This report covers many of the “lean”, “standard”, “super”, and “hyper” grades of duplex stainless steels (DSSs) most commonly used within refineries. The definitions of these terms have not been firmly established by the industry, and vary between literature references and materials suppliers. Table 1 shows how the various grades are being classified into “families” for the purposes of this report. The UNS numbers of the standard grades being used for corrosive refining services include:

- Lean DSSs: S32101, S32202, S32304, S32003, S82011, and S82441;
- Standard DSSs: S31803 and S32205;
- Super DSSs: S32520, S32550, S32750, S32760, and S32906;
- Hyper DSS: S32707.

The grades which are labeled as “lean” (including grades sometimes called “semi-lean”) have either lower Cr, Ni, or Mo than the standard grades, and are used in some process services that are less aggressive (primarily in corrosive environments to replace 304L SS). These alloys have also been used for storage tanks and structural applications, primarily for their higher strength as compared to carbon steel (CS). It is observed that new DSS alloys are being introduced and are likely to continue to be introduced. These new grades can be reasonably placed in the context of this discussion based on their composition.

The product forms within the scope are tubing, plate, sheet, forgings, pipe, and fittings for piping, vessel, exchanger, and tank applications. The use of DSSs for tanks is also addressed by API 650, Annex X. The Third Edition of this report (API 938-C) has added sections covering castings and hot isostatically-pressed (HIP) components for pumps, valves, and other applications. The limited use of DSSs as a cladding is also briefly covered within this document.

The majority of refinery services where DSSs are currently being used or being considered in the refining industry contain:

a) a wet, sour (H2S) environment, which may also contain hydrogen, ammonia, carbon dioxide, chlorides, and/or hydrocarbons, which typically has a pH greater than 7;

b) water containing chlorides, with or without hydrocarbons—this includes many fresh water cooling water systems, and some salt water systems with higher alloy grades;

c) hydrocarbons with naphthenic acids at greater than 200 °C (400 °F), but below the maximum allowable temperatures in the ASME Code for DSSs (260 °C to 343 °C [500 °F to 650 °F], depending on the grade);

d) amines, such as MEA, MDEA, DEA, etc.; or

e) other environments, such as those containing caustic conditions.

The specific plant locations containing these services are described in a later section and the report scope will be limited to the first four environments. Although DSSs have good resistance to caustic environments, this service is not unique to or widespread in refining, and hence is not covered in detail in this report.

For ordering information:

Online: www.api.org/pubs

Phone: 1-800-854-7179
(Toll-free in the U.S. and Canada)
(+1) 303-397-7056
(Local and International)

Fax: (+1) 303-397-2740

API members receive a 30% discount where applicable.
Contents

1 Scope ... 1
2 Normative References. .. 5
3 Terms, Definitions, and Acronyms ... 7
 3.1 Terms and Definitions .. 7
 3.2 Acronyms ... 7
4 Metallurgy of DSSs ... 9
 4.1 Background ... 9
 4.2 Solidification .. 9
 4.3 Problems to be Avoided During Welding .. 9
 4.4 Low and High Temperature Properties ... 10
 4.5 Hardness Conversions .. 12
5 Potential Environment-Related Failure Mechanisms ... 14
 5.1 Chloride Pitting and Crevice Corrosion ... 14
 5.2 Corrosion in Seawater .. 16
 5.3 Chloride Stress Corrosion Cracking (CSCC) .. 17
 5.4 Hydrogen Stress Cracking (HSC)/Sulfide Stress Cracking (SSC) .. 19
 5.5 Ammonium Bisulfide Corrosion ... 21
 5.6 Naphthenic Acid Corrosion ... 22
 5.7 475 °C (885 °F) Embrittlement .. 22
6 Material Specifications ... 24
 6.1 Typical Specification Requirements for Wrought Materials ... 24
 6.2 Welded Versus Seamless Tubing and Piping. ... 27
 6.3 Use of Integrally Finned Tubing .. 27
 6.4 Use of Twisted Tubes ... 28
 6.5 Duplex SS Castings and HIP Components. ... 29
 6.6 Duplex SS Used as a Cladding Material ... 29
7 Fabrication Requirements ... 29
 7.1 Typical Specification Requirements ... 29
 7.2 Typical Welding Processes and Filler Metals ... 30
 7.3 Dissimilar Metal Welding .. 31
 7.4 Ferrite Measurements vs. Austenite Spacing ... 31
 7.5 Cold Working and Hot and Cold Bending ... 32
 7.6 Tube-to-tubesheet Joints ... 32
 7.7 Post-Fabrication Cleaning ... 33
 7.8 NDE Methods ... 33
 7.9 Hydrostatic Testing ... 34
 7.10 Coating Requirements and Risk of CUI ... 34
8 Examples of DSSs Applications within Refineries ... 34
 Annex A (informative) Example of Special Material Requirements for DSSs 44
 Annex B (informative) Example of Special Welding Procedure Qualification Requirements for DSSs ... 46
 Annex C (informative) Example of Special Welding and Fabrication Requirements for DSSs 47
 Annex D (informative) Example of a Duplex SS Casting Specification .. 48
 Annex E (informative) Example of a Hot Isostatically-pressed (HIP) Duplex SS Material Specification ... 53
Contents

Bibliography .. 57

Figures
1 Comparison of the Proof Stress and Pitting Resistance (based on PREN of the bulk chemistry) of Duplex and Austenitic SS .. 5
2 Possible Precipitations in DSSs ... 11
3 Effect of Weld Metal Oxygen Content on the Toughness of the Weld ... 12
4 Compilation of Hardness Data for a Range of Duplex Parent Materials and Weldments Showing the Best-fit Line and ASTM E140 Conversion for Ferritic Steel ... 13
5 CPT for 22 % Cr, Super and Hyper DSSs Alloys Compared to Austenitic SS Alloys in 6 % FeCl3, ASTM G48 Test Method A ... 15
6 CPTs at Various Concentrations of Sodium Chloride (at +300 mV vs. SCE, Neutral pH) 15
7 CPTs and CCTs for 22 % Cr and Super DSSs Compared to Austenitic SS Alloys in ASTM G48 Tests... 16
8 CSCC Resistance of DSSs Alloys Compared to Austenitic SS Alloys in Oxygen-bearing Neutral Chloride Solutions .. 18
9 Results of SCC Tests of 22 % Cr and 25 % Cr DSSs Alloys Compared to Austenitic SS Alloys in Constant Load Tests in 40 % CaCl2, 1.5 pH at 100 °C with Aerated Test Solution .. 18
10 Impact Energy Curves for Alloys Aged at 300 °C and 325 °C: a) Quench Annealed S32750; b) 45 % Cold Worked S31803 [°C = (°F – 32)/1.8] ... 25
11 Embrittlement of UNS S32304, S32205, and S32507 after Long Time Annealing 26

Tables
1 Chemical Compositions of Commonly Used DSSs and Other Alloys .. 2
2 ASME and ASTM Specifications for DSSs ... 4
3 Mechanical Properties of Various Duplex and 316L SSs ... 4
4 Partitioning of Elements of Various DSS Grades (% in ferrite/% in austenite) 9
5 ASME Code Maximum Allowable Temperatures .. 13
6 Estimated H2S Partial Pressure Limits for DSS in Production Services Based on Literature, Laboratory and Experiential Data (KPa [psi]) .. 20
7 Successful Service Experience with DSS in Production Sour Services ... 21
8 Partitioning of Alloying Elements Between Phases ... 23
9 Welding Consumables ... 31
10 Case Histories of DSS Uses Reported in NACE International Refin-Cor .. 35
11 Case Histories of DSSs Uses Reported by Other Sources ... 39
12 Summary List of DSSs Refinery Applications to Date .. 43
D.1 Impact and Corrosion Test Requirements .. 50
D.2 Welding Consumables ... 51