieving Devices—Spanish</td>
<td>4th</td>
<td>2017</td>
<td>C57604S</td>
<td>$227.00</td>
<td>92, 103, 177</td>
<td></td>
</tr>
<tr>
<td>RP 577</td>
<td>Welding Processes, Inspection, and Metallurgy</td>
<td>2nd</td>
<td>2013</td>
<td>C57702</td>
<td>$244.00</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>RP 577</td>
<td>Welding Processes, Inspection, and Metallurgy—Chinese</td>
<td>2nd</td>
<td>2013</td>
<td>C57702CN1420</td>
<td>$172.00</td>
<td>92, 168</td>
<td></td>
</tr>
<tr>
<td>RP 578</td>
<td>Guidelines for a Material Verification Program (MVP) for New and Existing Assets</td>
<td>3rd</td>
<td>2018</td>
<td>C57803</td>
<td>$227.00</td>
<td>92, 104</td>
<td></td>
</tr>
<tr>
<td>API 579/1/ASME FFS-1</td>
<td>Fitness-For-Service</td>
<td>3rd</td>
<td>2016</td>
<td>C57903</td>
<td>See Listing</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>API 579/2/ASME FFS-2</td>
<td>Fitness-For-Service Example Problem Manual</td>
<td>1st</td>
<td>2009</td>
<td>C57921</td>
<td>$168.00</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>RP 580</td>
<td>Risk-Based Inspection</td>
<td>3rd</td>
<td>2016</td>
<td>C58003</td>
<td>$287.00</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>RP 581</td>
<td>Risk-Based Inspection Methodology</td>
<td>3rd</td>
<td>2016</td>
<td>C58103</td>
<td>$936.00</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>RP 582</td>
<td>Welding Guidelines for the Chemical, Oil, and Gas Industries</td>
<td>3rd</td>
<td>2016</td>
<td>C58203</td>
<td>$149.00</td>
<td>93, 111</td>
<td></td>
</tr>
<tr>
<td>RP 583</td>
<td>Corrosion Under Insulation and Fireproofing</td>
<td>1st</td>
<td>2014</td>
<td>C58301</td>
<td>$184.00</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>RP 584</td>
<td>Integrity Operating Windows</td>
<td>2014</td>
<td>C58401</td>
<td>$131.00</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 585</td>
<td>Pressure Equipment Integrity Incident Investigation</td>
<td>1st</td>
<td>2014</td>
<td>C58501</td>
<td>$136.00</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>RP 588</td>
<td>Recommended Practice for Source Inspection and Quality Surveillance of Fixed Equipment</td>
<td>1st</td>
<td>2019</td>
<td>C58801</td>
<td>$175.00</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>RP 591</td>
<td>Process Valve Qualification Procedure</td>
<td>6th</td>
<td>2019</td>
<td>C59106</td>
<td>$113.00</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Std 594</td>
<td>Check Valves: Flanged, Lug, Wafer, and Butt-Welding</td>
<td>8th</td>
<td>2017</td>
<td>C59408</td>
<td>$128.00</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Std 598</td>
<td>Valve Inspection and Testing</td>
<td>10th</td>
<td>2016</td>
<td>C59810</td>
<td>$104.00</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Std 598</td>
<td>Valve Inspection and Testing—Russian</td>
<td>10th</td>
<td>2016</td>
<td>C59810R</td>
<td>$83.00</td>
<td>104, 174</td>
<td></td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends</td>
<td>7th</td>
<td>2013</td>
<td>C59907</td>
<td>$87.00</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Std 599</td>
<td>Metal Plug Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>7th</td>
<td>2013</td>
<td>C59907R</td>
<td>$70.00</td>
<td>104, 174</td>
<td></td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets</td>
<td>13th</td>
<td>2015</td>
<td>C60013</td>
<td>$146.00</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Chinese</td>
<td>13th</td>
<td>2015</td>
<td>C60013C</td>
<td>$103.00</td>
<td>104, 169</td>
<td></td>
</tr>
<tr>
<td>Std 600</td>
<td>Steel Gate Valves—Flanged and Butt-Welding Ends, Bolted Bonnets—Russian</td>
<td>13th</td>
<td>2015</td>
<td>C60013R</td>
<td>$117.00</td>
<td>105, 174</td>
<td></td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries</td>
<td>10th</td>
<td>2015</td>
<td>C60210</td>
<td>$136.00</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Std 602</td>
<td>Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries—Russian</td>
<td>10th</td>
<td>2015</td>
<td>C60210R</td>
<td>$109.00</td>
<td>105, 174</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Std</td>
<td>603</td>
<td>Corrosion-Resistant, Bolted Bonnet Gate Valves—Flanged and Butt-Welding Ends</td>
<td>9th</td>
<td>2018</td>
<td>C60309</td>
<td>$103.00</td>
<td>105</td>
</tr>
<tr>
<td>Std</td>
<td>607</td>
<td>Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seals</td>
<td>7th</td>
<td>2016</td>
<td>C60707</td>
<td>$105.00</td>
<td>105</td>
</tr>
<tr>
<td>Std</td>
<td>607</td>
<td>Fire Test for Quarter-Turn Valves and Valves Equipped with Nonmetallic Seals—Russian</td>
<td>7th</td>
<td>2016</td>
<td>C60707R</td>
<td>$84.00</td>
<td>105, 174</td>
</tr>
<tr>
<td>Std</td>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends</td>
<td>5th</td>
<td>2012</td>
<td>C60805</td>
<td>$118.00</td>
<td>105</td>
</tr>
<tr>
<td>Std</td>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Chinese</td>
<td>5th</td>
<td>2012</td>
<td>C60805C</td>
<td>$83.00</td>
<td>105, 169</td>
</tr>
<tr>
<td>Std</td>
<td>608</td>
<td>Metal Ball Valves—Flanged, Threaded, and Welding Ends—Russian</td>
<td>5th</td>
<td>2012</td>
<td>C60805R</td>
<td>$96.00</td>
<td>105, 174</td>
</tr>
<tr>
<td>Std</td>
<td>609</td>
<td>Butterfly Valves: Double-Flanged, Lug- and Wafer-Type</td>
<td>8th</td>
<td>2016</td>
<td>C60908</td>
<td>$114.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>610/ISO 13709:2009</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries</td>
<td>11th</td>
<td>2010</td>
<td>C61011</td>
<td>$279.00</td>
<td>94</td>
</tr>
<tr>
<td>Std</td>
<td>610/ISO 13709:2009</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries—Russian</td>
<td>11th</td>
<td>2010</td>
<td>C61011R</td>
<td>$223.00</td>
<td>94, 174</td>
</tr>
<tr>
<td>Std</td>
<td>611</td>
<td>General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services</td>
<td>5th</td>
<td>2008</td>
<td>C61105</td>
<td>$159.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>611</td>
<td>General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services—Russian</td>
<td>5th</td>
<td>2008</td>
<td>C61105R</td>
<td>$127.00</td>
<td>95, 174</td>
</tr>
<tr>
<td>Std</td>
<td>612</td>
<td>Petroleum Petrochemical and Natural Gas Industries—Steam Turbines—Special-Purpose Applications</td>
<td>7th</td>
<td>2014</td>
<td>C61207</td>
<td>$239.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>613</td>
<td>Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services</td>
<td>5th</td>
<td>2003</td>
<td>C61305</td>
<td>$179.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>613</td>
<td>Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services—Russian</td>
<td>5th</td>
<td>2003</td>
<td>C61305R</td>
<td>$143.00</td>
<td>95, 175</td>
</tr>
<tr>
<td>Std</td>
<td>614/ISO 10438-1:2007</td>
<td>Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries</td>
<td>5th</td>
<td>2008</td>
<td>C61405</td>
<td>$318.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>614/ISO 10438-1:2007</td>
<td>Lubrication, Shaft-Sealing and Oil-Control Systems and Auxiliaries—Russian</td>
<td>5th</td>
<td>2008</td>
<td>C61405R</td>
<td>$254.00</td>
<td>95, 175</td>
</tr>
<tr>
<td>RP</td>
<td>615</td>
<td>Valve Selection Guide</td>
<td>2nd</td>
<td>2016</td>
<td>C61502</td>
<td>$96.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>616</td>
<td>Gas Turbines for the Petroleum, Chemical, and Gas Industry Services</td>
<td>5th</td>
<td>2011</td>
<td>C61605</td>
<td>$223.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>617</td>
<td>Axial and Centrifugal Compressors and Expander-Compressors</td>
<td>8th</td>
<td>2014</td>
<td>C61707</td>
<td>$260.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>618</td>
<td>Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services</td>
<td>5th</td>
<td>2007</td>
<td>C61805</td>
<td>$196.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>619/ISO 10440-1:2007</td>
<td>Rotary-Type Positive Displacement Compressors for Petroleum, Petrochemical and Natural Gas Industries</td>
<td>5th</td>
<td>2010</td>
<td>C61905</td>
<td>$234.00</td>
<td>95</td>
</tr>
<tr>
<td>Std</td>
<td>620</td>
<td>Design and Construction of Large, Welded, Low-Pressure Storage Tanks</td>
<td>12th</td>
<td>2013</td>
<td>C62012</td>
<td>$471.00</td>
<td>99</td>
</tr>
<tr>
<td>Std</td>
<td>620</td>
<td>Design and Construction of Large, Welded, Low-Pressure Storage Tanks—Chinese</td>
<td>12th</td>
<td>2013</td>
<td>C62012C</td>
<td>$330.00</td>
<td>99, 169</td>
</tr>
<tr>
<td>RP</td>
<td>621</td>
<td>Reconditioning of Metallic Gate, Globe, and Check Valves</td>
<td>4th</td>
<td>2018</td>
<td>C62104</td>
<td>$162.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>622</td>
<td>Type Testing of Process Valve Packing for Fugitive Emissions</td>
<td>3rd</td>
<td>2018</td>
<td>C62203</td>
<td>$162.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>623</td>
<td>Steel Globe Valves—Flanged and Butt-Welding Ends, Bolted Bonnets</td>
<td>1st</td>
<td>2013</td>
<td>C62301</td>
<td>$81.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>624</td>
<td>Type Testing of Rising Stem Valves Equipped with Flexible Graphite Packing for Fugitive Emissions</td>
<td>1st</td>
<td>2014</td>
<td>C62401</td>
<td>$93.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>625</td>
<td>Tank Systems for Refrigerated Liquefied Gas Storage</td>
<td>1st</td>
<td>2010</td>
<td>C62501</td>
<td>$251.00</td>
<td>100</td>
</tr>
<tr>
<td>Std</td>
<td>641</td>
<td>Type Testing of Quarter-Turn Valves for Fugitive Emissions</td>
<td>1st</td>
<td>2016</td>
<td>C64101</td>
<td>$81.00</td>
<td>106</td>
</tr>
<tr>
<td>Std</td>
<td>650</td>
<td>Welded Tanks for Oil Storage</td>
<td>12th</td>
<td>2013</td>
<td>C65012</td>
<td>$914.00</td>
<td>100</td>
</tr>
<tr>
<td>Std</td>
<td>650</td>
<td>Welded Tanks for Oil Storage—Chinese</td>
<td>12th</td>
<td>2013</td>
<td>C65012C</td>
<td>$361.00</td>
<td>100, 169</td>
</tr>
<tr>
<td>RP</td>
<td>651</td>
<td>Cathodic Protection of Aboveground Petroleum Storage Tanks</td>
<td>4th</td>
<td>2014</td>
<td>C65104</td>
<td>$136.00</td>
<td>100</td>
</tr>
<tr>
<td>RP</td>
<td>651</td>
<td>Cathodic Protection of Aboveground Petroleum Storage Tanks—Chinese</td>
<td>4th</td>
<td>2014</td>
<td>C65104C</td>
<td>$96.00</td>
<td>100, 169</td>
</tr>
<tr>
<td>RP</td>
<td>652</td>
<td>Linings of Aboveground Petroleum Storage Tank Bottoms</td>
<td>4th</td>
<td>2014</td>
<td>C65204</td>
<td>$141.00</td>
<td>100</td>
</tr>
<tr>
<td>RP</td>
<td>652</td>
<td>Linings of Aboveground Petroleum Storage Tank Bottoms—Chinese</td>
<td>4th</td>
<td>2014</td>
<td>C65204C</td>
<td>$99.00</td>
<td>100, 169</td>
</tr>
<tr>
<td>Std</td>
<td>653</td>
<td>Tank Inspection, Repair, Alteration, and Reconstruction</td>
<td>5th</td>
<td>2014</td>
<td>C65305</td>
<td>$255.00</td>
<td>94, 100</td>
</tr>
<tr>
<td>Std</td>
<td>653</td>
<td>Tank Inspection, Repair, Alteration, and Reconstruction—Chinese</td>
<td>5th</td>
<td>2014</td>
<td>C65305C</td>
<td>$179.00</td>
<td>94, 101, 169</td>
</tr>
<tr>
<td>TR</td>
<td>654</td>
<td>Aboveground Storage Tank Caulking or Sealing the Bottom Edge Projection to the Foundation</td>
<td>1st</td>
<td>2019</td>
<td>C65401</td>
<td>$115.00</td>
<td>101</td>
</tr>
<tr>
<td>Std</td>
<td>660</td>
<td>Shell-and-Tube Heat Exchangers</td>
<td>9th</td>
<td>2015</td>
<td>C66009</td>
<td>$201.00</td>
<td>109</td>
</tr>
<tr>
<td>Std</td>
<td>661</td>
<td>Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service</td>
<td>7th</td>
<td>2013</td>
<td>C66107</td>
<td>$271.00</td>
<td>109</td>
</tr>
<tr>
<td>Std</td>
<td>661</td>
<td>Petroleum, Petrochemical, and Natural Gas Industries—Air-Cooled Heat Exchangers for General Refinery Service—Russian</td>
<td>7th</td>
<td>2013</td>
<td>C66107R</td>
<td>$217.00</td>
<td>109, 175</td>
</tr>
<tr>
<td>Std</td>
<td>663</td>
<td>Haingin-Type Heat Exchangers</td>
<td>1st</td>
<td>2014</td>
<td>C66301</td>
<td>$189.00</td>
<td>109</td>
</tr>
<tr>
<td>Std</td>
<td>664</td>
<td>Spiral Plate Heat Exchangers</td>
<td>1st</td>
<td>2014</td>
<td>C66401</td>
<td>$189.00</td>
<td>109</td>
</tr>
<tr>
<td>Std</td>
<td>668</td>
<td>Brazed Aluminum Plate-Fin Heat Exchangers</td>
<td>1st</td>
<td>2018</td>
<td>C66801</td>
<td>$147.00</td>
<td>109</td>
</tr>
<tr>
<td>Std</td>
<td>670</td>
<td>Machinery Protection Systems</td>
<td>5th</td>
<td>2014</td>
<td>C67005</td>
<td>$212.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>671/ISO 10441:2007</td>
<td>Special Purpose Couplings for Petroleum, Chemical and Gas Industry Services</td>
<td>4th</td>
<td>2007</td>
<td>C67104</td>
<td>$181.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>672</td>
<td>Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services</td>
<td>5th</td>
<td>2019</td>
<td>C67205</td>
<td>$315.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>673</td>
<td>Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services</td>
<td>3rd</td>
<td>2014</td>
<td>C67303</td>
<td>$184.00</td>
<td>96</td>
</tr>
</tbody>
</table>
Publications by Number

<table>
<thead>
<tr>
<th>Pub</th>
<th>Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>673</td>
<td>Centrifugal Fans for Petroleum, Chemical, and Gas Industry Services—Russian</td>
<td>3rd</td>
<td>2014</td>
<td>C67303R</td>
<td>$147.00</td>
<td>96, 175</td>
</tr>
<tr>
<td>Std</td>
<td>674</td>
<td>Positive Displacement Pumps—Reciprocating</td>
<td>3rd</td>
<td>2010</td>
<td>C67403R</td>
<td>$202.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>674</td>
<td>Positive Displacement Pumps—Reciprocating—Russian</td>
<td>3rd</td>
<td>2010</td>
<td>C67403R</td>
<td>$162.00</td>
<td>96, 175</td>
</tr>
<tr>
<td>Std</td>
<td>675</td>
<td>Positive Displacement Pumps—Controlled Volume for Petroleum, Chemical, and Gas Industry Services</td>
<td>3rd</td>
<td>2012</td>
<td>C67503</td>
<td>$138.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>676</td>
<td>Positive Displacement Pumps—Rotary</td>
<td>3rd</td>
<td>2009</td>
<td>C67603</td>
<td>$163.00</td>
<td>96</td>
</tr>
<tr>
<td>Std</td>
<td>676</td>
<td>Positive Displacement Pumps—Rotary—Chinese</td>
<td>3rd</td>
<td>2009</td>
<td>C67603CN945</td>
<td>$114.00</td>
<td>97, 169</td>
</tr>
<tr>
<td>Std</td>
<td>677</td>
<td>General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services</td>
<td>3rd</td>
<td>2006</td>
<td>C67703</td>
<td>$179.00</td>
<td>97</td>
</tr>
<tr>
<td>Std</td>
<td>681</td>
<td>Liquid Ring Vacuum Pumps and Compressors for Petroleum, Chemical, and Gas Industry Services</td>
<td>1st</td>
<td>1996</td>
<td>C68101</td>
<td>$154.00</td>
<td>97</td>
</tr>
<tr>
<td>Std</td>
<td>682</td>
<td>Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps</td>
<td>4th</td>
<td>2014</td>
<td>C68204</td>
<td>$277.00</td>
<td>97</td>
</tr>
<tr>
<td>Std</td>
<td>682</td>
<td>Pumps—Shaft Sealing Systems for Centrifugal and Rotary Pumps—Russian</td>
<td>4th</td>
<td>2014</td>
<td>C68204R</td>
<td>$194.00</td>
<td>97, 169</td>
</tr>
<tr>
<td>Std</td>
<td>685</td>
<td>Sealless Centrifugal Pumps for Petroleum, Petrochemical, and Gas Industry Process Service</td>
<td>2nd</td>
<td>2011</td>
<td>C68502</td>
<td>$223.00</td>
<td>97</td>
</tr>
<tr>
<td>RP</td>
<td>686</td>
<td>Recommended Practice for Machinery Installation and Installation Design</td>
<td>2nd</td>
<td>2009</td>
<td>C68602</td>
<td>$203.00</td>
<td>97</td>
</tr>
<tr>
<td>RP</td>
<td>687</td>
<td>Rotor Repair</td>
<td>1st</td>
<td>2001</td>
<td>C68701</td>
<td>$289.00</td>
<td>96</td>
</tr>
<tr>
<td>RP</td>
<td>688</td>
<td>Pulsation and Vibration Control in Positive Displacement Machinery Systems for Petroleum, Petrochemical, and Natural Gas Industry Services</td>
<td>1st</td>
<td>2012</td>
<td>C68801</td>
<td>$170.00</td>
<td>98</td>
</tr>
<tr>
<td>Std</td>
<td>689/ISO 14224:2006</td>
<td>Collection and Exchange of Reliability and Maintenance Data for Equipment</td>
<td>1st</td>
<td>2007</td>
<td>C68901</td>
<td>$320.00</td>
<td>98</td>
</tr>
<tr>
<td>RP</td>
<td>691</td>
<td>Risk-Based Machinery Management</td>
<td>1st</td>
<td>2017</td>
<td>C69101</td>
<td>$177.00</td>
<td>98</td>
</tr>
<tr>
<td>Std</td>
<td>692</td>
<td>Dry Gas Sealing Systems for Axial, Centrifugal, and Rotary Screw Compressors and Expanders</td>
<td>1st</td>
<td>2018</td>
<td>C69201</td>
<td>$179.00</td>
<td>98</td>
</tr>
<tr>
<td>RP</td>
<td>751</td>
<td>Management of Hazards Associated with Location of Process Plant Permanent Buildings</td>
<td>4th</td>
<td>2013</td>
<td>K75104</td>
<td>$163.00</td>
<td>119</td>
</tr>
<tr>
<td>RP</td>
<td>752</td>
<td>Management of Hazards Associated with Location of Process Plant Portable Buildings</td>
<td>3rd</td>
<td>2009</td>
<td>K75203</td>
<td>$153.00</td>
<td>118, 123</td>
</tr>
<tr>
<td>RP</td>
<td>753</td>
<td>Process Safety Performance Indicators for the Refining and Petrochemical Industries</td>
<td>1st</td>
<td>2007</td>
<td>K75301</td>
<td>$153.00</td>
<td>118, 123</td>
</tr>
<tr>
<td>RP</td>
<td>754</td>
<td>Fatigue Risk Management Systems for Personnel in the Refining and Petrochemical Industries</td>
<td>2nd</td>
<td>2019</td>
<td>K75502</td>
<td>$145.00</td>
<td>118, 123</td>
</tr>
<tr>
<td>RP</td>
<td>756</td>
<td>Management of Hazards Associated with Location of Process Plant Tests</td>
<td>1st</td>
<td>2014</td>
<td>C75601</td>
<td>$136.00</td>
<td>119, 124</td>
</tr>
<tr>
<td>TR</td>
<td>756-1</td>
<td>Process Plant Tent Responses to Vapor Cloud Explosions—Results of the American Petroleum Institute Tent Testing Program</td>
<td>1st</td>
<td>2014</td>
<td>C756101</td>
<td>$206.00</td>
<td>119, 124</td>
</tr>
<tr>
<td>Publ</td>
<td>770</td>
<td>A Manager's Guide to Reducing Human Errors—Improving Human Performance in the Process Industries</td>
<td>1st</td>
<td>2001</td>
<td>K77001</td>
<td>$82.00</td>
<td>124</td>
</tr>
<tr>
<td>Std</td>
<td>780</td>
<td>Security Risk Assessment Methodology for the Petroleum and Petrochemical Industries</td>
<td>1st</td>
<td>2013</td>
<td>K78001</td>
<td>$206.00</td>
<td>90, 120, 124</td>
</tr>
<tr>
<td>RP</td>
<td>781</td>
<td>Facility Security Plan Methodology for the Oil and Natural Gas Industries</td>
<td>1st</td>
<td>2016</td>
<td>K78101</td>
<td>$157.00</td>
<td>90, 120</td>
</tr>
<tr>
<td>Publ</td>
<td>800</td>
<td>Literature Survey: Subsurface and Groundwater Protection Related to Petroleum Refinery Operations</td>
<td>1st</td>
<td>1988</td>
<td>C80000</td>
<td>$100.00</td>
<td>119</td>
</tr>
<tr>
<td>TR</td>
<td>932-A</td>
<td>A Study of Corrosion in Hydroprocessing Reactor Effluent Air Cooler Systems</td>
<td>2nd</td>
<td>2002</td>
<td>C932A0</td>
<td>$164.00</td>
<td>112</td>
</tr>
<tr>
<td>RP</td>
<td>932-B</td>
<td>Design, Materials, Fabrication, Operation, and Inspection Guidelines for Corrosion Control in Hydroprocessing Reactor Effluent Air Cooler (REAC) Systems</td>
<td>3rd</td>
<td>2019</td>
<td>C932B03</td>
<td>$278.00</td>
<td>112</td>
</tr>
<tr>
<td>RP</td>
<td>934-A</td>
<td>Materials and Fabrication of 2 ½Cr-1Mo, 2 ¼Cr-1Mo, 2Cr-1Mo, and 2Cr-1Mo Steel for High Pressure Hydrogen Service</td>
<td>3rd</td>
<td>2019</td>
<td>C934A03</td>
<td>$135.00</td>
<td>112</td>
</tr>
<tr>
<td>TR</td>
<td>934-B</td>
<td>Fabrication Considerations for Vanadium-Modified Cr-Mo Steel Heavy Wall Pressure Vessels</td>
<td>1st</td>
<td>2011</td>
<td>C934B01</td>
<td>$146.00</td>
<td>112</td>
</tr>
<tr>
<td>RP</td>
<td>934-C</td>
<td>Materials and Fabrication of 1 ½Cr-½Mo Steel Heavy Wall Pressure Vessels for High-Pressure Hydrogen Service Operating at or Below 825 °F (440 °C)</td>
<td>2nd</td>
<td>2019</td>
<td>C934C02</td>
<td>$118.00</td>
<td>112</td>
</tr>
<tr>
<td>TR</td>
<td>934-D</td>
<td>Technical Report on the Materials and Fabrication Issues of 1¼Cr-½Mo and 1Cr-½Mo Steel Pressure Vessels</td>
<td>1st</td>
<td>2010</td>
<td>C934D01</td>
<td>$146.00</td>
<td>112</td>
</tr>
<tr>
<td>RP</td>
<td>934-E</td>
<td>Recommended Practice for Materials and Fabrication of 2¼Cr-½ Mo Steel Pressure Vessels for Service Above 825 °F (440 °C)</td>
<td>2nd</td>
<td>2018</td>
<td>C934E02</td>
<td>$147.00</td>
<td>113</td>
</tr>
<tr>
<td>TR</td>
<td>934-F, Part 1</td>
<td>Impact of Hydrogen Embrittlement on Minimum Pressurization Temperature for Thick-Wall Cr-Mo Steel Reactors in High-Pressure H2 Service—Initial Technical Basis for RP 934-F</td>
<td>1st</td>
<td>2017</td>
<td>C934F101</td>
<td>$202.00</td>
<td>113</td>
</tr>
<tr>
<td>TR</td>
<td>934-F, Part 2</td>
<td>Literature Review of Fracture Mechanics-Based Experimental Data for Internal Hydrogen-Assisted Cracking of Vanadium-Modified 2¼Cr-1Mo Steel</td>
<td>1st</td>
<td>2017</td>
<td>C934F201</td>
<td>$135.00</td>
<td>113</td>
</tr>
<tr>
<td>TR</td>
<td>934-F, Part 3</td>
<td>Subcritical Cracking of Modern 2¼Cr-1Mo Steel Due to Dissolved Internal Hydrogen and H2 Environment, Research Report</td>
<td>1st</td>
<td>2017</td>
<td>C934F01</td>
<td>$189.00</td>
<td>113</td>
</tr>
<tr>
<td>TR</td>
<td>934-F, Part 4</td>
<td>The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels</td>
<td>1st</td>
<td>2018</td>
<td>C934F01</td>
<td>$189.00</td>
<td>113</td>
</tr>
</tbody>
</table>
Material, Fabrication, and Repair Considerations for Austenitic Alloys Subject to Embrittlement
Publications by Number

Phone Orders: +1 800 854 7179 (Toll-free: U.S. and Canada)

Phone Orders: +1 303 397 7956 (Local and International)

<table>
<thead>
<tr>
<th>Pub Number</th>
<th>Title</th>
<th>Edition</th>
<th>Date</th>
<th>Product Number</th>
<th>Price</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 1151-4</td>
<td>Mechanical Treatment of Sand Beaches Historical Library Report</td>
<td>I115140</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1153-1</td>
<td>Tidal Inlet Protection Strategies (TIPS): Phase 1—Final Report</td>
<td>I115310</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1153-2</td>
<td>Tidal Inlet Protection Strategies (TIPS) Field Guide</td>
<td>I115320</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1154-1</td>
<td>Sunken Oil Detection and Recovery</td>
<td>I115410</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1154-2</td>
<td>Sunken Oil Detection and Recovery Operational Guide</td>
<td>I115420</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1155-1</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Library Report</td>
<td>I115510</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1155-2</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Fact Sheet</td>
<td>I115520</td>
<td>See Listing</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR 1155-3</td>
<td>Shoreline In Situ Treatment (Sediment Mixing and Relocation) Job Aid</td>
<td>I115530</td>
<td>See Listing</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 1160</td>
<td>Managing System Integrity for Hazardous Liquid Pipelines</td>
<td>3rd</td>
<td>2019</td>
<td>D116003</td>
<td>$215.00</td>
<td>85</td>
</tr>
<tr>
<td>RP 1161</td>
<td>Recommended Practice for Pipeline Operator Qualification (OQ)</td>
<td>4th</td>
<td>2019</td>
<td>D11614</td>
<td>$216.00</td>
<td>85</td>
</tr>
<tr>
<td>RP 1162</td>
<td>Public Awareness Programs for Pipeline Operators</td>
<td>2nd</td>
<td>2010</td>
<td>D11622</td>
<td>$135.00</td>
<td>85</td>
</tr>
<tr>
<td>Std 1163</td>
<td>In-Line Inspection Systems Qualification</td>
<td>2nd</td>
<td>2013</td>
<td>D11632</td>
<td>$142.00</td>
<td>86</td>
</tr>
<tr>
<td>Std 1163</td>
<td>In-Line Inspection Systems Qualification—Russian</td>
<td>2nd</td>
<td>2013</td>
<td>D11632R</td>
<td>$142.00</td>
<td>86, 175</td>
</tr>
<tr>
<td>RP 1164</td>
<td>Pipeline SCADA Security</td>
<td>2nd</td>
<td>2009</td>
<td>D11642</td>
<td>$158.00</td>
<td>81, 86</td>
</tr>
<tr>
<td>RP 1165</td>
<td>Recommended Practice for Pipeline SCADA Displays</td>
<td>1st</td>
<td>2007</td>
<td>D11651</td>
<td>$165.00</td>
<td>86</td>
</tr>
<tr>
<td>TR 1166</td>
<td>Excavation Monitoring and Observation for Damage Prevention</td>
<td>2nd</td>
<td>2015</td>
<td>D11662</td>
<td>$115.00</td>
<td>86</td>
</tr>
<tr>
<td>RP 1167</td>
<td>Pipeline SCADA Alarm Management</td>
<td>2nd</td>
<td>2016</td>
<td>D116702</td>
<td>$136.00</td>
<td>86</td>
</tr>
<tr>
<td>RP 1168</td>
<td>Pipeline Control Room Management</td>
<td>2nd</td>
<td>2015</td>
<td>D11682</td>
<td>$98.00</td>
<td>86</td>
</tr>
<tr>
<td>RP 1169</td>
<td>Recommended Practice for Basic Inspection Requirements—New Pipeline Construction</td>
<td>1st</td>
<td>2013</td>
<td>D11691</td>
<td>$124.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1170</td>
<td>Design and Operation of Solution-Mined Salt Caverns Used for Natural Gas Storage</td>
<td>1st</td>
<td>2015</td>
<td>D117001</td>
<td>$131.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1171</td>
<td>Functional Integrity of Natural Gas Storage in Depleted Hydrocarbon Reservoirs and Aquifer Reservoirs</td>
<td>1st</td>
<td>2015</td>
<td>D117101</td>
<td>$131.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1172</td>
<td>Recommended Practice for Construction Parallel to Existing Underground Transmission Pipelines</td>
<td>1st</td>
<td>2014</td>
<td>D11721</td>
<td>$93.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1173</td>
<td>Pipeline Safety Management Systems</td>
<td>1st</td>
<td>2015</td>
<td>D117301</td>
<td>$93.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1174</td>
<td>Recommended Practice for Onshore Hazardous Liquid Pipeline Emergency Preparedness and Response</td>
<td>1st</td>
<td>2015</td>
<td>D11741</td>
<td>$101.00</td>
<td>87</td>
</tr>
<tr>
<td>RP 1175</td>
<td>Pipeline Leak Detection—Program Management</td>
<td>1st</td>
<td>2015</td>
<td>D11751</td>
<td>$174.00</td>
<td>88</td>
</tr>
<tr>
<td>RP 1176</td>
<td>Recommended Practice for Assessment and Management of Cracking in Pipelines</td>
<td>1st</td>
<td>2016</td>
<td>D117601</td>
<td>$182.00</td>
<td>88</td>
</tr>
<tr>
<td>RP 1177</td>
<td>Recommended Practice for Steel Pipeline Construction Quality Management Systems</td>
<td>1st</td>
<td>2017</td>
<td>D11701</td>
<td>$128.00</td>
<td>88</td>
</tr>
<tr>
<td>Bull 1178</td>
<td>Integrity Data Management and Integration</td>
<td>1st</td>
<td>2017</td>
<td>D11781</td>
<td>$113.00</td>
<td>88</td>
</tr>
<tr>
<td>TR 1179</td>
<td>Hydrostatic Testing as an Integrity Management Tool</td>
<td>1st</td>
<td>2019</td>
<td>D11791</td>
<td>$117.00</td>
<td>88</td>
</tr>
<tr>
<td>RP 1181</td>
<td>Pipeline Operational Status Determination</td>
<td>1st</td>
<td>2019</td>
<td>D11811</td>
<td>$65.00</td>
<td>88</td>
</tr>
<tr>
<td>TR 1253</td>
<td>API Selection and Training Guidelines for In Situ Burning Personnel</td>
<td>2016</td>
<td>See Listing</td>
<td>I12530</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>TR 1254</td>
<td>In-Situ Burning Guidance for Safety Officers and Safety and Health Professionals</td>
<td>2018</td>
<td>See Listing</td>
<td>I12541</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>TR 1256</td>
<td>In Situ Burning: A Decision Maker’s Guide</td>
<td>2016</td>
<td>See Listing</td>
<td>I12560</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>Publ 1509</td>
<td>Engine Oil Licensing and Certification System</td>
<td>18th</td>
<td>2019</td>
<td>See Listing</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Publ 1520</td>
<td>Directory of Licenses: API Engine Oil Licensing and Certification System</td>
<td>See Listing</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 1525</td>
<td>Bulk Oil Testing, Handling, and Guidelines</td>
<td>1st</td>
<td>1997</td>
<td>F15251</td>
<td>$71.00</td>
<td>78</td>
</tr>
<tr>
<td>RP 1543</td>
<td>Documentation, Monitoring and Laboratory Testing of Aviation Fuel During Shipment from Refinery to Airport</td>
<td>1st</td>
<td>2009</td>
<td>A154301</td>
<td>$65.00</td>
<td>77</td>
</tr>
<tr>
<td>Publ 1571</td>
<td>Diesel Fuel—Questions and Answers for Highway and Off-Highway Use</td>
<td>4th</td>
<td>1996</td>
<td>F15714</td>
<td>$140.00</td>
<td>80</td>
</tr>
<tr>
<td>Publ 1593</td>
<td>Gasoline Marketing in the United States Today</td>
<td>3rd</td>
<td>1992</td>
<td>A15930</td>
<td>$124.00</td>
<td>77</td>
</tr>
<tr>
<td>RP 1595</td>
<td>Design, Construction, Operation, Maintenance, and Inspection of Aviation Pre-Airfield Storage Terminals</td>
<td>2nd</td>
<td>2012</td>
<td>C159502</td>
<td>$251.00</td>
<td>77</td>
</tr>
<tr>
<td>RP 1604</td>
<td>Closure of Underground Petroleum Storage Tanks</td>
<td>3rd</td>
<td>1996</td>
<td>A16043</td>
<td>$82.00</td>
<td>78</td>
</tr>
<tr>
<td>Publ 1612</td>
<td>Guidance Document for Discharging of Petroleum Distribution Terminal Effluents to Publicly Owned Treatment Works</td>
<td>1st</td>
<td>1996</td>
<td>A16121</td>
<td>$105.00</td>
<td>80</td>
</tr>
<tr>
<td>RP 1615</td>
<td>Installation of Underground Petroleum Storage Systems</td>
<td>6th</td>
<td>2011</td>
<td>A16156</td>
<td>$222.00</td>
<td>78</td>
</tr>
<tr>
<td>RP 1621</td>
<td>Bulk Liquid Stock Control at Retail Outlets</td>
<td>5th</td>
<td>1993</td>
<td>A16210</td>
<td>$90.00</td>
<td>78</td>
</tr>
<tr>
<td>RP 1626</td>
<td>Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Filling Stations</td>
<td>2nd</td>
<td>2010</td>
<td>A16262</td>
<td>$168.00</td>
<td>78</td>
</tr>
<tr>
<td>Publ 1628</td>
<td>A Guide to the Assessment and Remediation of Underground Petroleum Releases</td>
<td>3rd</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628A</td>
<td>Natural Attenuation Processes</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628B</td>
<td>Optimization of Hydrocarbon Recovery</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628C</td>
<td>In-Situ Air Sparging</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1628D</td>
<td>Operation and Maintenance Considerations for Hydrocarbon Remediation Systems</td>
<td>1st</td>
<td>1996</td>
<td>See Listing</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Publ 1629</td>
<td>Guide for Assessing and Remediating Petroleum Hydrocarbons in Soils</td>
<td>1st</td>
<td>1993</td>
<td>A16290</td>
<td>$163.00</td>
<td>81</td>
</tr>
<tr>
<td>Std 1631</td>
<td>Interior Lining and Periodic Inspection of Underground Storage Tanks</td>
<td>5th</td>
<td>2001</td>
<td>A16315</td>
<td>$94.00</td>
<td>78</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>RP 1637</td>
<td>Using the API Color-Symbol System to Mark Equipment and Vehicles for Product Identification at Gasoline Dispensing Facilities and Distribution Terminals</td>
<td>3rd</td>
<td>2006</td>
<td>A16373</td>
<td>$72.00</td>
<td>78</td>
</tr>
<tr>
<td>Pub 1638</td>
<td>Waste Management Practices for Petroleum Marketing Facilities</td>
<td>1st</td>
<td>1994</td>
<td>A16381</td>
<td>$82.00</td>
<td>80</td>
</tr>
<tr>
<td>RP 1639</td>
<td>Owner/Operator’s Guide to Operation and Maintenance of Vapor Recovery Systems at Gasoline Dispensing Facilities</td>
<td>1st</td>
<td>2003</td>
<td>A16391</td>
<td>$94.00</td>
<td>78</td>
</tr>
<tr>
<td>RP 1640</td>
<td>Product Quality in Light Product Storage and Handling Operations</td>
<td>1st</td>
<td>2013</td>
<td>A16401</td>
<td>$174.00</td>
<td>78</td>
</tr>
<tr>
<td>Pub 1642</td>
<td>Alcohol, Ethers, and Gasoline-Alcohol and -Ether Blends</td>
<td>1st</td>
<td>1996</td>
<td>A16421</td>
<td>$66.00</td>
<td>79</td>
</tr>
<tr>
<td>Pub 1645</td>
<td>Stage II Cost Study</td>
<td>1st</td>
<td>2002</td>
<td>A16451</td>
<td>$62.00</td>
<td>79</td>
</tr>
<tr>
<td>RP 1646</td>
<td>Safe Work Practices for Contractors Working at Retail Petroleum/Convenience Facilities</td>
<td>2nd</td>
<td>2017</td>
<td>A164602</td>
<td>$159.00</td>
<td>79</td>
</tr>
<tr>
<td>Pub 1669</td>
<td>Results of a Retail Gasoline Outlet and Commercial Parking Lot Storm Water Runoff Study</td>
<td>1st</td>
<td>1994</td>
<td>A16691</td>
<td>$90.00</td>
<td>80</td>
</tr>
<tr>
<td>Pub 1673</td>
<td>Compilation of Air Emission for Petroleum Distribution Dispensing Facilities</td>
<td>2nd</td>
<td>2009</td>
<td>A16732</td>
<td>$88.00</td>
<td>77</td>
</tr>
<tr>
<td>Pub 1830</td>
<td>National Used Oil Collection Study</td>
<td>1st</td>
<td>1996</td>
<td>B18301</td>
<td>$63.00</td>
<td>79</td>
</tr>
<tr>
<td>Pub 1835</td>
<td>Study of Used Motor Oil Recycling in Eleven Selected Countries</td>
<td>1st</td>
<td>1997</td>
<td>B18351</td>
<td>$65.00</td>
<td>79</td>
</tr>
<tr>
<td>Pub 2000</td>
<td>Venting Atmospheric and Low-Pressure Storage Tanks</td>
<td>7th</td>
<td>2014</td>
<td>C20007</td>
<td>$244.00</td>
<td>103</td>
</tr>
<tr>
<td>RP 2001</td>
<td>Fire Protection in Refineries</td>
<td>10th</td>
<td>2019</td>
<td>C200110</td>
<td>$180.00</td>
<td>124</td>
</tr>
<tr>
<td>RP 2003</td>
<td>Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents</td>
<td>8th</td>
<td>2015</td>
<td>K20038</td>
<td>$206.00</td>
<td>124</td>
</tr>
<tr>
<td>RP 2009</td>
<td>Safe Welding, Cutting, and Hot Work Practices in the Petroleum and Petrochemical Industries</td>
<td>7th</td>
<td>2002</td>
<td>K20097</td>
<td>$86.00</td>
<td>125</td>
</tr>
<tr>
<td>Std 2015</td>
<td>Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks</td>
<td>8th</td>
<td>2018</td>
<td>K20158</td>
<td>$215.00</td>
<td>101, 128</td>
</tr>
<tr>
<td>RP 2021</td>
<td>Management of Atmospheric Storage Tank Fires</td>
<td>4th</td>
<td>2001</td>
<td>K20214</td>
<td>$145.00</td>
<td>128</td>
</tr>
<tr>
<td>RP 2023</td>
<td>Guide for Safe Storage and Handling of Heated Petroleum Derived Asphalt Products and Crude Oil Residua</td>
<td>3rd</td>
<td>2001</td>
<td>K20233</td>
<td>$119.00</td>
<td>128</td>
</tr>
<tr>
<td>RP 2026</td>
<td>Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service</td>
<td>3rd</td>
<td>2017</td>
<td>K20263</td>
<td>$99.00</td>
<td>101, 128</td>
</tr>
<tr>
<td>RP 2027</td>
<td>Ignition Hazards and Safe Work Practices for Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service</td>
<td>4th</td>
<td>2018</td>
<td>C20274</td>
<td>$132.00</td>
<td>101, 125</td>
</tr>
<tr>
<td>RP 2028</td>
<td>Flame Arresters in Piping Systems</td>
<td>3rd</td>
<td>2002</td>
<td>K20283</td>
<td>$65.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2201</td>
<td>Safe Hot Tapping Practices in the Petroleum and Petrochemical Industries</td>
<td>5th</td>
<td>2003</td>
<td>K22015</td>
<td>$94.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2207</td>
<td>Preparing Tank Bottoms for Hot Work</td>
<td>7th</td>
<td>2017</td>
<td>K22077</td>
<td>$110.00</td>
<td>102, 128</td>
</tr>
<tr>
<td>RP 2210</td>
<td>Flame Arresters for Vents of Tanks Storing Petroleum Products</td>
<td>3rd</td>
<td>2000</td>
<td>K22103</td>
<td>$71.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2216</td>
<td>Ignition Risk of Hydrocarbon Vapors by Hot Surfaces in the Open Air</td>
<td>3rd</td>
<td>2003</td>
<td>K22163</td>
<td>$65.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2217A</td>
<td>Safe Work in Inert Confined Spaces in the Petroleum and Petrochemical Industries</td>
<td>5th</td>
<td>2017</td>
<td>K2217A5</td>
<td>$157.00</td>
<td>125</td>
</tr>
<tr>
<td>RP 2218</td>
<td>Fireproofing Practices in Petroleum and Petrochemical Processing Plants</td>
<td>3rd</td>
<td>2013</td>
<td>K22183</td>
<td>$174.00</td>
<td>126</td>
</tr>
<tr>
<td>RP 2219</td>
<td>Safe Operation of Vacuum Trucks Handling Flammable and Combustible Liquids in Petroleum Service</td>
<td>4th</td>
<td>2016</td>
<td>K22194</td>
<td>$179.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2220</td>
<td>Contractor Safety Performance Process</td>
<td>3rd</td>
<td>2011</td>
<td>K222003</td>
<td>$99.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2221</td>
<td>Contractor Safety Performance Process—Chinese</td>
<td>3rd</td>
<td>2011</td>
<td>K222003C</td>
<td>$70.00</td>
<td>126, 169</td>
</tr>
<tr>
<td>RP 2221</td>
<td>Contractor and Owner Safety Program Implementation</td>
<td>3rd</td>
<td>2011</td>
<td>K222103</td>
<td>$181.00</td>
<td>126</td>
</tr>
<tr>
<td>Std 2350</td>
<td>Overfill Protection for Storage Tanks in Petroleum Facilities</td>
<td>4th</td>
<td>2012</td>
<td>K235004</td>
<td>$123.00</td>
<td>80, 119, 128</td>
</tr>
<tr>
<td>Pub Number</td>
<td>Title</td>
<td>Edition Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>4601</td>
<td>Transport and Fate of Dissolved Methanol, MTBE and Monoaromatic Hydrocarbons in a Shallow Sand Aquifer</td>
<td>1994</td>
<td>I46010</td>
<td>$134.00</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>4602</td>
<td>Minimization, Handling, Treatment and Disposal of Petroleum Products Terminal Wastewaters</td>
<td>1994</td>
<td>I46020</td>
<td>$141.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>4603</td>
<td>Investigation of MOBILE5a Emission Factors: Evaluation of IM240-to-FTP Correlation and Base Emission Rate Equations</td>
<td>1994</td>
<td>I46050</td>
<td>$67.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4605</td>
<td>User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs</td>
<td>1994</td>
<td>I46080</td>
<td>$65.00</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>4606</td>
<td>In-Situ Air Sparging: Evaluation of Petroleum Industry Sites and Considerations for Applicability, Design and Operation</td>
<td>1995</td>
<td>I46090</td>
<td>$105.00</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>4607</td>
<td>Critical Review of Draft EPA Guidance on Assessment and Control of Bioconcentratable Contaminants in Surface Waters</td>
<td>1995</td>
<td>I46100</td>
<td>$76.00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>4608</td>
<td>Interlaboratory Study of EPA Methods 1662, 1654A and 1663 for the Determination of Diesel, Mineral and Crude Oils in Drilling Muds from Offshore and Gas Industry Discharges</td>
<td>1995</td>
<td>I46110</td>
<td>$79.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>4609</td>
<td>A Study of Refinery Fugitive Emissions from Equipment Leaks, Volumes I and II</td>
<td>1994</td>
<td>I46120</td>
<td>$154.00</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>4610</td>
<td>A Study of Refinery Fugitive Emissions from Equipment Leaks, Volume III</td>
<td>1994</td>
<td>I46130</td>
<td>$105.00</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>4611</td>
<td>Emission Factors for Oil and Gas Production Operation</td>
<td>1995</td>
<td>I46150</td>
<td>$67.00</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>4612</td>
<td>The Importance of Using Alternative Base Cases in Photochemical Modeling</td>
<td>1994</td>
<td>I46160</td>
<td>$149.00</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>4613</td>
<td>A Monte Carlo Approach to Generating Equivalent Ventilation Rates in Population Exposure Assessments</td>
<td>1995</td>
<td>I46170</td>
<td>$86.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4614</td>
<td>Characteristics and Performance of Supercritical Fluid Extraction (SFE) in the Analysis of Petroleum Hydrocarbons in Soils and Sludges</td>
<td>1995</td>
<td>I46180</td>
<td>$65.00</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>4615</td>
<td>A Study to Characterize Air Concentrations of Methyl Tertiary Butyl Ether (MTBE) at Service Stations in the Northeast</td>
<td>1995</td>
<td>I46190</td>
<td>$86.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4616</td>
<td>Petroleum Industry Data Characterizing Occupational Exposures to Methyl Tertiary Butyl Ether (MTBE): 1983-1993</td>
<td>1995</td>
<td>I46200</td>
<td>$65.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>4617</td>
<td>Petroleum Industry White Papers</td>
<td>1995</td>
<td>I46210</td>
<td>$65.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>4619</td>
<td>Petroleum Contaminated Low Permeability Soil: Hydrocarbon Distribution Processes, Exposure Pathways and In-Situ Remediation Technologies</td>
<td>1995</td>
<td>I46230</td>
<td>$67.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>4620</td>
<td>Service Station Personnel Exposures to Oxygenated Fuel Components</td>
<td>1995</td>
<td>I46250</td>
<td>$71.00</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>4622</td>
<td>A Guidance Manual for Modeling Hypothetical Accidental Releases to the Atmosphere</td>
<td>1996</td>
<td>I46280</td>
<td>$154.00</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>4623</td>
<td>Hexavalent Chromium Exposures During Hot Work</td>
<td>2007</td>
<td>I46290</td>
<td>$93.00</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>4624</td>
<td>Petroleum Contaminated Low Permeability Soil: Hydrocarbon Distribution Processes, Exposure Pathways and In-Situ Remediation Technologies</td>
<td>1995</td>
<td>I46310</td>
<td>$95.00</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>4625</td>
<td>Reducing Uncertainty in Laboratory Sediment Toxicity Tests</td>
<td>1995</td>
<td>I46320</td>
<td>$67.00</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>4626</td>
<td>Barium in Produced Water: Fate and Effects in the Marine Environment</td>
<td>1995</td>
<td>I46330</td>
<td>$65.00</td>
<td>142, 151</td>
<td></td>
</tr>
<tr>
<td>4627</td>
<td>Index and Abstracts of API Health-Related Research</td>
<td>1995</td>
<td>I46340</td>
<td>$86.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>4628</td>
<td>Compilation of Field Analytical Methods for Assessing Petroleum Product Releases</td>
<td>1996</td>
<td>I46350</td>
<td>$95.00</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>4629</td>
<td>Analysis of Causes of Failure in High Emitting Cars</td>
<td>1996</td>
<td>I46370</td>
<td>$78.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4630</td>
<td>Calculation Workbook for Oil and Gas Production Equipment Fugitive Emissions</td>
<td>1996</td>
<td>I46380</td>
<td>$67.00</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>4631</td>
<td>Estimation of Fugitive Emissions from Petroleum Refinery Process Drains</td>
<td>1996</td>
<td>I46390</td>
<td>$95.00</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>4633</td>
<td>Summary of Produced Water Toxicity Identification Evaluation Research</td>
<td>1996</td>
<td>I46410</td>
<td>$96.00</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>4634</td>
<td>A Study to Quantify On-Road Emissions of Dioxins and Furans from Mobile Sources: Phase 2</td>
<td>1996</td>
<td>I46420</td>
<td>$141.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4635</td>
<td>Estimation of Infiltration and Recharge for Environmental Site Assessment</td>
<td>1996</td>
<td>I46430</td>
<td>$105.00</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>4636</td>
<td>A Methodology for Estimating Incremental Benzene Exposures and Risks Associated with Glycol Dehydrators</td>
<td>1997</td>
<td>I46440</td>
<td>$86.00</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>4637</td>
<td>Evaluation of Fuel Tank Flammability of Low RVP Gasolines</td>
<td>1996</td>
<td>I46460</td>
<td>$105.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4638</td>
<td>Brain Glial Fibrillary Acidic Protein (GFAP) as a Marker of Neurotoxicity During Inhalation Exposure to Toluene</td>
<td>1997</td>
<td>I46470</td>
<td>$86.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>4639</td>
<td>Human Neurobehavioral Study Methods: Effects of Subject Variables on Results</td>
<td>1996</td>
<td>I46480</td>
<td>$105.00</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>4640</td>
<td>The Use of Chemical Countermeasures Product Data for Oil Spill Planning and Response, Volumes I and II</td>
<td>1995</td>
<td>I46490</td>
<td>$62.00</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>4641</td>
<td>Analysis of High-Mileage-Vehicle Emissions Data from Late-Model, Fuel-Injected Vehicles</td>
<td>1997</td>
<td>I46500</td>
<td>$75.00</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>4642</td>
<td>1997 Oil Spill Conference Proceedings</td>
<td>1997</td>
<td>I46510</td>
<td>$65.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>4643</td>
<td>1997 Oil Spill Conference Issue Papers</td>
<td>1997</td>
<td>I46520</td>
<td>$65.00</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>4644</td>
<td>Fugitive Emission Factors for Crude Oil and Product Pipeline Facilities</td>
<td>1997</td>
<td>I46530</td>
<td>$86.00</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pub</td>
<td>4654</td>
<td>Field Studies of BTEX and MTBE Intrinsic Bioremediation</td>
<td>1997</td>
<td>I46540</td>
<td></td>
<td>$82.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4655</td>
<td>Field Evaluation of Biological and Non-Biological Treatment Technologies to Remove MTBE/ Oxygenates from Petroleum Product Terminal Wastewaters</td>
<td>1997</td>
<td>I46550</td>
<td></td>
<td>$134.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4656</td>
<td>Bioaccumulation: How Chemicals Move from the Water into Fish and Other Aquatic Organisms</td>
<td>1997</td>
<td>I46560</td>
<td></td>
<td>$95.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4657</td>
<td>Effects of Sampling and Analytical Procedures on the Measurement of Geochemical Indicators of Intrinsic Bioremediation: Laboratory and Field Studies</td>
<td>1997</td>
<td>I46570</td>
<td></td>
<td>$67.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4658</td>
<td>Methods for Measuring Indicators of Intrinsic Bioremediation: Guidance Manual</td>
<td>1997</td>
<td>I46580</td>
<td></td>
<td>$76.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4660</td>
<td>Exploration and Production Emission Calculator II (EPEC II) User's Guide 2nd</td>
<td>2007</td>
<td>I46610</td>
<td></td>
<td>$136.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4661</td>
<td>Evaluation of a Petroleum Production Tank Emissions Model</td>
<td>1997</td>
<td>I46620</td>
<td></td>
<td>$128.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4662</td>
<td>Remediation of Salt-Affected Soils at Oil and Gas Production Facilities</td>
<td>1997</td>
<td>I46630</td>
<td></td>
<td>$119.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4663</td>
<td>Mixing Zone Modeling and Dilution Analysis for Water-Quality-Based NPDES Permit Limits</td>
<td>1998</td>
<td>I46640</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4664</td>
<td>Analysis and Reduction of Toxicity in Biologically Treated Petroleum Product Terminal Tank Bottoms Water</td>
<td>1998</td>
<td>I46650</td>
<td></td>
<td>$86.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4665</td>
<td>The Toxicity of Common Ions to Freshwater and Marine Organisms</td>
<td>1999</td>
<td>I46660</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4666</td>
<td>Vehicle Emissions Testing of Rapidly Aged Catalysts</td>
<td>1997</td>
<td>I46670</td>
<td></td>
<td>$67.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4667</td>
<td>Delineation and Characterization of the Borden MTBE Plume: An Evaluation of Eight Years of Natural Attenuation Processes</td>
<td>1998</td>
<td>I46680</td>
<td></td>
<td>$67.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4668</td>
<td>Review of Air Quality Models for Particulate Matter</td>
<td>1998</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>4669</td>
<td>Selecting Field Analytical Methods—A Decision-Tree Approach</td>
<td>1998</td>
<td>I46700</td>
<td></td>
<td>$95.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4670</td>
<td>Technical Bulletin on Oxygen Releasing Materials for In-Situ Groundwater Remediation</td>
<td>1998</td>
<td>I46710</td>
<td></td>
<td>$76.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4671</td>
<td>The Use of Treatment Wetlands for Petroleum Industry Effluents</td>
<td>1998</td>
<td>I46720</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4672</td>
<td>Impacts of Petroleum Product Marketing Terminals on the Aquatic Environment</td>
<td>1999</td>
<td>I46730</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4673</td>
<td>Assessing the Significance of Subsurface Contaminant Vapor Migration to Enclosed Spaces—Site-Specific Alternative to Generic Estimates</td>
<td>1998</td>
<td>I46740</td>
<td></td>
<td>$86.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4674</td>
<td>Fate and Environmental Effects of Oil Spills in Freshwater Environments</td>
<td>1999</td>
<td>I46750</td>
<td></td>
<td>$154.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4675</td>
<td>Arsenic: Chemistry, Fate, Toxicity, and Wastewater Treatment Options</td>
<td>1998</td>
<td>I46760</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4676</td>
<td>Fugitive Emissions from Refinery Process Drains, Volume I, Fugitive Emission Factors for Refinery Process Drains</td>
<td>1999</td>
<td>I46770</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4677</td>
<td>Fugitive Emissions from Refinery Process Drains, Volume II, Fundamentals of Fugitive Emissions from Refinery Process Drains</td>
<td>1999</td>
<td>I46780</td>
<td></td>
<td>$105.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4678</td>
<td>Amine Unit Air Emissions Model and User's Guide, AMINECalc, Version 1.0</td>
<td>1999</td>
<td>I46790</td>
<td></td>
<td>$535.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4679</td>
<td>Amine Unit Air Emissions Model Evaluation</td>
<td>1998</td>
<td>I46800</td>
<td></td>
<td>$131.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4680</td>
<td>Fugitive Emissions from Refinery Process Drains, Volume III, Process Drain Emission Calculator: APIDRAIN Version 1.0</td>
<td>1999</td>
<td>I46810</td>
<td></td>
<td>$446.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4681</td>
<td>Correlation Equations to Predict Red Vapor Pressure and Properties of Gaseous Emissions for Exploration and Production Facilities</td>
<td>1998</td>
<td>I46830</td>
<td></td>
<td>$86.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4682</td>
<td>Compilation and Review of Data on the Environmental Effects of In-Situ Burning of Inland and Upland Oil Spills</td>
<td>1999</td>
<td>I46840</td>
<td></td>
<td>$128.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4683</td>
<td>1999 Oil Spill Conference Proceedings</td>
<td>1999</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>4684</td>
<td>1999 International Oil Spill Conference Issue Papers</td>
<td>1999</td>
<td>I46870</td>
<td></td>
<td>$65.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4685</td>
<td>Temporary Treatment Options for Petroleum Distribution Terminal Wastewaters</td>
<td>1999</td>
<td>I46880</td>
<td></td>
<td>$133.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4686</td>
<td>Chemical Human Health Hazards Associated with Oil Spill Response</td>
<td>2001</td>
<td>I46890</td>
<td></td>
<td>$90.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4687</td>
<td>A Guide for the Use of Semipermeable Membrane Devices (SMPDs) as Samplers of Waterborne Hydrophobic Organic Contaminants</td>
<td>2002</td>
<td>I46900</td>
<td></td>
<td>$143.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4688</td>
<td>Fate of Spilled Oil in Marine Waters: Where Does It Go? What Does It Do? How Do Dispersants Affect It?</td>
<td>1999</td>
<td>I46910</td>
<td></td>
<td>Free</td>
</tr>
<tr>
<td>Pub</td>
<td>4690</td>
<td>Effects of Oil and Chemically Dispersed Oil in the Environment</td>
<td>2001</td>
<td>I46930</td>
<td></td>
<td>Free</td>
</tr>
<tr>
<td>Pub</td>
<td>4691</td>
<td>Laboratory Analysis of Petroleum Industry Wastewaters</td>
<td>1999</td>
<td>I46940</td>
<td></td>
<td>$133.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4692</td>
<td>Production Tank Emissions Model (E&P TANK, Version 3.0)</td>
<td>1999</td>
<td>I46950</td>
<td></td>
<td>$140.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4693</td>
<td>A Review of Technologies to Measure the Oil and Grease Content of Produced Water from Offshore Oil and Gas Production Operations</td>
<td>1999</td>
<td>I46980</td>
<td></td>
<td>$133.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4694</td>
<td>Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE</td>
<td>2000</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub</td>
<td>4695</td>
<td>Primer for Evaluating Ecological Risk at Petroleum Release Sites</td>
<td>2001</td>
<td>I47000</td>
<td></td>
<td>$112.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4696</td>
<td>Biodegradation: An Evaluation of Federal and State Regulatory Initiatives</td>
<td>2000</td>
<td>I47010</td>
<td></td>
<td>$96.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4697</td>
<td>Technologies to Reduce Oil and Grease Content of Well Treatment, Well Completion, and Workover Fluids for Overboard Disposal</td>
<td>2001</td>
<td>I47020</td>
<td></td>
<td>$133.00</td>
</tr>
<tr>
<td>Pub</td>
<td>4698</td>
<td>Gas Fired Boiler—Test Report Site A: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
<td>2001</td>
<td>I47030</td>
<td></td>
<td>$96.00</td>
</tr>
<tr>
<td>Publ</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Publ</td>
<td>4704</td>
<td>Gas Fired Heater—Test Report Site B: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
<td>2001</td>
<td>I47040</td>
<td>$96.00</td>
<td>130</td>
</tr>
<tr>
<td>Publ</td>
<td>4706</td>
<td>Environmental Considerations for Marine Oil Spill Response</td>
<td>2001</td>
<td>I47060</td>
<td>$82.00</td>
<td>155</td>
</tr>
<tr>
<td>Publ</td>
<td>4709</td>
<td>Risk-Based Methodologies for Evaluating Petroleum Hydrocarbon Impacts at Oil and Natural Gas E&P Sites</td>
<td>2001</td>
<td>I47090</td>
<td>$90.00</td>
<td>145</td>
</tr>
<tr>
<td>Publ</td>
<td>4710</td>
<td>2003 Oil Spill Conference Proceedings</td>
<td></td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4711</td>
<td>Methods for Determining Inputs to Environmental Petroleum Hydrocarbon Mobility and Recovery Models</td>
<td>2001</td>
<td>I47110</td>
<td>$121.00</td>
<td>145</td>
</tr>
<tr>
<td>Publ</td>
<td>4712</td>
<td>Gas Fired Steam Generator—Test Report Site C: Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
<td>2001</td>
<td>I47120</td>
<td>$90.00</td>
<td>130</td>
</tr>
<tr>
<td>Publ</td>
<td>4713</td>
<td>Test Report: Fluidized Catalytic Cracking Unit at a Refinery (Site A), Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources</td>
<td>2002</td>
<td>I47130</td>
<td>$157.00</td>
<td>133</td>
</tr>
<tr>
<td>Publ</td>
<td>4714</td>
<td>A Guide to Polycyclic Aromatic Hydrocarbons for the Non-Specialist</td>
<td>2002</td>
<td>I47141</td>
<td>$86.00</td>
<td>136</td>
</tr>
<tr>
<td>Publ</td>
<td>4715</td>
<td>Evaluating Hydrocarbon Removal from Source Zones and its Effect on Dissolved Plume Longevity and Concentration</td>
<td>2002</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4716</td>
<td>Buried Pressurized Piping Systems Leak Detection Guide</td>
<td>2002</td>
<td>I47160</td>
<td>$102.00</td>
<td>148</td>
</tr>
<tr>
<td>Publ</td>
<td>4717</td>
<td>Predictors of Water-Soluble Organics (WSOs) in Produced Water—A Literature Review</td>
<td>2002</td>
<td>I47170</td>
<td>$80.00</td>
<td>149</td>
</tr>
<tr>
<td>Publ</td>
<td>4718</td>
<td>2005 Oil Spill Conference Proceedings</td>
<td></td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4720</td>
<td>Comparison of API and EPA Toxic Air Pollutant Emission Factors for Combustion Sources</td>
<td>2002</td>
<td>I47200</td>
<td>$100.00</td>
<td>130</td>
</tr>
<tr>
<td>Publ</td>
<td>4721</td>
<td>Analytical Detection and Quantification Limits. Survey of State and Federal Approaches</td>
<td>2002</td>
<td>I47210</td>
<td>$151.00</td>
<td>149</td>
</tr>
<tr>
<td>Publ</td>
<td>4722</td>
<td>Groundwater Sensitivity Toolkit—Users Guide, Version 1.0</td>
<td>2002</td>
<td>I47220</td>
<td>$65.00</td>
<td>140</td>
</tr>
<tr>
<td>Publ</td>
<td>4723</td>
<td>Refinery Stream Speciation</td>
<td>2002</td>
<td>I47230</td>
<td>$178.00</td>
<td>133</td>
</tr>
<tr>
<td>Publ</td>
<td>4723-A</td>
<td>Refinery Stream Composition Data—Update to Specialization Data in API 4723</td>
<td>2018</td>
<td>I4723A</td>
<td>$158.00</td>
<td>134</td>
</tr>
<tr>
<td>Publ</td>
<td>4724</td>
<td>Recovery of Four Oiled Wetlands Subjected to In-Situ Burning</td>
<td>2003</td>
<td>I47240</td>
<td>$93.00</td>
<td>155</td>
</tr>
<tr>
<td>Publ</td>
<td>4730</td>
<td>Groundwater Remediation Strategies Tool</td>
<td>2003</td>
<td>I47300</td>
<td>$138.00</td>
<td>144</td>
</tr>
<tr>
<td>Publ</td>
<td>4731</td>
<td>Light Non-Aqueous Phase Liquid (LNAPL) Parameters Database—Version 2.0—Users Guide</td>
<td>2003</td>
<td>I47310</td>
<td>$157.00</td>
<td>133</td>
</tr>
<tr>
<td>Publ</td>
<td>4733</td>
<td>Risk-Based Screening Levels for the Protection of Livestock Exposed to Petroleum Hydrocarbons</td>
<td>2004</td>
<td>I47330</td>
<td>$100.00</td>
<td>160</td>
</tr>
<tr>
<td>Publ</td>
<td>4734</td>
<td>Modeling Study of Produced Water Release Scenarios</td>
<td>2005</td>
<td>I47340</td>
<td>$134.00</td>
<td>142, 160</td>
</tr>
<tr>
<td>Publ</td>
<td>4735</td>
<td>In-Situ Burning: The Fate of Burned Oil</td>
<td>2004</td>
<td>I47351</td>
<td>Free</td>
<td>155</td>
</tr>
<tr>
<td>Publ</td>
<td>4736</td>
<td>Identification of Key Assumptions and Models for the Development of Total Maximum Daily Loads</td>
<td>2006</td>
<td>I47360</td>
<td>$161.00</td>
<td>149</td>
</tr>
<tr>
<td>Publ</td>
<td>4739</td>
<td>API Interactive LNAPL Guide—Version 2.0.4</td>
<td>2006</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4740</td>
<td>In-Situ Burning: A Decision-Maker's Guide to In-Situ Burning</td>
<td>2005</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4743</td>
<td>Hazard Narrative for Tertiary-Butyl Alcohol (TBA), CAS Number 75-65-D</td>
<td>2005</td>
<td>I47430</td>
<td>$161.00</td>
<td>138</td>
</tr>
<tr>
<td>Publ</td>
<td>4750</td>
<td>Cyanide Discharges in the Petroleum Industry: Sources and Analysis</td>
<td>2008</td>
<td>I47500</td>
<td>$102.00</td>
<td>149</td>
</tr>
<tr>
<td>Publ</td>
<td>4751</td>
<td>Evaluation of Water Quality Translators for Mercury</td>
<td>1st</td>
<td>I47510</td>
<td>$78.00</td>
<td>149</td>
</tr>
<tr>
<td>Publ</td>
<td>4756</td>
<td>Interim Permitting Manual—Navigating NPDES Permit Issues on Impaired Waters</td>
<td>2006</td>
<td>I47560</td>
<td>$82.00</td>
<td>150</td>
</tr>
<tr>
<td>Publ</td>
<td>4758</td>
<td>Strategies for Addressing Salt Impacts of Produced Water Releases to Plants, Soil, and Groundwater</td>
<td>1st</td>
<td>I47580</td>
<td>$76.00</td>
<td>143, 160</td>
</tr>
<tr>
<td>Publ</td>
<td>4760</td>
<td>LNAPL Distribution and Recovery Model (LDRM)</td>
<td>2007</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4761</td>
<td>Technical Protocol for Evaluating the Natural attenuation of MIBE</td>
<td>2007</td>
<td>See Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publ</td>
<td>4762</td>
<td>API LNAPL Transmissivity Workbook: A Tool for Baseline Test Analysis-User Guide</td>
<td>2016</td>
<td>I47620</td>
<td>See Listing</td>
<td>144</td>
</tr>
<tr>
<td>Publ</td>
<td>4772</td>
<td>Measuring Particulate Emissions from Combustion Sources</td>
<td>2008</td>
<td>I47720</td>
<td>$68.00</td>
<td>130</td>
</tr>
<tr>
<td>Publ</td>
<td>4775</td>
<td>Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings—Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plumes</td>
<td>2009</td>
<td>I47750</td>
<td>$117.00</td>
<td>131</td>
</tr>
<tr>
<td>Publ</td>
<td>4776</td>
<td>A Guide to Understanding, Assessment and the Regulation of PAHs in the Aquatic Environment</td>
<td>2011</td>
<td>I47760</td>
<td>$116.00</td>
<td>131</td>
</tr>
<tr>
<td>Publ</td>
<td>4782</td>
<td>Petroleum Refining Industry Contribution to Nationwide Surface Water Nutrient Loadings</td>
<td>2016</td>
<td>I47820</td>
<td>$81.00</td>
<td>150</td>
</tr>
<tr>
<td>Publ</td>
<td>4783</td>
<td>Water Management and Stewardship in Midstream, Downstream, and Delivery Operations in the Oil and Gas Industry</td>
<td>2016</td>
<td>D47830</td>
<td>$81.00</td>
<td>150</td>
</tr>
<tr>
<td>Publ</td>
<td>4784</td>
<td>Quantification of Vapor Phase-Related Natural Source Zone Depletion Processes</td>
<td>2017</td>
<td>I47840</td>
<td>$131.00</td>
<td>143</td>
</tr>
<tr>
<td>Publ</td>
<td>7100</td>
<td>A Naturally Occurring Radioactive Material (NORM) Disposal Cost Study</td>
<td>1st</td>
<td>1996</td>
<td>G71001</td>
<td>$124.00</td>
</tr>
<tr>
<td>Publ</td>
<td>7101</td>
<td>A National Survey on Naturally Occurring Radioactive Material (NORM) in Petroleum Producing and Gas Processing Facilities</td>
<td>1997</td>
<td>G71011</td>
<td>$124.00</td>
<td>49</td>
</tr>
<tr>
<td>Publ</td>
<td>7102</td>
<td>Methods for Measuring Naturally Occurring Radioactive Materials (NORM) in Petroleum Production Equipment</td>
<td>1997</td>
<td>G71021</td>
<td>$124.00</td>
<td>49</td>
</tr>
<tr>
<td>Publ</td>
<td>7103</td>
<td>Management and Disposal Alternatives for Naturally Occurring Radioactive Material (NORM) Waste in Oil Production and Gas Plant Equipment</td>
<td>1997</td>
<td>G71031</td>
<td>$124.00</td>
<td>50</td>
</tr>
<tr>
<td>Publ</td>
<td>7104</td>
<td>Proceedings of the 1995 API and GRI Naturally Occurring Radioactive Material (NORM) Conference</td>
<td>1997</td>
<td>G71041</td>
<td>$124.00</td>
<td>50</td>
</tr>
<tr>
<td>Publ</td>
<td>7105</td>
<td>Probabilistic Estimates of Dose and Indoor Radon Concentrations Attributable to Remediated Oilfield Naturally Occurring Radioactive Material (NORM)</td>
<td>1997</td>
<td>G71051</td>
<td>$124.00</td>
<td>50</td>
</tr>
<tr>
<td>Pub</td>
<td>Number</td>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Publ</td>
<td>9100</td>
<td>Model Environmental, Health and Safety (EHS) Management System and Guidance Document</td>
<td>1998</td>
<td></td>
<td>R9100S</td>
<td>$171.00</td>
</tr>
<tr>
<td>Publ</td>
<td>9100A</td>
<td>Model Environmental, Health and Safety (EHS) Management System</td>
<td>1998</td>
<td></td>
<td>R9100A</td>
<td>$82.00</td>
</tr>
<tr>
<td>Publ</td>
<td>9100B</td>
<td>Guidance Document for Model EHS Management System</td>
<td>1998</td>
<td></td>
<td>R9100B</td>
<td>$118.00</td>
</tr>
<tr>
<td>Publ</td>
<td>31101</td>
<td>Executive Summary: Environmental Design Considerations for Petroleum Refining Crude Processing Units</td>
<td>1993</td>
<td></td>
<td>J31101</td>
<td>$63.00</td>
</tr>
<tr>
<td>Publ</td>
<td>45592</td>
<td>Results of Toxicological Studies Conducted for the American Petroleum Institute Health and Environmental Sciences Department</td>
<td>1995</td>
<td></td>
<td>J45592</td>
<td>$86.00</td>
</tr>
<tr>
<td>Publ</td>
<td>45881</td>
<td>Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals, Volume 2</td>
<td>1993</td>
<td></td>
<td>J45881</td>
<td>$124.00</td>
</tr>
<tr>
<td>Publ</td>
<td>46201</td>
<td>1995 Abstracts to Oil Spill Conference Proceedings</td>
<td></td>
<td></td>
<td>J46201</td>
<td>$65.00</td>
</tr>
<tr>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1989 Summary of Occupational Injuries, Illnesses and Fatalities in</td>
<td>K19996</td>
<td>1989</td>
<td></td>
<td>$64.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990 Summary of Occupational Injuries, Illnesses and Fatalities in</td>
<td>K19986</td>
<td>1991</td>
<td></td>
<td>$64.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>K19987</td>
<td>1992</td>
<td></td>
<td>$64.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>K19986</td>
<td>1993</td>
<td></td>
<td>$89.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993 Summary of Occupational Injuries, Illnesses, and Fatalities in</td>
<td>K19985</td>
<td>1994</td>
<td></td>
<td>$89.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994 Summary of U.S. Occupational Injuries, Illnesses, and Fatalities</td>
<td>K19984</td>
<td>1995</td>
<td></td>
<td>$89.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>in the Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995 Summary of U.S. Occupational Injuries, and Fatalities in the</td>
<td>K19983</td>
<td>1996</td>
<td></td>
<td>$104.00</td>
<td>127, 136</td>
<td></td>
</tr>
<tr>
<td>Petroleum Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Guidebook for Implementing Curbside and Drop-Off Used Motor Oil</td>
<td></td>
<td>1st 1992</td>
<td>B20002</td>
<td>Free</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Collection Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achieving Common Sense Environmental Regulation: Oil and Gas</td>
<td></td>
<td>1996</td>
<td>G13715</td>
<td>Free</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Exploration & Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Coke Drum Survey 1996, Final Report</td>
<td></td>
<td>2003</td>
<td>C096C1</td>
<td>$134.00</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>API Guidelines for Right-of-Way Activities, Brochure</td>
<td></td>
<td>See Listing</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Monograph Series</td>
<td></td>
<td>See Listing</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API MPMS Draft Standard: Application of Hydrocarbon Phase Behavior</td>
<td></td>
<td>1st 2016</td>
<td>H200401D</td>
<td>$98.00</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Modeling in Upstream Measurement and Allocation Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Risk-Based Inspection Software</td>
<td></td>
<td>See Listing</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Soil and Groundwater Research Bulletins</td>
<td></td>
<td>See Listing</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API tools for Estimating GHG Emissions</td>
<td></td>
<td>See Listing</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API/NPRA Survey, Final Reports</td>
<td></td>
<td>See Listing</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Petroleum Data Book (2 Issues)</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Matters: Community Outreach Guidance Manual for</td>
<td></td>
<td>1st 2000</td>
<td>G13660</td>
<td>$89.00</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Exploration and Production Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compendium of Greenhouse Gas Emissions Estimation Methodologies for</td>
<td></td>
<td>2009</td>
<td></td>
<td>$89.00</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>the Oil and Gas Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Impact of Environmental Regulations on the U.S. Petroleum</td>
<td></td>
<td>1st</td>
<td>C00015</td>
<td>See Listing</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Refining, Transportation and Marketing Industries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Version of the API Technical Data Book</td>
<td></td>
<td>See Listing</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration and Production: Protecting the Environment</td>
<td></td>
<td>1997</td>
<td>G13650</td>
<td>Free</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>For Safety’s Sake—MC 306 Cargo Tank Vehicle Inspection</td>
<td></td>
<td>1989</td>
<td>A11500</td>
<td>$112.00</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Fuel-Less, You Can’t Be Cool Without Fuel</td>
<td></td>
<td>1996</td>
<td></td>
<td>See Listing</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Gas Lift (Book 6 in the Vocational Training Series)</td>
<td></td>
<td>3rd</td>
<td>GVT063</td>
<td>$170.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Get the Dirt, Video</td>
<td></td>
<td>See Listing</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidelines for Commercial Exploration and Production Waste</td>
<td></td>
<td>2001</td>
<td>G00004</td>
<td>See Listing</td>
<td>50, 159</td>
<td></td>
</tr>
<tr>
<td>Management Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Factors in New Facility Design Tool</td>
<td></td>
<td>2nd 2005</td>
<td>I0HF02</td>
<td>$160.00</td>
<td>122, 137</td>
<td></td>
</tr>
<tr>
<td>Human Factors Tool for Existing Operations</td>
<td></td>
<td>1st 2006</td>
<td>I0HF03</td>
<td>$67.00</td>
<td>123, 137</td>
<td></td>
</tr>
<tr>
<td>Impact of Gasoline Blended with Ethanol on the Long-Term Structural</td>
<td></td>
<td>2003</td>
<td></td>
<td>See Listing</td>
<td>98, 111</td>
<td></td>
</tr>
<tr>
<td>Integrity of Liquid Petroleum Storage Systems and Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imports and Exports of Crude Oil and Petroleum Products (12 Issues)</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Oil and Gas Production (Book 1 in the Vocational</td>
<td></td>
<td>5th 1996</td>
<td></td>
<td>$170.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Training Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventories of Natural Gas Liquids and Liquefied Refinery Gases</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigation and Prediction of Cooling Rates During Pipeline</td>
<td></td>
<td>v4.2 2002</td>
<td></td>
<td>See Listing</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Maintenance Welding, and User’s Manual for Battelle’s Hot-Tap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Analysis Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Association Survey on Drilling Costs (JAS)</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual of Petroleum Measurement Standards (Complete Set)</td>
<td></td>
<td>See Listing</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Spill Response Corporation (MSRC) Research & Development</td>
<td></td>
<td>See Listing</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Equipment Residual Unbalance Worksheets</td>
<td></td>
<td>$124.00</td>
<td></td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly Statistical Report</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Oil Shelf Cards</td>
<td></td>
<td>See Listing</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview of Exploration and Production Waste Volumes and Waste</td>
<td></td>
<td>2000</td>
<td></td>
<td>See Listing</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Management Practices in the United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protecting Livestock: Answers to Frequently Asked Questions about</td>
<td></td>
<td>2006</td>
<td>I0PL06</td>
<td>See Listing</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Crude Oil in Oilfield Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly Well Completion Report (QWCR)</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports Issued by Research Project</td>
<td>1951</td>
<td>See Listing</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales of Natural Gas Liquids and Liquefied Refinery Gases</td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsurface Salt Water Injection and Disposal (Book 3 in the</td>
<td></td>
<td>3rd 1995</td>
<td>GVT033</td>
<td>$105.00</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Vocational Training Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The API Composite List</td>
<td></td>
<td>Free</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The API Specification Database</td>
<td></td>
<td>See Listing</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Economics of Energy Security</td>
<td></td>
<td>1996</td>
<td></td>
<td>See Listing</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic Properties and Characterization of Petroleum Fractions</td>
<td></td>
<td>See Listing</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Edition</td>
<td>Date</td>
<td>Product Number</td>
<td>Price</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Validation of Heavy Gas Dispersion Models with Experimental Results of the Thorney Island Trials, Volumes I & II</td>
<td>1986</td>
<td></td>
<td></td>
<td>See Listing</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Weekly Statistical Bulletin (WSB)</td>
<td></td>
<td></td>
<td></td>
<td>See Listing</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Wireline Operations and Procedures (Book 5 in the Vocational Training Series)</td>
<td>3rd</td>
<td>1994</td>
<td>GVT053</td>
<td>$132.00</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
Meetings, Conferences, Workshops, and Training Courses

Each year, API offers meetings, conferences, and workshops designed to keep you informed of current topics, technologies, and trends in the oil and natural gas industry.

To find a trusted source for your training needs, look no further than API University (API-U). API-U is dedicated to providing excellence in oil and natural gas industry training.

That’s why we offer more than 100 e-learning courses, designed to provide flexible training opportunities, and a wide variety of instructor-led courses developed and taught by the most knowledgeable industry experts.

Below is a selection of meetings, conferences, workshops, and API-U courses. For additional information, please visit our website at https://www.api.org/products-and-services/events or https://www.api.org/products-and-services/training/api-u.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 20–24</td>
<td>Exploration and Production Winter Standards Meeting</td>
<td>Fort Worth, TX</td>
</tr>
<tr>
<td>January 21–24</td>
<td>API/AGA Joint Committee on Pipeline Welding Practices</td>
<td>Fort Worth, TX</td>
</tr>
<tr>
<td>March 22–24</td>
<td>API International Trade and Customs Conference</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>March 23–27</td>
<td>Spring Committee on Petroleum Measurement Standards Meeting</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>April 20–23</td>
<td>Spring Refining and Equipment Standards Meeting</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>April 22</td>
<td>Spring Operating Practices Symposium</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>April 27–28</td>
<td>86th Annual API Federal Tax Forum</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>April 28–30</td>
<td>API Pipeline Conference, Control Room Forum, and Cybernetics Symposium</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>June 2–3</td>
<td>API Excise Tax Forum</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>June 29–July 3</td>
<td>Exploration and Production Standards Conference on Oilfield Equipment and Materials</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>October 12–15</td>
<td>API Storage Tank Conference and Expo</td>
<td>Nashville, TN</td>
</tr>
<tr>
<td>October 19–23</td>
<td>Fall Committee on Petroleum Measurement Standards Meeting</td>
<td>Santa Ana Pueblo, NM</td>
</tr>
<tr>
<td>November 10–11</td>
<td>15th Annual API Cybersecurity Conference for the Oil and Natural Gas Industry</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>November 16–19</td>
<td>Fall Refining and Equipment Standards Meeting</td>
<td>Denver, CO</td>
</tr>
<tr>
<td>November 18</td>
<td>API/AFPM Fall Operating Practices Symposium</td>
<td>Denver, CO</td>
</tr>
</tbody>
</table>